Ewa Tyszkowska

TOPOLOGICAL CLASSIFICATION OF CONFORMAL ACTIONS ON *p*-HYPERELLIPTIC AND (*q*, *n*)-GONAL RIEMANN SURFACES

Abstract. A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X admits a conformal involution ρ for which X/ρ has genus p. A conformal automorphism δ of prime order n such that X/δ has genus q is called a (q, n)-gonal automorphism. Here we study conformal actions on p-hyperelliptic Riemann surface with (q, n)-gonal automorphism.

Keywords: p-hyperelliptic Riemann surface, automorphism of a Riemann surface.

Mathematics Subject Classification: Primary: 30F20, 30F50; Secondary: 14H37, 20H30, 20H10.

1. INTRODUCTION

A compact Riemann surface X of genus $g \ge 2$ is said to be *p*-hyperelliptic if X admits a conformal involution ρ , called a *p*-hyperelliptic involution, such that X/ρ is an orbifold of genus p. This notion has been introduced by H. Farkas and I. Kra in [17] where they also proved that for g > 4p + 1, *p*-hyperelliptic involution is unique and central in the group of all automorphisms of X. In [22] it has been proved that every two *p*-hyperelliptic involutions commute for $3p + 2 \le g \le 4p + 1$ and X admits at most two such involutions if g > 3p + 1.

In the particular cases p = 0, 1, X are called *hyperelliptic* and *elliptic-hyperelliptic* Riemann surfaces respectively. Hyperelliptic Riemann surfaces and their automorphisms have received a good deal of attention in the literature. In [2] and [12] the authors determined the full groups of conformal automorphisms of such surfaces which made it possible to classify symmetry types of such actions in [5]. The *p*-hyperelliptic $(p \ge 1)$ surfaces at large have been studied in [7–11, 13–15] and [23], where the most attention has been paid to a study of groups of automorphisms of such surfaces and their symmetries.

We say that a finite group G acts on a topological surface X if there exists a monomorphism $\varepsilon : G \to \operatorname{Hom}^+(X)$, where $\operatorname{Hom}^+(X)$ is the group of orientation-preserving homeomorphisms of X. Two actions of finite groups G and G' on X are topological equivalent if the images of G and G' are conjugate in $\operatorname{Hom}^+(X)$. There are two reasons for the topological classification of finite actions rather than just the groups of homeomorphisms. First, the equivalence classes of group actions are in 1-1 correspondence to conjugacy classes of finite subgroups of the mapping class group and so such a classification gives some information on the structure of this group. Second, the enumeration of finite group actions is a principal component of the analysis of singularities of the moduli space of conformal equivalence classes of Riemann surfaces of a given genus since such space is an orbit space of Teichmüller space by a natural action of the mapping class group, see [4].

The classification of conformal actions up to topological conjugacy is a classical problem, which has been considered for surfaces of genera g = 2, 3 in [3] and g = 4 in [1]. In the case p-hyperelliptic Riemann surfaces it has been studied in [24, 20] and [21] for p = 0, 1 and 2, respectively.

Here we study conformal actions on p-hyperelliptic Riemann surface X which admits a conformal automorphism δ of prime order n > 2 such that X/δ has genus q [18]. The automorphism δ is called the (q, n)-gonal automorphism and in the case q = 0, *n-qonality automorphism.* (q, n)-gonal Klein surfaces have been considered in [16].

2. PRELIMINARIES

We shall approach the problem using Riemann uniformization theorem by which each compact Riemann surface X of genus $g \ge 2$ can be represented as the orbit space of the hyperbolic plane \mathcal{H} under the action of some Fuchsian surface group Γ . Furthermore, a group G of automorphisms of a surface $X = \mathcal{H}/\Gamma$ can be represented as $G = \Lambda/\Gamma$ for another Fuchsian group Λ . Each Fuchsian group Λ is given a signature $\sigma(\Lambda) = (g; m_1, \ldots, m_r)$, where g, m_i are integers verifying $g \ge 0, m_i \ge 2$. The g = 0in signature will be omitted and $m_i = m$ repeated r-times will be written m^r . The signature determines the presentation of Λ :

generators:

 $x_1, \dots, x_r, a_1, b_1, \dots, a_g, b_g,$ $x_1^{m_1} = \dots = x_r^{m_r} = x_1 \dots x_r[a_1, b_1] \dots [a_g, b_g] = 1.$ relations:

Such set of generators is called the *canonical set of generators* and often, by abuse of language, the set of canonical generators. Geometrically x_i are elliptic elements which correspond to hyperbolic rotations and the remaining generators are hyperbolic translations. The integers m_1, m_2, \ldots, m_r are called the *periods* of Λ and g is the genus of the orbit space \mathcal{H}/Λ . Fuchsian groups with signatures (g; -) are called *surface* groups and they are characterized among Fuchsian groups as these ones which are torsion free.

The group Λ has associated to it a fundamental region whose area $\mu(\Lambda)$, called the *area of the group*, is:

$$\mu(\Lambda) = 2\pi \left(2g - 2 + \sum_{i=1}^{r} (1 - 1/m_i) \right).$$
(2.1)

If Γ is a subgroup of finite index in Λ , then we have the *Riemann-Hurwitz formula* which says that

$$[\Lambda:\Gamma] = \frac{\mu(\Gamma)}{\mu(\Lambda)}.$$
(2.2)

The number of fixed points of an automorphism of X can be calculated by the following theorem of Macbeath [19].

Theorem 2.1. Let $X = H/\Gamma$ be a Riemann surface with the automorphism group $G = \Lambda/\Gamma$ and let x_1, \ldots, x_r be elliptic canonical generators of Λ with periods m_1, \ldots, m_r respectively. Let $\theta : \Lambda \to G$ be the canonical epimorphism and for $1 \neq g \in G$ let $\varepsilon_i(g)$ be 1 or 0 according whether g is or is not conjugate to a power of $\theta(x_i)$. Then the number F(g) of points of X fixed by g is given by the formula

$$F(g) = |N_G(\langle g \rangle)| \sum_{i=1}^r \varepsilon_i(g)/m_i.$$
(2.3)

Let G be a finite group acting on a surface X of genus g > 1 such that the canonical projection $X \to X/G$ is ramified at r points with multiplicities m_1, \ldots, m_r and s is the genus of X/G. Then a (2s+r)-tuple $(\tilde{a}_1, \ldots, \tilde{a}_s, \tilde{b}_1, \ldots, \tilde{b}_s, \tilde{x}_1, \ldots, \tilde{x}_r)$ of generators of G such that \tilde{x}_i has order m_i for $i = 1, \ldots, r, \tilde{x}_1 \ldots \tilde{x}_r \prod_{i=1}^s [\tilde{a}_i, \tilde{b}_i] = 1$ and $2g-2 = |G|(2s-2+\sum_{i=1}^r (1-1/m_i))$ is called a generating $(s; m_1, \ldots, m_r)$ -vector.

For every generating $(s: m_1, \ldots, m_r)$ -vector of G, there exists a Fuchsian group Λ with the signature $(s; m_1, \ldots, m_r)$ and an epimorphism $\theta : \Lambda \to G$ defined by the assignment $\theta(a_i) = \tilde{a}_i, \theta(b_i) = \tilde{b}_i$ and $\theta(x_j) = \tilde{x}_j$. The kernel Γ of θ is a surface Fuchsian group of orbit genus g and G acts as an automorphism group on a Riemann surface $X = \mathcal{H}/\Gamma$. If an involution ρ appears in generating vector as an image of k consecutive elliptic generators of Λ , then we shall write $\rho^{[k]}$ instead of $\rho, .^k, ., \rho$. There is a 1-1 correspondence between the set of generating vectors of G and the set of epimorphisms $\theta : \Lambda \to G$ with torsion free kernels. Two epimorphisms $\theta : \Lambda \to G$ and $\theta' : \Lambda' \to G'$ define topologically equivalent actions if $\varphi \theta = \theta' \psi$ for some isomorphisms $\varphi : G \to G'$ and $\psi : \Lambda \to \Lambda'$ [3].

3. *p*-HYPERELLIPTIC RIEMANN SURFACE WITH (*q*, *n*)-GONAL AUTOMORPHISM

In this section we study Riemann surfaces of genera g > 1 which are *p*-hyperelliptic and cyclic (q, n)-gonal simultaneously for a prime n > 2 and a natural q. If g > 4p+1, then its (q, n)-gonal automorphism and *p*-hyperelliptic involution commute. The first theorem gives necessary and sufficient conditions on p and g for the existence of such surface.

Theorem 3.1. There exists a p-hyperelliptic Riemann surface of genus $g \ge 2$ admitting (q, n)-gonal automorphism commuting with a p-hyperelliptic involution if and only if $p = n\gamma + b(n-1)/2$ and g = nq + a(n-1)/2 for some integers γ , b, a such that

$$b = -2 \text{ or } b \ge 0, \ b \le a \le 2(b+1), \ 0 \le \gamma \le (q+1)/2.$$
 (3.1)

Furthermore, the (q, n)-gonal automorphism admits a + 2 fixed points.

Proof. Assume that a Riemann surface $X = \mathcal{H}/\Gamma$ admits *p*-hyperelliptic involution ρ and (q, n)-gonal automorphism δ . The groups $\langle \delta \rangle$ and $\langle \rho \rangle$ can be identified with Γ_{δ}/Γ and Γ_{ρ}/Γ , where Γ_{δ} and Γ_{ρ} are Fuchsian groups containing Γ as a normal subgroup of index *n* and 2, respectively. By the Riemann-Hurwitz formula they have signatures

$$\sigma(\Gamma_{\delta}) = (q; n . !., n) \text{ and } \sigma(\Gamma_{\rho}) = (p; 2, . !., 2), \tag{3.2}$$

where s = 2g + 2 - 4p and r = 2 + (2g - 2nq)/(n-1). Thus g = nq + a(n-1)/2for a = r - 2. If ρ and δ commute then they generate the group Z_{2n} which can be represented by Λ/Γ for a Fuchsian group Λ with the signature

$$(\gamma; 2, \overset{k_1}{\dots}, 2, n, \overset{k_2}{\dots}, n, 2n, \overset{k_3}{\dots}, 2n).$$
 (3.3)

By the Riemann-Hurwith formula

$$2g - 2 = 4n\gamma - 4n + nk_1 + 2k_2(n-1) + k_3(2n-1)$$
(3.4)

and according to Theorem 2.1

$$nk_1 = s - k_3, \ 2k_2 = r - k_3.$$
 (3.5)

By substituting the last equalities to (3.4), we obtain $p = n\gamma + b(n-1)/2$, for an integer b such that $a = 2b + 2 - k_3$. Thus

$$k_1 = 2q + a - 4\gamma - 2b, \quad k_2 = a - b, \quad k_3 = 2 + 2b - a$$
 (3.6)

are nonnegative integers if and only if the inequalities (3.1) are satisfied.

Conversely, assume that g = nq + a(n-1)/2 and $p = n\gamma + b(n-1)/2$ for some integers a, b and γ satisfying the inequalities (3.1). Then there exists a Fuchsian group Λ with the signature (3.3). Let $\theta : \Lambda \to \langle \rho \rangle \oplus \langle \delta \rangle$ be an epimorphism which maps all hyperbolic generators of Λ onto $\rho\delta$, the first k_1 of elliptic generators onto ρ and the remaining in the following way :

$$\underbrace{\delta \dots \delta}_{(k_{2}+1)/2} \underbrace{\delta^{-1} \dots \delta^{-1}}_{(k_{2}-3)/2} \delta^{-2} \underbrace{\rho \delta \dots \rho \delta}_{(k_{3}+1)/2} \underbrace{\rho \delta^{-1} \dots \rho \delta^{-1}}_{(k_{3}-3)/2} \rho \delta^{-2} \text{ if } k_{2} \equiv 1 \ (2) \text{ and } k_{3} \equiv 1 \ (2)$$

$$\underbrace{\delta \dots \delta}_{(k_{2}+1)/2} \underbrace{\delta^{-1} \dots \delta^{-1}}_{(k_{2}-3)/2} \delta^{-2} \underbrace{\rho \delta \dots \rho \delta}_{k_{3}/2} \underbrace{\rho \delta^{-1} \dots \rho \delta^{-1}}_{(k_{3}-3)/2} \text{ if } k_{2} \equiv 1 \ (2) \text{ and } k_{3} \equiv 0 \ (2),$$

$$\underbrace{\delta \dots \delta}_{k_{2}/2} \underbrace{\delta^{-1} \dots \delta^{-1}}_{(k_{2}-3)/2} \underbrace{\rho \delta \dots \rho \delta}_{(k_{3}+1)/2} \underbrace{\rho \delta^{-1} \dots \rho \delta^{-1}}_{(k_{3}-3)/2} \rho \delta^{-2} \text{ if } k_{2} \equiv 0 \ (2) \text{ and } k_{3} \equiv 1 \ (2),$$

$$\underbrace{\delta \dots \delta}_{k_{2}/2} \underbrace{\delta^{-1} \dots \delta^{-1}}_{(k_{2}-3)/2} \underbrace{\rho \delta \dots \rho \delta}_{(k_{3}+1)/2} \underbrace{\rho \delta^{-1} \dots \rho \delta^{-1}}_{(k_{3}-3)/2} \text{ if } k_{2} \equiv 0 \ (2) \text{ and } k_{3} \equiv 0 \ (2).$$

Then the kernel of θ is a surface Fuchsian group Γ of genus g while $\theta^{-1}(\rho)$ and $\theta^{-1}(\delta)$ are Fuchsian groups with the signatures (3.2). Thus \mathcal{H}/Γ is a p-hyperelliptic Riemann surface admitting (q, n)-gonal automorphism. It is easy to notice that for $k_2 < 3$ or $k_3 < 3$, such an epimorphism does not exist if and only if $k_2 + k_3 + \gamma = 0$ or $k_2 + k_3 = 1$. The first equality is never satisfied since if $k_2 + k_3 = 0$ then b = -2 and $p = n(\gamma - 1) + 1$ what requires $\gamma \geq 1$. The second one occurs for b = -1 and therefore this value of b is rejected.

Corollary 3.2. Let X be a p-hyperelliptic Riemann surface of genus g > 4p + 1. Then for any prime $n \ge 3$,

- (i) X can be realized as n-sheeted covering of the Riemann sphere if and only if p = 0 and g = n − 1 or g = (n − 1)/2 and its n-gonality automorphism admits 4 or 3 fixed points, respectively.
- (ii) X can be realized as n-sheeted covering of an elliptic curve if and only if p = 0and $g \in \{2n-1, (3n-1)/2, n\}$ or p = (n-1)/2 and $g \in \{3n-2, (5n-3)/2\}$ and its (1, n)-gonal automorphism admits 4,3,2 or 6,5 fixed points, respectively.

Corollary 3.3. Let $X = \mathcal{H}/\Gamma$ be a Riemann surface of genus $g \ge 2$ which admits p-hyperelliptic involution ρ and (q, n)-gonal automorphism δ for p < n. If δ and ρ commute then p = b(n-1)/2, g = nq + a(n-1)/2 for integers a, b in range $0 \le b \le 2$ and $b \le a \le 2b + 2$ and a Fuchsian group Λ such that $\langle \delta, \rho \rangle = \Lambda/\Gamma$ has a signature $(0; 2, \frac{2q+a-2b}{2}, 2, n, \frac{a-b}{2}, n, 2n, \frac{2b+2-a}{2}, 2n)$. Furthermore, δ admits $a+2 \le 8$ fixed points.

Theorem 3.4. All group actions on a p-hyperelliptic and cyclic n-gonal Riemann surface are given in Table 1, up to topological conjugacy; four of them correspond to the full automorphism groups: 2.b, 3.a, 3.b and 5.c.

Proof. Let $X = \mathcal{H}/\Gamma$ be a *p*-hyperelliptic Riemann surface of genus $g \geq 2$ admitting a *n*-gonality automorphism δ . Then by Corollary 3.2, X is hyperelliptic, δ admits 4 or 3 fixed points and its order is one of two possible prime orders greater than g, namely n = g + 1 or n = 2g + 1, respectively. The automorphism groups of hyperelliptic Riemann surfaces are given in [12] and we need to chose those which admit an automorphism satisfying the above conditions. The action of finite group G on X is determined by the signature of a Fuchsian group Λ and an epimorphism $\theta: \Lambda \to G$ with kernel Γ . Let x_1, \ldots, x_r be all elliptic generators of Λ . An element of Λ has a fixed point in \mathcal{H} if and only if it has a finite order and it is conjugate to some power of precisely one of elliptic generators x_i . Consequently an element of G has a fixed point in X if and only if it is conjugate to some power of the image of x_i via homomorphism θ . Since θ preserves orders, it follows that the order n of the n-gonality automorphism divides one of periods m_i in the signature of Λ . First we chose all signatures corresponding to group actions on a hyperelliptic Riemann surface of genus g for which g + 1 or 2g + 1 divides one of its periods. The authors of [12] denoted by t the number of periods 2 in the signature of Λ which correspond to elliptic generators mapped by θ on the hyperelliptic involution and expressed t in terms of the genus g and the the number N = |G|/2. Let us consider for example $\sigma(\Lambda) = (2, \frac{t}{2}, 2, 3, 3)$ with t = (g+1)/6. The number 3 is the only prime integer greater that 2 which divides a period of Λ . Thus δ has order 3 and so g = 2. However t is not integer for t = 2 and therefore this signature is not suitable. In the similar way we reject the remaining signatures except:

2.a:
$$\sigma(\Lambda) = (2, .t, 2, N, N), \quad t = (2g+2)/N,$$

2.b: $\sigma(\Lambda) = (2, .t, 2, N, 2N), \quad t = (2g+1)/N,$

3.a:	$\sigma(\Lambda) = (2,^{t}, 2, 2, 2, N/2),$	t = (2g+2)/N,
3.b:	$\sigma(\Lambda) = (2,^{t}., 2, 2, 4, N/2),$	t = (2g+2)/N - 1/2,
3.c:	$\sigma(\Lambda) = (2,^{t}, ., 2, 4, 4, N/2),$	t = (2g + 2)/N - 1,
4.d:	$\sigma(\Lambda) = (2,^{t}., 2, 4, 3, 3),$	t = (g - 2)/6, g = 2,
5.c:	$\sigma(\Lambda) = (2, .t, 2, 2, 3, 8),$	t = (g - 2)/12, g = 2.

In the case 2.a, $G = \langle z : z^2 \rangle \oplus \langle x : x^N \rangle$ and z is the hyperelliptic involution. The order n of δ divides a period of Λ if and only if n = g+1 and N has one of values 2g+2 or g+1. Thus $\langle \delta \rangle = \langle x^2 \rangle$ or $\langle x \rangle$, respectively and we shall denote these two possibilities by 2.a and 2.a' in Table 1. With the help of Macbeath's theorem we check that in both cases δ has 4 fixed points as required. Using the pair of automorphisms $(\mathrm{id}_{\Lambda}, \varphi)$, where $\varphi(x) = xz$ and $\varphi(z) = z$ if necessary, we can show that any generating vector is equivalent to $v = (z, .t, .z, xz^t, x^{-1})$. A similar consideration of the all signatures listed above provides the remaining results in Table 1.

Table 1. Actions on a *p*-hyperelliptic cyclic *n*-gonal Riemann surface

	$\sigma(\Lambda)$	$G = \Lambda / \Gamma$ of oder $2N$	N	gen. vector	δ
2.a	[2, N, N]	$\langle z:z^2 angle\oplus\langle x:x^N angle$	2g + 2	(z, zx, x^{-1})	x^2
2.a'	[2, 2, N, N]	$\langle z:z^2 angle\oplus\langle x:x^N angle$	g + 1	(z, z, x, x^{-1})	x
2.b	[2, N, 2N]	$\langle x: x^{2N} \rangle$	2g + 1	$\left(x^{N},x^{2},x^{N-2}\right)$	x^2
3.a	[2, 2, 2, N]	$\langle z:z^2 angle\oplus\langle x,y:x^2,y^2,(xy)^N angle$	g+1	$(z, zx, y, (xy)^{-1})$	xy
3.b	[2, 4, N/2]	$\langle x,y:x^4,y^{N/2},(xy)^2,(x^{-1}y)^2\rangle$	4g + 4	$((xy)^{-1}, x, y)$	y^2
3.c	[4, 4, N]	$\langle x,y:x^4,x^2y^2,(xy)^N\rangle$	g+1	$(x,y,(xy)^{-1})$	xy
4.d	[4, 3, 3]	$\langle x,y:x^4,y^3,(xy)^3,yx^2y^{-1}x^2\rangle$	12	$(x,y,(xy)^{-1})$	y
5.c	[2, 3, 8]	$\langle x,y:x^2,y^3,(xy)^4(yx)^4,(xy)^8\rangle$	24	$(x,y,(xy)^{-1})$	xyx

If the signature of Λ does not appear in the first column of the Tables 1.5.1 or 1.5.2 in [25] then Λ can be chosen to be maximal [25] and so G can be assumed to be the full group of automorphisms of X. In the other case Λ is always contained in a Fuchsian group Λ' and the signature of of such a group is given in the second column of the corresponding row, what we shall denote by $\sigma(\Lambda) \subset \sigma(\Lambda')$. By inspecting the signatures from Table 1 we obtain: $[2, 2g+2, 2g+2] \subset [2, 4, 2g+2], [2, 2, g+1, g+1] \subset$ $[2, 2, 2, g+1], [4, 4, g+1] \subset [2, 4, 2g+2], [4, 3, 3] \subset [2, 3, 8]$ and $[2, N, 2N] \subset 2, 3, 2N]$. In each of these cases except the last one, there exists a group G' acting on a hyperelliptic Riemann surface of genus g, group embeddings $i : \Lambda \hookrightarrow \Lambda', j : G \hookrightarrow G'$ and an epimorphism $\theta' : \Lambda' \to G'$ such that $[\Lambda' : \Lambda] = [G' : G]$ and $\theta' i = j\theta$. In the last case the genus of a surface on which G' acts is different from g. Consequently G is the full automorphism group of a hyperelliptic Riemann surface only in cases 2.b, 3.a, 3.b and 5.c.

Using Corollary 3.2, Macbeath's theorem and group actions on hyperelliptic, elliptic-hyperelliptic and 2-hyperelliptic Riemann surfaces given, up to topological conjugacy, in [12, 20] and [21], we obtain the next theorems. Their proofs are similar to the previous one and so we omit them.

Theorem 3.5. A p-hyperelliptic Riemann surface of genus g > 4p+1 can be realized as cyclic 3-sheeted covering of an elliptic curve if and only if p = 0 and g = 3, 4, 5or p = 1 and g = 6, 7 while the topologically non-equivalent group actions on such surfaces are listed in Table 2.

Theorem 3.6. A p-hyperelliptic Riemann surface of genus g > 4p+1 can be realized as cyclic 5-sheeted covering of an elliptic curve if and only if p = 0 and g = 5,7,9or p = 2 and g = 11,13 while the topologically non-equivalent group actions on such surfaces are listed in Table 3.

Theorem 3.7. For any prime n > 5, a hyperelliptic (1, n)-gonal Riemann surface has genus 2n - 1, (3n - 1)/2 or n and the finite group actions on such surfaces are given in Table 4.

g	$\sigma(\Lambda)$	$G = \Lambda / \Gamma$	gen. vector	ρ	δ
3	$[2^2, 6^2]$	$\langle x: x^6 angle$	$(\rho^{[2]}, x, x^{-1})$	x^3	x^2
	$[2, 6^2]$	$\langle z:z^2 angle\oplus\langle x,y:x^2,y^3,(xy)^3 angle$	$(x,\delta\rho,(x\delta)^{-1}\rho)$	z	y
	[2, 6, 4]	$\langle z:z^2 angle\oplus\langle x,y:x^2,y^3,(xy)^4 angle$	$(x,\delta\rho,(x\delta)^{-1}\rho)$	z	y
	$[2, 12^2]$	$\langle x: x^{12} \rangle$	(ρ, x^7, x^{-1})	x^6	x^4
	$[2^3, 6]$	$\langle x,y:x^2,y^2,(xy)^6\rangle$	$(ho, ho x,y, ho\delta$	$(xy)^{3}$	$(xy)^2$
	$[4^2, 6]$	$\langle x,y:x^2y^3,y^6,x^{-1}yxy\rangle$	$(x,(yx)^{-1},y)$	x^2	y^2
4	[4, 3, 6]	$\langle x,y:x^4,y^3,(xy)^3,yx^2y^{-1}x^2\rangle$	$(x,\delta,(x\delta)^{-1})$	x^2	y
	$[2^3, 3, 6]$	$\langle x: x^6 angle$	$(ho^{[3]},\delta,x)$	x^3	x^2
	[2, 9, 18]	$\langle x: x^{18} \rangle$	(ρ, x^2, x^7)	x^9	x^6
5	$[2^2, 3^2]$	$\langle z:z^2 angle\oplus\langle x,y:x^2,y^3,(xy)^3 angle$	$(\rho, \rho x, \delta, (x\delta)^{-1})$	z	y
	[4, 3, 4]	$\langle x,y:x^4,y^3,yx^2y^{-1}x^2,(xy)^4\rangle$	$(x,\delta,(x\delta)^{-1})$	x^2	y
	$[2^4, 3^2]$	$\langle z:z^2 angle\oplus\langle x:x^3 angle$	$(ho^{[4]}, \delta, \delta^{-1})$	z	x
	$[2^2, 6^2]$	$\langle z:z^2 angle\oplus\langle x:x^6 angle$	$(\rho^{[2]}, x, x^{-1})$	z	x^2
	$[2, 12^2]$	$\langle z:z^2 angle\oplus\langle x:x^{12} angle$	$(\rho,\rho x^{-1},x)$	z	x^4
	$[2^4, 3]$	$\langle z:z^2\rangle\oplus\langle x,y:x^2,y^2,(xy)^3\rangle$	$(\rho^{[2]},x,y,\delta^{-1})$	z	xy
	$[2, 4^2, 3]$	$\langle x,y:x^4,x^2y^2,(xy)^3\rangle$	$(\rho, x^3, y, \delta^{-1})$	x^2	xy
	$[4^2, 6]$	$\langle x,x:x^4,x^2y^2,(xy)^6\rangle$	$(x, y, (xy)^{-1})$	x^2	$(xy)^2$
6	$[2^3, 3^2, 6]$	$\langle z:z^2 angle\oplus\langle c:c^3 angle$	$(\rho^{[3]},\delta,\delta^{-2},\rho\delta)$	z	<i>c</i>
	[2, 4, 3, 12]	$\langle c: c^{12} \rangle$	$(\rho, c^3, \delta, \rho \delta)$	c^6	c^4
7	[4, 3, 6]	$\langle x,y,c,z:z^2,c^6,y^2z,x^2z,[x,y]z,$			
		$cyc^{-1}y^{-1}x, cxc^{-1}y^{-1}z, [z,c]\rangle$	(c^3x, c^2y, c)	z	c^4
	$[2^3, 3, 6]$	$\langle z:z^2 angle\oplus\langle c:c^6 angle$	$(ho^{[2]},c^3,\delta,c)$	z	c^2
	$[2^4, 3^3]$	$\langle z:z^2 angle\oplus\langle c:c^3 angle$	$(\rho^{[4]},\delta,\delta^{-2},\delta)$	z	<i>c</i>
	$[2, 3^2, 6]$	$\langle z:z^2 angle\oplus\langle y:y^3 angle\oplus\langle c:c^3 angle$	$(\rho\delta,\delta y^2,y\delta ho)$	z	c
	[2, 3, 12]	$\langle x, y, c : c^{12}, c^6 y^{-6}, x^2 y^2, xyx^{-1}y^5, \rangle$			
		$cxc^{-1}y^{-1}, cyc^{-1}y^{-1}x\rangle$	(c^3x, c^2y, c)	c^{6}	c^4
	$[3^2, 6]$	$\langle x, y, c, z : z^2, c^3, y^6 z, [x, y]z, x^2 y^2,$			
		$cxc^{-1}y^{-1}x, cyc^{-1}x, [c, z], [x, z]\rangle$	$(\delta, \delta x, x^{-1}\delta)$	z	c

Table 2. Actions on a p-hyperelliptic cyclic (1, 3)-gonal Riemann surface

g	$\sigma(\Lambda)$	$G = \Lambda / \Gamma$	gen. vector	ρ	δ
5	$[2^2, 10^2]$	$\langle x: x^{10} \rangle$	$(\rho^{[2]}, x, x^{-1})$	x^5	x^2
	$[2, 20^2]$	$\langle x: x^{20} \rangle$	$(\rho, \rho x, x^{-1})$	x^{10}	x^4
	$[2^3, 10]$	$\langle x,y:x^2,y^2,(xy)^{10}\rangle$	$(\rho,\rho x,y,(xy)^{-1})$	$(xy)^5$	$(xy)^2$
	$[4^2, 10]$	$\langle x,y:x^2y^5,y^{10},x^{-1}yxy\rangle$	$(x,(yx)^{-1},y)$	x^2	y^2
	[2, 3, 10]	$\langle z:z^2 angle\oplus\langle x,y:x^2,y^3,(xy)^5 angle$	$(\rho x, y, \delta^2 \rho)$	z	$(xy)^2$
7	$[2^3, 5, 10]$	$\langle x: x^{10} \rangle,$	$(\rho^{[3]},\delta,(\rho\delta)^{-1})$	x^5	x^2
	[2, 15, 30]	$\langle x: x^{30} \rangle,$	$(\rho, x^2, x\delta^2)$	x^{15}	x^6
9	$[2^4, 5^2]$	$\langle z:z^2 angle\oplus\langle x:x^5 angle$	$(\rho^{[4]},\delta,\delta^{-1})$	z	x
	$[2^2, 10^2]$	$\langle z:z^2 angle\oplus\langle x:x^{10} angle$	$(\rho^{[2]}, x, x^{-1})$	z	x^2
	$[2, 20^2]$	$\langle z:z^2 angle\oplus\langle x:x^{20} angle$	$(\rho,\rho x^{-1},x)$	z	x^4
	$[2^4, 5]$	$\langle z:z^2 angle\oplus\langle x,y:x^2,y^2,(xy)^5 angle$	$(\rho^{[2]},x,y,\delta^{-1})$	z	xy
	$[2, 4^2, 5]$	$\langle x,y:x^4,x^2y^2,(xy)^5\rangle$	$(\rho,\rho x,y,\delta^{-1})$	x^2	xy
	$[4^2, 10]$	$\langle x,x:x^4,x^2y^2,(xy)^{10}\rangle$	$(x, y, (xy)^{-1})$	x^2	$(xy)^2$
	[2, 6, 5]	$\langle z:z^2 angle\oplus\langle x,y:x^2,y^3,(xy)^5 angle$	$(\rho x, y\rho, \delta^{-1})$	z	xy
11	$[10, 5^2, 2^3]$	$\langle z:z^2 angle\oplus\langle x:x^5 angle$	$(\delta\rho,\delta,\delta^3,\rho^{[3]})$	z	x
	[4, 5, 20, 2]	$\langle x: x^{20} \rangle$	$(\delta x, \delta, x, \rho)$	x^{10}	x^4
13	$[5^3, 2^4]$	$ig \langle z:z^2 angle \oplus \langle x:x^5 angle$	$(\delta, \delta, \delta^3, ho^{[4]}$	z	x
	$[2, 5, 10, 2^2]$	$ig \langle z:z^2 angle \oplus \langle x:x^{10} angle$	$(\delta^2 x, \delta^2, x, \rho^{[2]})$	z	x^2

Table 3. Actions on p-hyperelliptic cyclic (1,5)-gonal Riemann surfaces

Table 4. Actions on a hyperelliptic cyclic (1, n)-gonal Riemann surface for n > 5

a	$\sigma(\Lambda)$	$G = \Lambda / \Gamma$	gen, vector	0	δ
$\frac{3}{2n-1}$	$[2^4, n^2]$	$\langle z:z^2 angle\oplus\langle x:x^n angle$	$(\rho^{[4]}, \delta, \delta^{-1})$		x
	$[2^2, (2n)^2]$	$\langle z:z^2 angle\oplus\langle x:x^{2n} angle$	$(\rho^{[2]}, x, x^{-1})$	z	x^2
	$[2, (4n)^2]$	$\langle z:z^2\rangle\oplus\langle x:x^{4n}\rangle$	$(\rho, \rho x^{-1}, x)$	z	x^4
	$[2^4, n]$	$\langle z:z^2 angle\oplus\langle x,y:x^2,y^2,(xy)^n angle$	$(\rho^{[2]},x,y,\delta^{-1})$	z	xy
	$[2, 4^2, n]$	$\langle x,y:x^4,x^2y^2,(xy)^n\rangle$	$(\rho, \rho x, y, \delta^{-1})$	x^2	xy
	$[4^2, 2n]$	$\langle x,x:x^4,x^2y^2,(xy)^{2n}\rangle$	$(x,y,(xy)^{-1})$	x^2	$(xy)^2$
$\frac{3n-1}{2}$	$\left[2^3,n,2n\right]$	$\langle x: x^{2n} \rangle$	$(\rho^{[3]},\delta,x^n\delta^{-1})$	x^n	x^2
	[2, 3n, 6n]	$\langle x:x^{6n} angle$	$(\rho, x^2, \rho x^{-2})$	x^{3n}	x^6
n	$[2^2, (2n)^2]$	$\langle x: x^{2n} \rangle$	$(\rho^{[2]}, x, x^{-1})$	x^n	x^2
	$[2, (4n)^2]$	$\langle x: x^{4n} \rangle$	$(\rho,\rho x,x^{-1})$	x^{2n}	x^4
	$[2^3, 2n]$	$\langle x,y:x^2,y^2,(xy)^{2n}\rangle$	$(\rho, x, y, (xy)^{n-1})$	$(xy)^n$	$(xy)^2$
	$[4^2, 2n]$	$\langle x,y:x^2y^n,y^{2n},x^{-1}yxy\rangle$	$(x,(yx)^{-1},y)$	x^2	y^2

Acknowledgments

The author supported by the Research Grant N N201 366436 of the Polish Ministry of Sciences and Higher Education.

REFERENCES

- O.V. Bogopolski, Classifying the actions of finite groups on orientable surfaces of genus 4, Siberian Adv. Math. 7 (1997) 4, 9–38.
- [2] R. Brandt, H. Stichtenoth, Die Automorphismengruppen hyperelliptischer Kurven, Manuscripta Math. 55 (1986) 1, 83–92.
- [3] S.A. Broughton, Classifying finite groups actions on surfaces of low genus, J. Pure Appl. Algebra 69 (1991) 3, 233–270.
- [4] S.A. Broughton, The equisymmetric stratification of the moduli space and the Krull dimension of the mapping class group, Topology and Its Applications 37 (1990), 101-113.
- [5] E. Bujalance, F.J. Cirre, J.M. Gamboa, G. Gromadzki, Symmetry types of hyperelliptic Riemann surfaces, Mm. Soc. Math. Fr. (N.S.) 86 (2001).
- [6] E. Bujalance, A.F. Costa, On symmetries of p-hyperelliptic Riemann surfaces, Math. Ann. 308 (1997) 1, 31–45.
- [7] E. Bujalance, J.J. Etayo, J.M. Gamboa, Surfaces elliptiques-hyperelliptiques avec beaucoup d'automorphismes, C. R. Acad. Sci. Paris Sr. I. Math. 302 (1986) 10, 391–394.
- [8] E. Bujalance, J.J. Etayo, J.M. Gamboa, Topological types of p-hyperelliptic real algebraic curves, Math. Z. 194 (1987) 2, 275–283.
- [9] E. Bujalance, J.J. Etayo, Large automorphism groups of hyperelliptic Klein surfaces, Proc. Amer. Math. Soc. 103 (1988) 3, 679–686.
- [10] E. Bujalance, J.J. Etayo, A characterization of q-hyperelliptic compact planar Klein surfaces, Abh. Math. Sem. Univ. Hamburg 58 (1988), 95–102.
- [11] E. Bujalance, J. Etayo, J. Gamboa, G. Gromadzki, Automorphisms Groups of Compact Bordered Klein Surfaces. A Combinatorial Approach, Lecture Notes in Math. 1439, Springer Verlag (1990).
- [12] E. Bujalance, J. M. Gamboa, G. Gromadzki, The full automorphisms group of hyperelliptic Riemann surfaces, Manuscripta Math 79 (1993), 267–282.
- [13] B. Estrada, Automorphism groups of orientable elliptic-hyperelliptic Klein surfaces, Ann. Acad. Sci. Fenn. Math. 25 (2000), 439–456.
- [14] B. Estrada, E. Martinez, On q-hyperelliptic k-bordered tori, Glasg. Math. J. 43 (2001) 3, 343–357.
- [15] B. Estrada, Geometrical characterization of p-hyperelliptic planar Klein surfaces, Comput. Methods Funct. Theory 2 (2002), no. 1, 267–279.
- [16] B. Estrada, R. Hidalgo, E. Martinez, On q-n-gonal Klein surfaces, Acta Math. Sinica 23 (2007) 10, 1833–1844.
- [17] H.M. Farkas, I. Kra, *Riemann Surfaces*, Graduate Text in Mathematics, Springer-Verlag, 1980.
- [18] G. Gromadzki, A. Weaver, A. Wootton, On gonality of Riemann surfaces, to appear.

- [19] A.M. Macbeath, Action of automorphisms of a compact Riemann surface on the first homology group, Bull. London Math. Soc. 5 (1973), 103–108.
- [20] E. Tyszkowska, Topological classification of conformal actions on elliptic-hyperelliptic Riemann surfaces, Journal of Algebra 288 (2005), 345–363.
- [21] E. Tyszkowska, Topological classification of conformal actions on 2-hyperelliptic Riemann surfaces, Bull. Inst. Math. Acad. Sinica 33 (2005) 4, 345–368.
- [22] E. Tyszkowska, On p-hyperelliptic involutions of Riemann surfaces, Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry 46 (2005) 2, 581–586.
- [23] E. Tyszkowska, A. Weaver, Exceptional points in the eliptic-hyperelliptic locus, Journal of Pure and Applied Algebra 212 (2008), 1415–1426.
- [24] A. Weaver, Hyperelliptic surfaces and their moduli, Geom. Dedicata 103 (2004), 69-87.
- [25] D. Singerman, Finitely generated maximal Fuchsian groups, J. London Math. Soc. 6 (1972) 2, 29–38.

Ewa Tyszkowka ewa.tyszkowska@math.univ.gda.pl

University of Gdańsk Institute of Mathematics ul. Wita Stwosza 57, 80-952 Gdańsk, Poland

Received: May 8, 2009. Revised: July 21, 2009. Accepted: July 27, 2009.