PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Topological classification of conformal actions on p-hyperelliptic and (q,n)-gonal Riemann surfaces

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X admits a conformal involution ρ for which X/ρ has genus p. A conformal automorphism δ of prime order n such that X/δ has genus q is called a (q, n)-gonal automorphism. Here we study conformal actions on p-hyperelliptic Riemann surface with (q, n)-gonal automorphism.
Rocznik
Strony
443--452
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
Bibliografia
  • [1] O.V. Bogopolski, Classifying the actions of finite groups on orientable surfaces of genus 4, Siberian Adv. Math. 7 (1997) 4, 9–38.
  • [2] R. Brandt, H. Stichtenoth, Die Automorphismengruppen hyperelliptischer Kurven, Manuscripta Math. 55 (1986) 1, 83–92.
  • [3] S.A. Broughton, Classifying finite groups actions on surfaces of low genus, J. Pure Appl. Algebra 69 (1991) 3, 233–270.
  • [4] S.A. Broughton, The equisymmetric stratification of the moduli space and the Krull dimension of the mapping class group, Topology and Its Applications 37 (1990), 101–113.
  • [5] E. Bujalance, F.J. Cirre, J.M. Gamboa, G. Gromadzki, Symmetry types of hyperelliptic Riemann surfaces, Mm. Soc. Math. Fr. (N.S.) 86 (2001).
  • [6] E. Bujalance, A.F. Costa, On symmetries of p-hyperelliptic Riemann surfaces, Math.Ann. 308 (1997) 1, 31–45.
  • [7] E. Bujalance, J.J. Etayo, J.M. Gamboa, Surfaces elliptiques-hyperelliptiques avec beaucoup d’automorphismes, C. R. Acad. Sci. Paris Sr. I. Math. 302 (1986) 10, 391–394.
  • [8] E. Bujalance, J.J. Etayo, J.M. Gamboa, Topological types of p-hyperelliptic real algebraic curves, Math. Z. 194 (1987) 2, 275–283.
  • [9] E. Bujalance, J.J. Etayo, Large automorphism groups of hyperelliptic Klein surfaces, Proc. Amer. Math. Soc. 103 (1988) 3, 679–686.
  • [10] E. Bujalance, J.J. Etayo, A characterization of q-hyperelliptic compact planar Klein surfaces, Abh. Math. Sem. Univ. Hamburg 58 (1988), 95–102.
  • [11] E. Bujalance, J. Etayo, J. Gamboa, G. Gromadzki, Automorphisms Groups of Compact Bordered Klein Surfaces. A Combinatorial Approach, Lecture Notes in Math. 1439, Springer Verlag (1990).
  • [12] E. Bujalance, J. M. Gamboa, G. Gromadzki, The full automorphisms group of hyperelliptic Riemann surfaces, Manuscripta Math 79 (1993), 267–282.
  • [13] B. Estrada, Automorphism groups of orientable elliptic-hyperelliptic Klein surfaces, Ann. Acad. Sci. Fenn. Math. 25 (2000), 439–456.
  • [14] B. Estrada, E. Martinez, On q-hyperelliptic k-bordered tori, Glasg. Math. J. 43 (2001) 3, 343–357.
  • [15] B. Estrada, Geometrical characterization of p-hyperelliptic planar Klein surfaces, Comput.Methods Funct. Theory 2 (2002), no. 1, 267–279.
  • [16] B. Estrada, R. Hidalgo, E. Martinez, On q-n-gonal Klein surfaces, Acta Math. Sinica 23 (2007) 10, 1833–1844.
  • [17] H.M. Farkas, I. Kra, Riemann Surfaces, Graduate Text in Mathematics, Springer-Verlag, 1980.
  • [18] G. Gromadzki, A. Weaver, A. Wootton, On gonality of Riemann surfaces, to appear.
  • [19] A.M. Macbeath, Action of automorphisms of a compact Riemann surface on the first homology group, Bull. London Math. Soc. 5 (1973), 103–108.
  • [20] E. Tyszkowska, Topological classification of conformal actions on elliptic-hyperelliptic Riemann surfaces, Journal of Algebra 288 (2005), 345–363.
  • [21] E. Tyszkowska, Topological classification of conformal actions on 2-hyperelliptic Riemann surfaces, Bull. Inst. Math. Acad. Sinica 33 (2005) 4, 345–368.
  • [22] E. Tyszkowska, On p-hyperelliptic involutions of Riemann surfaces, Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry 46 (2005) 2, 581–586.
  • [23] E. Tyszkowska, A.Weaver, Exceptional points in the eliptic-hyperelliptic locus, Journal of Pure and Applied Algebra 212 (2008), 1415–1426.
  • [24] A.Weaver, Hyperelliptic surfaces and their moduli, Geom. Dedicata 103 (2004), 69–87.
  • [25] D. Singerman, Finitely generated maximal Fuchsian groups, J. London Math. Soc. 6 (1972) 2, 29–38.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0002-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.