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ON SOME PROPERTIES
OF THE SUPERPOSITION OPERATOR

ON TOPOLOGICAL MANIFOLDS

Abstract. In this paper the superposition operator in the space of vector-valued, bounded
and continuous functions on a topological manifold is considered. The acting conditions and
criteria of continuity and compactness are established. As an application, an existence result
for the nonlinear Hammerstein integral equation is obtained.
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1. INTRODUCTION

Let S be a given set and f : S×Rn −→ Rn, n ≥ 1, be a given function. The operator
F defined for functions x : S −→ Rn by the formula

(Fx)(s) = f(s, x(s))

is called the superposition operator (or Nemytskij operator) generated by the function
f(s, x). This operator plays an essential role in numerous mathematical investigations
– e.g. in the theory of nonlinear integral equations (see [2,8]) – and to date has been
studied thoroughly. The basic facts and ideas concerning the superposition operator
have been collected by J. Appell and P.P. Zabrejko in their monograph [1].

One of the most important problems considered in the theory of the superposition
operator is to establish necessary and sufficient conditions guaranteeing that this
operator transforms a given function space into itself (so called “acting conditions”), is
continuous, compact or possesses other useful properties. Such conditions are known
for many function spaces (cf. [1]). Nevertheless, for many other spaces, especially
those consisting of functions defined on noncompact sets, conditions of such a type
are not known.
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The aim of this paper is to give acting conditions and to establish criteria of con-
tinuity and compactness for the superposition operator in the space of vector-valued
functions, bounded and continuous on a given topological manifold (not necessarily
compact). As an application, we give conditions guaranteeing solvability of the nonlin-
ear Hammerstein integral equation in the above mentioned space. Thus we generalize
the results obtained in [6], for example.

2. PRELIMINARIES

From now, let S be a normal topological space and let M denote a Hausdorff topolo-
gical manifold, with or without a boundary, satisfying the second countability axiom.

Consider the finite dimensional space Rn, n ≥ 1, with an arbitrarily fixed norm
‖ · ‖, compatible with the topology. Let the constants C1 > 0 and C2 > 0 be such
that

C−1
1 ‖x‖l∞ ≤ ‖x‖ ≤ C2‖x‖l1 ,

where
‖x‖l∞ = max{|x1|, . . . , |xn|} and ‖x‖l1 = |x1|+ . . .+ |xn|

for any x = (x1, . . . , xn) ∈ Rn.
By BC(S,Rn) (or BC(M,Rn), respectively), we denote the space of bounded and

continuous functions x : S → Rn with the standard norm:

‖x‖BC = sup
s∈S
‖x(s)‖.

If n = 1, we will shortly write BC(S) instead of BC(S,R), and then

‖x‖BC = sup
s∈S
|x(s)|.

Further, let the symbol Br, r > 0, denote the closed ball, centered at zero and of
radius r, in any of the above function spaces.

In the sequel we shall need some criteria of compactness in the space BC(M,Rn),
but first we state the following general result (see [4], Theorem IV.6.5).

Theorem 2.1. Let S be an arbitrary normal topological space and let K be a bounded
subset of the space BC(S). Then K is conditionally compact if, and only if, for every
ε > 0 there is a finite collection {E1, . . . , Em} of sets with union S, and points si in
Ei, i = 1, . . . ,m, such that

sup
x∈K

sup
s∈Ei

|x(si)− x(s)| < ε, i = 1, . . . ,m.

Since BC(S,Rn) may be considered as a topological product of n copies of BC(S),
and the norm ‖ . ‖ is equivalent to the l∞ norm in Rn, using the classical Tychonoff
theorem [5] we get the following result.
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Corollary 2.2. Let S be a normal topological space and let K be a bounded subset
of the space BC(S,Rn). Then K is conditionally compact if, and only if, for every
ε > 0 there is a finite collection {E1, . . . , Em} of sets with union S, such that

sup
x∈K

sup
s,t∈Ei

‖x(s)− x(t)‖ < ε, i = 1, . . . ,m.

Using the Dieudonné theorem it can be shown, that each Hausdorff topological
manifold satisfying the second countability axiom is a normal topological space (see
[7]). Moreover, it is locally compact. Hence, using the Arzelà-Ascoli theorem, we
may replace arbitrary sets by the open ones in the above formulation, and obtain the
following criterion.

Corollary 2.3. Let M be a Hausdorff topological manifold satisfying the second
countability axiom and let K be a bounded subset of the space BC(M,Rn). Then
K is conditionally compact if, and only if, for every ε > 0 there is a finite collection
{U1, . . . , Um} of open sets with union M , such that

sup
x∈K

sup
s,t∈Ui

‖x(s)− x(t)‖ < ε, i = 1, . . . ,m.

Now, for the sake of completeness let us recall the Tietze extension theorem (see
[4], Theorem I.5.3).

Theorem 2.4. If g is a bounded real continuous function defined on a closed subset
A of a normal topological space S, then there is a continuous real function G defined
on S, with G(s) = g(s) for s in A, and

sup
s∈S
|G(s)| = sup

s∈A
|g(s)|.

Finally, the Dieudonné theorem again, we may reformulate the above result for
vector-valued functions defined on M .

Corollary 2.5. Let A be a closed subset of a Hausdorff topological manifold M sat-
isfying the second countability axiom. Then for any function g ∈ BC(A,Rn) there is
a function G ∈ BC(M,Rn) such that G(s) = g(s) for s ∈ A, and

sup
s∈M
‖G(s)‖ = sup

s∈A
‖g(s)‖.

3. MAIN RESULTS

As before, letM be a Hausdorff topological manifold satisfying the second countability
axiom and let f : M × Rn −→ Rn be a given function.

In this section we give the necessary and sufficient conditions guaranteeing the
continuity and compactness of the superposition operator in the space BC(M,Rn).
These results generalize the earlier ones, e.g. theorems of M.A. Krasnoselśkii (cf. [1]).
Firstly we state the acting conditions.
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Theorem 3.1. The superposition operator F generated by f maps the space
BC(M,Rn) into itself if, and only if, the function f is continuous and bounded on
each set of the form M ×Br, where r > 0.

Proof. The sufficient condition is obvious.
To prove the necessary condition, let us first suppose that the function f is not

continuous.
If there were u0 ∈ Rn such that the function M 3 s 7−→ f(s, u0) ∈ Rn was not

continuous, then for the constant function x(s) ≡ u0 its image Fx would not be
continuous on M .

This proves that for any u ∈ Rn the functionM 3 s 7−→ f(s, u) ∈ Rn is continuous.
Further, let (s0, u0) ∈ M × Rn and the sequence (sj , uj) ∈ M × Rn, j = 1, 2, . . ., be
such that

lim
j→∞

sj = s0, lim
j→∞

uj = u0 and lim
j→∞

f(sj , uj) 6= f(s0, u0). (3.1)

Since f(s, u) is continuous in s for each u ∈ Rn and M is locally homeomorphic to
the finite dimensional space (or halfspace) , we may assume that si 6= sj for i 6= j
here.

Now, since the set {sj : j = 0, 1, 2, . . .} is closed in M , we may use Corollary 2.5
to construct a function x ∈ BC(M,Rn) satisfying

x(sj) = uj for j = 0, 1, 2, . . . . (3.2)

For such x, taking into account (3.1) and (3.2), we have

lim
j→∞

(Fx)(sj) = lim
j→∞

f(sj , uj) 6= f(s0, u0) = (Fx)(s0),

so Fx is not continuous.
Thus, if f is not continuous, the superposition operator F generated by f does

not act in the space BC(M,Rn).
Suppose now, that the function f is continuous on M , but is not bounded on the

set M ×Br for some r > 0.
Let {(sj , uj)} be a sequence in M ×Br such that

lim
j→∞

|f(sj , uj)| =∞. (3.3)

Similarly as above, we may assume that si 6= sj for i 6= j here.
Since f is continuous and (3.3) holds, the sequence {sj} has no accumulation

points in M . Hence the set of its values is closed in M and we can use Corollary 2.5
once again to get the function x ∈ BC(M,Rn), such that x(sj) = uj for j = 1, 2, . . . .

For such an x its image Fx is not bounded on M , so the superposition operator
F does not act in BC(M,Rn).

Now, let us state the result concerning the continuity of the superposition operator
in the space BC(M,Rn).
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Theorem 3.2. If the superposition operator F generated by f maps the space
BC(M,Rn) into itself, then it is continuous if, and only if, for each r > 0

lim
ε→0

sup
s∈M

(sup{‖f(s, u)− f(s, w)‖ : u,w ∈ Br, ‖u− w‖ ≤ ε}) = 0. (3.4)

Proof. Suppose that the above condition is fulfilled. Let {xj}, j = 1, 2, . . . , be a se-
quence converging to x0 in the space BC(M,Rn). Further, let r > 0 be large enough
to satisfy ‖xj‖ ≤ r for all j.

To show that the sequence {Fxj} converges to Fx0 in BC(M,Rn) let us fix δ > 0
and, by (3.4), choose ε > 0 such that

sup
s∈M

(sup{‖f(s, u)− f(s, w)‖ : u,w ∈ Br, ‖u− w‖ ≤ ε}) < δ. (3.5)

Then there exists j0 ∈ N such that for j ≥ j0 we have:

‖xj − x0‖BC = sup
s∈M
‖xj(s)− x0(s)‖ < ε. (3.6)

For any such j, by (3.5) and (3.6), we get:

‖Fxj − Fx0‖BC = sup
s∈M
‖f(s, xj(s))− f(s, x0(s))‖ < δ,

which proves the continuity of the operator F .
Now, let us assume that the condition (3.4) is not fulfilled, i.e. there exist r > 0,

δ > 0 and a sequence {εj} such that:

a) all εj > 0 and lim
j→∞

εj = 0,

b) sup
s∈M

(sup{‖f(s, u)− f(s, w)‖ : u,w ∈ Br, ‖u− w‖ ≤ εj}) > δ for j = 1, 2, . . .

The last condition means, that for each j there exist sj ∈M and uj , wj ∈ Br such
that ‖uj − wj‖ ≤ εj and ‖f(sj , uj)− f(sj , wj)‖ > δ.

We claim that the sequence {sj} has no accumulation points in M .
Suppose contrary. Let s0 ∈M be such a point. By taking a subsequence, we may

assume that the sequence {sj} converges to s0.
The sequence {uj} is contained in the compact set Br, so choosing a subse-

quence once again we may assume that it is convergent to some u0 ∈ Br. Since
limj→∞ εj = 0, the sequence {wj} must be convergent to the same limit. Hence,
taking into account that f is continuous for every η > 0 and for sufficiently large j,
‖f(sj , uj)− f(sj , wj)‖ < η – we have a contradiction.

Since the sequence {sj} has no accumulation points, the set of its values is infinite
and closed in M . Without loss of generality we may assume that si 6= sj for i 6=j,
i, j = 1, 2, . . .. Thus, in view of Corollary 2.5 we can construct a function x0 ∈
BC(M,Rn) such that

x0(sj) = uj for j = 1, 2, . . . .

Now, let us define the sequence xj ∈ BC(M,Rn), j = 1, 2, . . ., by the formula

xj(s) = x0(s) + (wj − uj) for s ∈M.
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We have
sup
s∈M
‖xj(s)− x0(s)‖ = ‖wj − uj‖,

hence
lim

j→∞
‖xj − x0‖BC = 0.

On the other hand

‖Fxj − Fx0‖BC = sup
s∈M
‖f(s, xj(s))− f(s, x0(s))‖ ≥

≥ ‖f(sj , xj(sj))− f(sj , x0(sj))‖ = ‖f(sj , wj)− f(sj , uj)‖ > δ

for j = 1, 2, . . .
This implies that if f does not satisfy condition (3.4), then the superposition

operator F generated by f is not continuous.

At the end of this section we shall state the result concerning compactness of
the superposition operator in the space BC(M,Rn), which is, in fact, a slight gene-
ralization of the corresponding result of M.A. Krasnoselśkii for a compact interval.
Nevertheless, we give the proof for the sake of completeness.

Theorem 3.3. If the superposition operator F generated by f maps the space
BC(M,Rn) into itself then it is compact if and only if it is constant, i.e., if the
function f does not depend on the second argument.

Proof. Suppose that F is not constant, i.e. there is s0 ∈ M and u, v ∈ Rn such that
f(s0, u) 6= f(s0, v). Let r0 = max{‖u‖, ‖v‖}. Consider any ε > 0 satisfying

‖f(s0, u)− f(s0, v)‖ > 2ε,

and any finite collection {U1, . . . , Um} of open sets with union M . If Uk, 1 ≤ k ≤ m,
contains s0 then there exists s1 ∈ Uk, s1 6= s0, such that

‖f(s0, v)− f(s1, v)‖ < ε.

Thus we can construct (using Corollary 2.5, e.g.) a function x ∈ BC(M,Rn) such
that

‖x‖BC ≤ r0, x(s0) = u and x(s1) = v.

For such an x we have

‖(Fx)(s0)− (Fx)(s1)‖ = ‖f(s0, u)− f(s1, v)‖ > ε.

Hence, by Corollary 2.3, the set F (Br0) is not compact and the operator F is not
compact, too.

Remark 3.4. Let us mention that the results of this sections do not hold in the space
BC(S,Rn) for any normal topological space S.

As an example, let us consider a space SD with the discrete topology. This is
a normal (even metrizable) space but the superposition operator F , generated by any
f : SD −→ Rn bounded on the sets M × Br, r > 0, and not necessarily continuous,
acts on BC(SD,Rn).
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4. AN APPLICATION

In this section we prove an existence result for the nonlinear Hammerstein integral
equation, which generalizes the results of [3] and [6].

Let M be a Hausdorff topological manifold satisfying the second countability
axiom and additionally equipped with a positive Borel measure µ.

We want to solve the following functional equation

x = ϕ+Hx (4.1)

where x ∈ BC(M,Rn) is the unknown, ϕ ∈ BC(M,Rn) is given, and H is the
Hammerstein integral operator

(Hx)(t) =
∫
M

k(t, s)f(s, x(s))dµ(s), t ∈M.

We shall consider the equation (4.1) under the following assumptions:

i) the function f : M × Rn → Rn, and the superposition operator F generated
by f maps the space BC(M,Rn) into itself and is continuous (see Theorems 3.1
and 3.2),

ii) the function k(t, s) maps M ×M into the space of n×n real matrices; each entry
kij(t, s) (i, j = 1, . . . , n) is continuous in t for almost all s, and summable in s
for all t; moreover, the function t → ‖kij(t, ·)‖L1 is bounded on M for each pair
(i, j), where

‖kij(t, ·)‖L1 =
∫
M

|kij(t, s)|dµ(s).

The Hammerstein integral operator may be written as a product

H = KF

of the superposition operator F generated by f and the linear integral operator

(Kx)(t) =
∫
M

k(t, s)x(s)dµ(s), t ∈M.

From the assumption ii) it follows that K maps the space BC(M,Rn) into itself and
is continuous.

Let us denote by ‖K‖ its norm in the space of continuous linear operators acting
on BC(M,Rn).

Now we can formulate the main result of this section.

Theorem 4.1. Suppose assumptions i) and ii) are satisfied. For r > 0 let

β(r) = sup{‖f(t, u)‖ : t ∈M, u ∈ Br} .
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If

lim inf
r→∞

β(r)
r

< ‖K‖−1 (4.2)

and the set Kij consisting of all functions of the form s→ kij(t, s), where t ∈ M , is
conditionally compact in L1(M) for each pair (i, j), then, for each ϕ ∈ BC(M,Rn),
equation (4.1) has at least one solution x ∈ BC(M,Rn).

If ϕ ≡ 0, instead of (4.2) it suffices to assume, that

inf
r>0

β(r)
r

< ‖K‖−1 . (4.3)

Proof. Denote by P the operator defined by the right hand side of the equation (4.1):

Px = ϕ+Hx for x ∈ BC(M,Rn) .

The assumptions i) and ii) imply that P is continuous. To prove that it is compact
it suffices to show that the operator K is compact (F is bounded and continuous due
to i)).

So let us fix arbitrarily ε > 0.
Since each of the sets Kij is compact in L1(M), there exists a finite collection of

sets {E1, . . . , Em} with union M such that for any l, 1 ≤ l ≤ m, any t1, t2 ∈ El and
any pair (i, j), 1 ≤ i, j ≤ n, we have

‖kij(t1, ·)− kij(t2, ·)‖L1 =
∫
M

|kij(t1, s)− kij(t2, s)|dµ(s) < ε.

Hence for any x ∈ BC(M,Rn) we get

‖(Kx)(t1)− (Kx)(t2)‖ = ‖
∫
M

[k(t1, s)− k(t2, s)]x(s)dµ(s)‖ ≤

≤ C2

n∑
i=1

|
∫
M

n∑
j=1

[kij(t1, s)− kij(t2, s)]xj(s)dµ(s)| ≤

≤ C1C2‖x‖
n∑

i=1

n∑
j=1

∫
M

|kij(t1, s)− kij(t2, s)|dµ(s) <

< C1C2‖x‖n2ε,

which, together with Corollary 2.2, implies that the operator K is compact.
Now observe, that using (4.2) (or (4.3) in the case ϕ ≡ 0) we can find r > 0 such

that
‖ϕ‖BC‖K‖−1

r
+
β(r)
r

< ‖K‖−1 .

For such r, and all x ∈ Br, we have

‖Px‖BC ≤ ‖ϕ‖BC + ‖KFx‖BC ≤ ‖ϕ‖BC + ‖K‖β(r) ≤ r ,

so P maps the ball Br into itself. Thus, we can use Schauder’s fixed point theorem
to finish the proof.
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