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Abstract. A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X
admits a conformal involution ρ for which X/ρ has genus p. A conformal automorphism δ
of prime order n such that X/δ has genus q is called a (q, n)-gonal automorphism. Here we
study conformal actions on p-hyperelliptic Riemann surface with (q, n)-gonal automorphism.
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1. INTRODUCTION

A compact Riemann surface X of genus g ≥ 2 is said to be p-hyperelliptic if X
admits a conformal involution ρ, called a p-hyperelliptic involution, such that X/ρ is
an orbifold of genus p. This notion has been introduced by H. Farkas and I. Kra in
[17] where they also proved that for g > 4p + 1, p-hyperelliptic involution is unique
and central in the group of all automorphisms of X. In [22] it has been proved that
every two p-hyperelliptic involutions commute for 3p+ 2 ≤ g ≤ 4p+ 1 and X admits
at most two such involutions if g > 3p+ 1.

In the particular cases p = 0, 1, X are called hyperelliptic and elliptic-hyperelliptic
Riemann surfaces respectively. Hyperelliptic Riemann surfaces and their automor-
phisms have received a good deal of attention in the literature. In [2] and [12] the
authors determined the full groups of conformal automorphisms of such surfaces which
made it possible to classify symmetry types of such actions in [5]. The p-hyperelliptic
(p ≥ 1) surfaces at large have been studied in [7–11, 13–15] and [23], where the most
attention has been paid to a study of groups of automorphisms of such surfaces and
their symmetries.
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We say that a finite group G acts on a topological surface X if there exists
a monomorphism ε : G → Hom+(X), where Hom+(X) is the group of orienta-
tion-preserving homeomorphisms of X. Two actions of finite groups G and G′ on
X are topological equivalent if the images of G and G′ are conjugate in Hom+(X).
There are two reasons for the topological classification of finite actions rather than
just the groups of homeomorphisms. First, the equivalence classes of group actions
are in 1 − 1 correspondence to conjugacy classes of finite subgroups of the mapping
class group and so such a classification gives some information on the structure of
this group. Second, the enumeration of finite group actions is a principal component
of the analysis of singularities of the moduli space of conformal equivalence classes of
Riemann surfaces of a given genus since such space is an orbit space of Teichmüller
space by a natural action of the mapping class group, see [4].

The classification of conformal actions up to topological conjugacy is a classical
problem, which has been considered for surfaces of genera g = 2, 3 in [3] and g = 4 in
[1]. In the case p-hyperelliptic Riemann surfaces it has been studied in [24, 20] and
[21] for p = 0, 1 and 2, respectively.

Here we study conformal actions on p-hyperelliptic Riemann surface X which ad-
mits a conformal automorphism δ of prime order n > 2 such that X/δ has genus q [18].
The automorphism δ is called the (q, n)-gonal automorphism and in the case q = 0,
n-gonality automorphism. (q, n)-gonal Klein surfaces have been considered in [16].

2. PRELIMINARIES

We shall approach the problem using Riemann uniformization theorem by which
each compact Riemann surface X of genus g ≥ 2 can be represented as the orbit
space of the hyperbolic plane H under the action of some Fuchsian surface group Γ.
Furthermore, a group G of automorphisms of a surface X = H/Γ can be represented
as G = Λ/Γ for another Fuchsian group Λ. Each Fuchsian group Λ is given a signature
σ(Λ) = (g;m1, . . . ,mr), where g,mi are integers verifying g ≥ 0,mi ≥ 2. The g = 0
in signature will be omitted and mi = m repeated r-times will be written mr. The
signature determines the presentation of Λ:

generators: x1, . . . , xr, a1, b1, . . . , ag, bg,
relations: xm1

1 = . . . = xmr
r = x1 . . . xr[a1, b1] . . . [ag, bg] = 1.

Such set of generators is called the canonical set of generators and often, by abuse
of language, the set of canonical generators. Geometrically xi are elliptic elements
which correspond to hyperbolic rotations and the remaining generators are hyperbolic
translations. The integersm1,m2, . . . ,mr are called the periods of Λ and g is the genus
of the orbit space H/Λ. Fuchsian groups with signatures (g;−) are called surface
groups and they are characterized among Fuchsian groups as these ones which are
torsion free.

The group Λ has associated to it a fundamental region whose area µ(Λ), called
the area of the group, is:

µ(Λ) = 2π

(
2g − 2 +

r∑
i=1

(1− 1/mi)

)
. (2.1)
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If Γ is a subgroup of finite index in Λ, then we have the Riemann-Hurwitz formula
which says that

[Λ : Γ] =
µ(Γ)
µ(Λ)

. (2.2)

The number of fixed points of an automorphism of X can be calculated by the
following theorem of Macbeath [19].

Theorem 2.1. Let X = H/Γ be a Riemann surface with the automorphism group G =
Λ/Γ and let x1, . . . , xr be elliptic canonical generators of Λ with periods m1, . . . ,mr

respectively. Let θ : Λ→ G be the canonical epimorphism and for 1 6= g ∈ G let εi(g)
be 1 or 0 according whether g is or is not conjugate to a power of θ(xi). Then the
number F (g) of points of X fixed by g is given by the formula

F (g) = |NG(〈g〉)|
r∑
i=1

εi(g)/mi. (2.3)

Let G be a finite group acting on a surface X of genus g > 1 such that the
canonical projection X → X/G is ramified at r points with multiplicities m1, . . . ,mr

and s is the genus of X/G. Then a (2s+ r)-tuple (ã1, . . . , ãs, b̃1, . . . , b̃s, x̃1, . . . , x̃r) of
generators of G such that x̃i has order mi for i = 1, . . . , r, x̃1 . . . x̃r

∏s
i=1[ãi, b̃i] = 1

and 2g−2 = |G|(2s−2+
∑r
i=1(1−1/mi)) is called a generating (s;m1, . . . ,mr)-vector.

For every generating (s : m1, . . . ,mr)-vector of G, there exists a Fuchsian group
Λ with the signature (s;m1, . . . ,mr) and an epimorphism θ : Λ → G defined by the
assignment θ(ai) = ãi, θ(bi) = b̃i and θ(xj) = x̃j . The kernel Γ of θ is a surface
Fuchsian group of orbit genus g and G acts as an automorphism group on a Riemann
surface X = H/Γ. If an involution ρ appears in generating vector as an image of k
consecutive elliptic generators of Λ, then we shall write ρ[k] instead of ρ, k. . ., ρ. There
is a 1 − 1 correspondence between the set of generating vectors of G and the set of
epimorphisms θ : Λ→ G with torsion free kernels. Two epimorphisms θ : Λ→ G and
θ′ : Λ′ → G′ define topologically equivalent actions if ϕθ = θ′ψ for some isomorphisms
ϕ : G→ G′ and ψ : Λ→ Λ′ [3].

3. p-HYPERELLIPTIC RIEMANN SURFACE
WITH (q, n)-GONAL AUTOMORPHISM

In this section we study Riemann surfaces of genera g > 1 which are p-hyperelliptic
and cyclic (q, n)-gonal simultaneously for a prime n > 2 and a natural q. If g > 4p+1,
then its (q, n)-gonal automorphism and p-hyperelliptic involution commute. The first
theorem gives necessary and sufficient conditions on p and g for the existence of
such surface.

Theorem 3.1. There exists a p-hyperelliptic Riemann surface of genus g ≥ 2 ad-
mitting (q, n)-gonal automorphism commuting with a p-hyperelliptic involution if and
only if p = nγ+ b(n−1)/2 and g = nq+a(n−1)/2 for some integers γ, b, a such that

b = −2 or b ≥ 0, b ≤ a ≤ 2(b+ 1), 0 ≤ γ ≤ (q + 1)/2. (3.1)

Furthermore, the (q, n)-gonal automorphism admits a+ 2 fixed points.
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Proof. Assume that a Riemann surface X = H/Γ admits p-hyperelliptic involution ρ
and (q, n)-gonal automorphism δ. The groups 〈δ〉 and 〈ρ〉 can be identified with Γδ/Γ
and Γρ/Γ, where Γδ and Γρ are Fuchsian groups containing Γ as a normal subgroup
of index n and 2, respectively. By the Riemann-Hurwitz formula they have signatures

σ(Γδ) = (q;n r. . ., n) and σ(Γρ) = (p; 2, s. . ., 2), (3.2)

where s = 2g + 2 − 4p and r = 2 + (2g − 2nq)/(n − 1). Thus g = nq + a(n − 1)/2
for a = r − 2. If ρ and δ commute then they generate the group Z2n which can be
represented by Λ/Γ for a Fuchsian group Λ with the signature

(γ; 2, k1. . ., 2, n, k2. . ., n, 2n, k3. . ., 2n). (3.3)

By the Riemann-Hurwith formula

2g − 2 = 4nγ − 4n+ nk1 + 2k2(n− 1) + k3(2n− 1) (3.4)

and according to Theorem 2.1

nk1 = s− k3, 2k2 = r − k3. (3.5)

By substituting the last equalities to (3.4), we obtain p = nγ + b(n − 1)/2, for an
integer b such that a = 2b+ 2− k3. Thus

k1 = 2q + a− 4γ − 2b, k2 = a− b, k3 = 2 + 2b− a (3.6)

are nonnegative integers if and only if the inequalities (3.1) are satisfied.
Conversely, assume that g = nq + a(n − 1)/2 and p = nγ + b(n − 1)/2 for some

integers a, b and γ satisfying the inequalities (3.1). Then there exists a Fuchsian group
Λ with the signature (3.3). Let θ : Λ→ 〈ρ〉 ⊕ 〈δ〉 be an epimorphism which maps all
hyperbolic generators of Λ onto ρδ, the first k1 of elliptic generators onto ρ and the
remaining in the following way :
δ . . . δ| {z }

(k2+1)/2

δ−1 . . . δ−1| {z }
(k2−3)/2

δ−2 ρδ . . . ρδ| {z }
(k3+1)/2

ρδ−1 . . . ρδ−1| {z }
(k3−3)/2

ρδ−2 if k2 ≡ 1 (2) and k3 ≡ 1 (2),

δ . . . δ| {z }
(k2+1)/2

δ−1 . . . δ−1| {z }
(k2−3)/2

δ−2 ρδ . . . ρδ| {z }
k3/2

ρδ−1 . . . ρδ−1| {z }
k3/2

if k2 ≡ 1 (2) and k3 ≡ 0 (2),

δ . . . δ| {z }
k2/2

δ−1 . . . δ−1| {z }
k2/2

ρδ . . . ρδ| {z }
(k3+1)/2

ρδ−1 . . . ρδ−1| {z }
(k3−3)/2

ρδ−2 if k2 ≡ 0 (2) and k3 ≡ 1 (2),

δ . . . δ| {z }
k2/2

δ−1 . . . δ−1| {z }
k2/2

ρδ . . . ρδ| {z }
k3/2

ρδ−1 . . . ρδ−1| {z }
k3/2

if k2 ≡ 0 (2) and k3 ≡ 0 (2).

Then the kernel of θ is a surface Fuchsian group Γ of genus g while θ−1(ρ) and
θ−1(δ) are Fuchsian groups with the signatures (3.2). Thus H/Γ is a p-hyperelliptic
Riemann surface admitting (q, n)-gonal automorphism. It is easy to notice that for
k2 < 3 or k3 < 3, such an epimorphism does not exist if and only if k2 + k3 + γ = 0
or k2 + k3 = 1. The first equality is never satisfied since if k2 + k3 = 0 then b = −2
and p = n(γ − 1) + 1 what requires γ ≥ 1. The second one occurs for b = −1 and
therefore this value of b is rejected.
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Corollary 3.2. Let X be a p-hyperelliptic Riemann surface of genus g > 4p + 1.
Then for any prime n ≥ 3,

(i) X can be realized as n-sheeted covering of the Riemann sphere if and only if p = 0
and g = n − 1 or g = (n − 1)/2 and its n-gonality automorphism admits 4 or 3
fixed points, respectively.

(ii) X can be realized as n-sheeted covering of an elliptic curve if and only if p = 0
and g ∈ {2n− 1, (3n− 1)/2, n} or p = (n− 1)/2 and g ∈ {3n− 2, (5n− 3)/2} and
its (1, n)-gonal automorphism admits 4, 3, 2 or 6, 5 fixed points, respectively.

Corollary 3.3. Let X = H/Γ be a Riemann surface of genus g ≥ 2 which admits
p-hyperelliptic involution ρ and (q, n)-gonal automorphism δ for p < n. If δ and ρ
commute then p = b(n−1)/2, g = nq+a(n−1)/2 for integers a, b in range 0 ≤ b ≤ 2
and b ≤ a ≤ 2b + 2 and a Fuchsian group Λ such that 〈δ, ρ〉 = Λ/Γ has a signature
(0; 2, 2q+a−2b. . . , 2, n, a−b. . . , n, 2n, 2b+2−a. . . , 2n). Furthermore, δ admits a+2 ≤ 8 fixed points.

Theorem 3.4. All group actions on a p-hyperelliptic and cyclic n-gonal Riemann
surface are given in Table 1, up to topological conjugacy; four of them correspond to
the full automorphism groups: 2.b, 3.a, 3.b and 5.c.

Proof. Let X = H/Γ be a p-hyperelliptic Riemann surface of genus g ≥ 2 admitting
a n-gonality automorphism δ. Then by Corollary 3.2, X is hyperelliptic, δ admits
4 or 3 fixed points and its order is one of two possible prime orders greater than
g, namely n = g + 1 or n = 2g + 1, respectively. The automorphism groups of
hyperelliptic Riemann surfaces are given in [12] and we need to chose those which
admit an automorphism satisfying the above conditions. The action of finite group
G on X is determined by the signature of a Fuchsian group Λ and an epimorphism
θ : Λ → G with kernel Γ. Let x1, . . . , xr be all elliptic generators of Λ. An element
of Λ has a fixed point in H if and only if it has a finite order and it is conjugate
to some power of precisely one of elliptic generators xi. Consequently an element of
G has a fixed point in X if and only if it is conjugate to some power of the image
of xi via homomorphism θ. Since θ preserves orders, it follows that the order n of
the n-gonality automorphism divides one of periods mi in the signature of Λ. First
we chose all signatures corresponding to group actions on a hyperelliptic Riemann
surface of genus g for which g + 1 or 2g + 1 divides one of its periods. The authors
of [12] denoted by t the number of periods 2 in the signature of Λ which correspond
to elliptic generators mapped by θ on the hyperelliptc involution and expressed t in
terms of the genus g and the the number N = |G|/2. Let us consider for example
σ(Λ) = (2, t. . ., 2, 2, 3, 3) with t = (g + 1)/6. The number 3 is the only prime integer
greater that 2 which divides a period of Λ. Thus δ has order 3 and so g = 2. However
t is not integer for t = 2 and therefore this signature is not suitable. In the similar
way we reject the remaining signatures except:

2.a : σ(Λ) = (2, t. . ., 2, N,N), t = (2g + 2)/N,
2.b : σ(Λ) = (2, t. . ., 2, N, 2N), t = (2g + 1)/N,
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3.a : σ(Λ) = (2, t. . ., 2, 2, 2, N/2), t = (2g + 2)/N,
3.b : σ(Λ) = (2, t. . ., 2, 2, 4, N/2), t = (2g + 2)/N − 1/2,
3.c : σ(Λ) = (2, t. . ., 2, 4, 4, N/2), t = (2g + 2)/N − 1,
4.d : σ(Λ) = (2, t. . ., 2, 4, 3, 3), t = (g − 2)/6, g = 2,
5.c : σ(Λ) = (2, t. . ., 2, 2, 3, 8), t = (g − 2)/12, g = 2.

In the case 2.a, G = 〈z : z2〉 ⊕ 〈x : xN 〉 and z is the hyperelliptic involution. The
order n of δ divides a period of Λ if and only if n = g+1 and N has one of values 2g+2
or g+1. Thus 〈δ〉 = 〈x2〉 or 〈x〉, respectively and we shall denote these two possibilities
by 2.a and 2.a′ in Table 1. With the help of Macbeath’s theorem we check that in
both cases δ has 4 fixed points as required. Using the pair of automorphisms (idΛ, ϕ),
where ϕ(x) = xz and ϕ(z) = z if necessary, we can show that any generating vector
is equivalent to v = (z, t. . ., z, xzt, x−1). A similar consideration of the all signatures
listed above provides the remaining results in Table 1.

Table 1. Actions on a p-hyperelliptic cyclic n-gonal Riemann surface

σ(Λ) G = Λ/Γ of oder 2N N gen. vector δ

2.a [2, N,N ] 〈z : z2〉 ⊕ 〈x : xN 〉 2g + 2 (z, zx, x−1) x2

2.a′ [2, 2, N,N ] 〈z : z2〉 ⊕ 〈x : xN 〉 g + 1 (z, z, x, x−1) x

2.b [2, N, 2N ] 〈x : x2N 〉 2g + 1 (xN , x2, xN−2) x2

3.a [2, 2, 2, N ] 〈z : z2〉 ⊕ 〈x, y : x2, y2, (xy)N 〉 g + 1 (z, zx, y, (xy)−1) xy

3.b [2, 4, N/2] 〈x, y : x4, yN/2, (xy)2, (x−1y)2〉 4g + 4 ((xy)−1, x, y) y2

3.c [4, 4, N ] 〈x, y : x4, x2y2, (xy)N 〉 g + 1 (x, y, (xy)−1) xy

4.d [4, 3, 3] 〈x, y : x4, y3, (xy)3, yx2y−1x2〉 12 (x, y, (xy)−1) y

5.c [2, 3, 8] 〈x, y : x2, y3, (xy)4(yx)4, (xy)8〉 24 (x, y, (xy)−1) xyx

If the signature of Λ does not appear in the first column of the Tables 1.5.1 or
1.5.2 in [25] then Λ can be chosen to be maximal [25] and so G can be assumed to be
the full group of automorphisms of X. In the other case Λ is always contained in a
Fuchsian group Λ′ and the signature of of such a group is given in the second column
of the corresponding row, what we shall denote by σ(Λ) ⊂ σ(Λ′). By inspecting the
signatures from Table 1 we obtain: [2, 2g+2, 2g+2] ⊂ [2, 4, 2g+2], [2, 2, g+1, g+1] ⊂
[2, 2, 2, g+1], [4, 4, g+1] ⊂ [2, 4, 2g+2], [4, 3, 3] ⊂ [2, 3, 8] and [2, N, 2N ] ⊂ 2, 3, 2N ]. In
each of these cases except the last one, there exists a group G′ acting on a hyperelliptic
Riemann surface of genus g, group embeddings i : Λ ↪→ Λ′, j : G ↪→ G′ and an
epimorphism θ′ : Λ′ → G′ such that [Λ′ : Λ] = [G′ : G] and θ′i = jθ. In the last case
the genus of a surface on which G′ acts is different from g. Consequently G is the
full automorphism group of a hyperelliptic Riemann surface only in cases 2.b, 3.a, 3.b
and 5.c.

Using Corollary 3.2, Macbeath’s theorem and group actions on hyperelliptic,
elliptic-hyperelliptic and 2-hyperelliptic Riemann surfaces given, up to topological
conjugacy, in [12,20] and [21], we obtain the next theorems. Their proofs are similar
to the previous one and so we omit them.
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Theorem 3.5. A p-hyperelliptic Riemann surface of genus g > 4p+ 1 can be realized
as cyclic 3-sheeted covering of an elliptic curve if and only if p = 0 and g = 3, 4, 5
or p = 1 and g = 6, 7 while the topologically non-equivalent group actions on such
surfaces are listed in Table 2.

Theorem 3.6. A p-hyperelliptic Riemann surface of genus g > 4p+ 1 can be realized
as cyclic 5-sheeted covering of an elliptic curve if and only if p = 0 and g = 5, 7, 9
or p = 2 and g = 11, 13 while the topologically non-equivalent group actions on such
surfaces are listed in Table 3.

Theorem 3.7. For any prime n > 5, a hyperelliptic (1, n)-gonal Riemann surface
has genus 2n − 1, (3n − 1)/2 or n and the finite group actions on such surfaces are
given in Table 4.

Table 2. Actions on a p-hyperelliptic cyclic (1, 3)-gonal Riemann surface

g σ(Λ) G = Λ/Γ gen. vector ρ δ

3 [22, 62] 〈x : x6〉 (ρ[2], x, x−1) x3 x2

[2, 62] 〈z : z2〉 ⊕ 〈x, y : x2, y3, (xy)3〉 (x, δρ, (xδ)−1ρ) z y

[2, 6, 4] 〈z : z2〉 ⊕ 〈x, y : x2, y3, (xy)4〉 (x, δρ, (xδ)−1ρ) z y

[2, 122] 〈x : x12〉 (ρ, x7, x−1) x6 x4

[23, 6] 〈x, y : x2, y2, (xy)6〉 (ρ, ρx, y, ρδ (xy)3 (xy)2

[42, 6] 〈x, y : x2y3, y6, x−1yxy〉 (x, (yx)−1, y) x2 y2

4 [4, 3, 6] 〈x, y : x4, y3, (xy)3, yx2y−1x2〉 (x, δ, (xδ)−1) x2 y

[23, 3, 6] 〈x : x6〉 (ρ[3], δ, x) x3 x2

[2, 9, 18] 〈x : x18〉 (ρ, x2, x7) x9 x6

5 [22, 32] 〈z : z2〉 ⊕ 〈x, y : x2, y3, (xy)3〉 (ρ, ρx, δ, (xδ)−1) z y

[4, 3, 4] 〈x, y : x4, y3, yx2y−1x2, (xy)4〉 (x, δ, (xδ)−1) x2 y

[24, 32] 〈z : z2〉 ⊕ 〈x : x3〉 (ρ[4], δ, δ−1) z x

[22, 62] 〈z : z2〉 ⊕ 〈x : x6〉 (ρ[2], x, x−1) z x2

[2, 122] 〈z : z2〉 ⊕ 〈x : x12〉 (ρ, ρx−1, x) z x4

[24, 3] 〈z : z2〉 ⊕ 〈x, y : x2, y2, (xy)3〉 (ρ[2], x, y, δ−1) z xy

[2, 42, 3] 〈x, y : x4, x2y2, (xy)3〉 (ρ, x3, y, δ−1) x2 xy

[42, 6] 〈x, x : x4, x2y2, (xy)6〉 (x, y, (xy)−1) x2 (xy)2

6 [23, 32, 6] 〈z : z2〉 ⊕ 〈c : c3〉 (ρ[3], δ, δ−2, ρδ) z c

[2, 4, 3, 12] 〈c : c12〉 (ρ, c3, δ, ρδ) c6 c4

7 [4, 3, 6] 〈x, y, c, z : z2, c6, y2z, x2z, [x, y]z,

cyc−1y−1x, cxc−1y−1z, [z, c]〉 (c3x, c2y, c) z c4

[23, 3, 6] 〈z : z2〉 ⊕ 〈c : c6〉 (ρ[2], c3, δ, c) z c2

[24, 33] 〈z : z2〉 ⊕ 〈c : c3〉 (ρ[4], δ, δ−2, δ) z c

[2, 32, 6] 〈z : z2〉 ⊕ 〈y : y3〉 ⊕ 〈c : c3〉 (ρδ, δy2, yδρ) z c

[2, 3, 12] 〈x, y, c : c12, c6y−6, x2y2, xyx−1y5,

cxc−1y−1, cyc−1y−1x〉 (c3x, c2y, c) c6 c4

[32, 6] 〈x, y, c, z : z2, c3, y6z, [x, y]z, x2y2,

cxc−1y−1x, cyc−1x, [c, z], [x, z]〉 (δ, δx, x−1δ) z c
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Table 3. Actions on p-hyperelliptic cyclic (1, 5)-gonal Riemann surfaces

g σ(Λ) G = Λ/Γ gen. vector ρ δ

5 [22, 102] 〈x : x10〉 (ρ[2], x, x−1) x5 x2

[2, 202] 〈x : x20〉 (ρ, ρx, x−1) x10 x4

[23, 10] 〈x, y : x2, y2, (xy)10〉 (ρ, ρx, y, (xy)−1) (xy)5 (xy)2

[42, 10] 〈x, y : x2y5, y10, x−1yxy〉 (x, (yx)−1, y) x2 y2

[2, 3, 10] 〈z : z2〉 ⊕ 〈x, y : x2, y3, (xy)5〉 (ρx, y, δ2ρ) z (xy)2

7 [23, 5, 10] 〈x : x10〉, (ρ[3], δ, (ρδ)−1) x5 x2

[2, 15, 30] 〈x : x30〉, (ρ, x2, xδ2) x15 x6

9 [24, 52] 〈z : z2〉 ⊕ 〈x : x5〉 (ρ[4], δ, δ−1) z x

[22, 102] 〈z : z2〉 ⊕ 〈x : x10〉 (ρ[2], x, x−1) z x2

[2, 202] 〈z : z2〉 ⊕ 〈x : x20〉 (ρ, ρx−1, x) z x4

[24, 5] 〈z : z2〉 ⊕ 〈x, y : x2, y2, (xy)5〉 (ρ[2], x, y, δ−1) z xy

[2, 42, 5] 〈x, y : x4, x2y2, (xy)5〉 (ρ, ρx, y, δ−1) x2 xy

[42, 10] 〈x, x : x4, x2y2, (xy)10〉 (x, y, (xy)−1) x2 (xy)2

[2, 6, 5] 〈z : z2〉 ⊕ 〈x, y : x2, y3, (xy)5〉 (ρx, yρ, δ−1) z xy

11 [10, 52, 23] 〈z : z2〉 ⊕ 〈x : x5〉 (δρ, δ, δ3, ρ[3]) z x

[4, 5, 20, 2] 〈x : x20〉 (δx, δ, x, ρ) x10 x4

13 [53, 24] 〈z : z2〉 ⊕ 〈x : x5〉 (δ, δ, δ3, ρ[4] z x

[2, 5, 10, 22] 〈z : z2〉 ⊕ 〈x : x10〉 (δ2x, δ2, x, ρ[2]) z x2

Table 4. Actions on a hyperelliptic cyclic (1, n)-gonal Riemann surface for n > 5

g σ(Λ) G = Λ/Γ gen. vector ρ δ

2n− 1 [24, n2] 〈z : z2〉 ⊕ 〈x : xn〉 (ρ[4], δ, δ−1) z x

[22, (2n)2] 〈z : z2〉 ⊕ 〈x : x2n〉 (ρ[2], x, x−1) z x2

[2, (4n)2] 〈z : z2〉 ⊕ 〈x : x4n〉 (ρ, ρx−1, x) z x4

[24, n] 〈z : z2〉 ⊕ 〈x, y : x2, y2, (xy)n〉 (ρ[2], x, y, δ−1) z xy

[2, 42, n] 〈x, y : x4, x2y2, (xy)n〉 (ρ, ρx, y, δ−1) x2 xy

[42, 2n] 〈x, x : x4, x2y2, (xy)2n〉 (x, y, (xy)−1) x2 (xy)2

3n−1
2

[23, n, 2n] 〈x : x2n〉 (ρ[3], δ, xnδ−1) xn x2

[2, 3n, 6n] 〈x : x6n〉 (ρ, x2, ρx−2) x3n x6

n [22, (2n)2] 〈x : x2n〉 (ρ[2], x, x−1) xn x2

[2, (4n)2] 〈x : x4n〉 (ρ, ρx, x−1) x2n x4

[23, 2n] 〈x, y : x2, y2, (xy)2n〉 (ρ, x, y, (xy)n−1) (xy)n (xy)2

[42, 2n] 〈x, y : x2yn, y2n, x−1yxy〉 (x, (yx)−1, y) x2 y2
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