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TOPOLOGICAL CLASSIFICATION
OF CONFORMAL ACTIONS
ON p-HYPERELLIPTIC
AND (¢,n)-GONAL RIEMANN SURFACES

Abstract. A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X
admits a conformal involution p for which X/p has genus p. A conformal automorphism §
of prime order n such that X/é has genus q is called a (g, n)-gonal automorphism. Here we
study conformal actions on p-hyperelliptic Riemann surface with (g, n)-gonal automorphism.
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1. INTRODUCTION

A compact Riemann surface X of genus g > 2 is said to be p-hyperelliptic if X
admits a conformal involution p, called a p-hyperelliptic involution, such that X/p is
an orbifold of genus p. This notion has been introduced by H. Farkas and I. Kra in
[17] where they also proved that for g > 4p 4+ 1, p-hyperelliptic involution is unique
and central in the group of all automorphisms of X. In [22] it has been proved that
every two p-hyperelliptic involutions commute for 3p + 2 < g < 4p+ 1 and X admits
at most two such involutions if g > 3p + 1.

In the particular cases p = 0,1, X are called hyperelliptic and elliptic-hyperelliptic
Riemann surfaces respectively. Hyperelliptic Riemann surfaces and their automor-
phisms have received a good deal of attention in the literature. In [2] and [12] the
authors determined the full groups of conformal automorphisms of such surfaces which
made it possible to classify symmetry types of such actions in [5]. The p-hyperelliptic
(p > 1) surfaces at large have been studied in [7-11,13-15] and [23], where the most
attention has been paid to a study of groups of automorphisms of such surfaces and
their symmetries.
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We say that a finite group G acts on a topological surface X if there exists
a monomorphism ¢ : G — Hom™(X), where Hom™'(X) is the group of orienta-
tion-preserving homeomorphisms of X. Two actions of finite groups G and G’ on
X are topological equivalent if the images of G and G’ are conjugate in Hom™ (X).
There are two reasons for the topological classification of finite actions rather than
just the groups of homeomorphisms. First, the equivalence classes of group actions
are in 1 — 1 correspondence to conjugacy classes of finite subgroups of the mapping
class group and so such a classification gives some information on the structure of
this group. Second, the enumeration of finite group actions is a principal component
of the analysis of singularities of the moduli space of conformal equivalence classes of
Riemann surfaces of a given genus since such space is an orbit space of Teichmiiller
space by a natural action of the mapping class group, see [4].

The classification of conformal actions up to topological conjugacy is a classical
problem, which has been considered for surfaces of genera g = 2,3 in [3] and g = 4 in
[1]. In the case p-hyperelliptic Riemann surfaces it has been studied in [24, 20] and
[21] for p = 0,1 and 2, respectively.

Here we study conformal actions on p-hyperelliptic Riemann surface X which ad-
mits a conformal automorphism ¢ of prime order n > 2 such that X /6 has genus ¢ [18§].
The automorphism 0 is called the (g,n)-gonal automorphism and in the case ¢ = 0,
n-gonality automorphism. (q,n)-gonal Klein surfaces have been considered in [16].

2. PRELIMINARIES

We shall approach the problem using Riemann uniformization theorem by which
each compact Riemann surface X of genus g > 2 can be represented as the orbit
space of the hyperbolic plane H under the action of some Fuchsian surface group T
Furthermore, a group G of automorphisms of a surface X = H/T" can be represented
as G = A/T for another Fuchsian group A. Each Fuchsian group A is given a signature
o(A) = (g;m1,...,m,), where g, m; are integers verifying g > 0, m; > 2. The ¢ =0
in signature will be omitted and m; = m repeated r-times will be written m”. The
signature determines the presentation of A:

generators:  Xi,...,%p,a1,b1,...,aq,0bg,

relations: et = =2l =ay . xpfar, b . fag, bg] = 1.

Such set of generators is called the canonical set of generators and often, by abuse
of language, the set of canonical generators. Geometrically z; are elliptic elements
which correspond to hyperbolic rotations and the remaining generators are hyperbolic
translations. The integers mq,mao, ..., m, are called the periods of A and g is the genus
of the orbit space H/A. Fuchsian groups with signatures (g; —) are called surface
groups and they are characterized among Fuchsian groups as these ones which are
torsion free.

The group A has associated to it a fundamental region whose area p(A), called
the area of the group, is:

w(A) =27 <2g -2+ (1- l/mi)> . (2.1)

i=1
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If T is a subgroup of finite index in A, then we have the Riemann-Hurwitz formula
which says that

()
A:T]=—=. 2.2
A= B (22)
The number of fixed points of an automorphism of X can be calculated by the
following theorem of Macbeath [19].

Theorem 2.1. Let X = H/T be a Riemann surface with the automorphism group G =
A/T and let xy,...,x, be elliptic canonical generators of A with periods my,...,m,
respectively. Let 0 : A — G be the canonical epimorphism and for 1 # g € G let £,(g)
be 1 or 0 according whether g is or is not conjugate to a power of 0(x;). Then the
number F(g) of points of X fized by g is gz’ven by the formula

Flg) = [No((g |Zel )/m. (2.3)

Let G be a finite group acting on a surface X of genus g > 1 such that the
canonical projection X — X/G is ramified at r points with multiplicities m1, ..., m,
and s is the genus of X/G. Then a (25 4 r)-tuple (a1, ..., as,b1,...,bs, T1,...,&;) of
generators of G such that #; has order m; for i = 1,...,7, & . ..5:7n Hle[&i,bi] =1
and 29—2 = |G|(2s—2+)_;_,(1—1/m;)) is called a generating (s;my, ..., m,)-vector.

For every generating (s : my, ..., m,)-vector of G, there exists a Fuchsian group
A with the signature (s;my,...,m,) and an epimorphism 6 : A — G defined by the
assignment 0(a;) = a;,0(b;) = b; and 6(x;) = &;. The kernel T' of 0 is a surface
Fuchsian group of orbit genus g and G acts as an automorphism group on a Riemann
surface X = H/T'. If an involution p appears in generating vector as an image of k
consecutive elliptic generators of A, then we shall write pl*! instead of p,.%., p. There
is a 1 — 1 correspondence between the set of generating vectors of G and the set of
epimorphisms 6 : A — G with torsion free kernels. Two epimorphisms 6 : A — G and
0’ : A’ — G’ define topologically equivalent actions if ©f = 6’1} for some isomorphisms
p:G—G and ¢ : A — A [3].

3. p-HYPERELLIPTIC RIEMANN SURFACE
WITH (¢q,n)-GONAL AUTOMORPHISM

In this section we study Riemann surfaces of genera g > 1 which are p-hyperelliptic
and cyclic (g, n)-gonal simultaneously for a prime n > 2 and a natural ¢. If g > 4p+1,

then its (¢, n)-gonal automorphism and p-hyperelliptic involution commute. The ﬁrst
theorem gives necessary and sufficient conditions on p and g for the existence of
such surface.

Theorem 3.1. There exists a p-hyperelliptic Riemann surface of genus g > 2 ad-
mitting (q,n)-gonal automorphism commuting with a p-hyperelliptic involution if and
only if p=ny+bn—1)/2 and g = ng+a(n—1)/2 for some integers v,b, a such that

b=-20rb>0, b<a<2(b+1), 0<y<(¢g+1)/2. (3.1)

Furthermore, the (q,n)-gonal automorphism admits a + 2 fixed points.
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Proof. Assume that a Riemann surface X = H/I" admits p-hyperelliptic involution p
and (g, n)-gonal automorphism §. The groups (§) and (p) can be identified with T's /T’
and I', /T, where I's and I', are Fuchsian groups containing I' as a normal subgroup
of index n and 2, respectively. By the Riemann-Hurwitz formula they have signatures

o(Ts) =(g;n.7.,n)and o(T)) = (p;2,.5.,2), (3.2)

where s = 2g+ 2 —4p and r = 2+ (29 — 2nq)/(n — 1). Thus g = ng+ a(n —1)/2
for a = r — 2. If p and § commute then they generate the group Zs, which can be
represented by A/T for a Fuchsian group A with the signature

(v; 2, k1 2, n, k2. n, 2n, k. 2n). (3.3)
By the Riemann-Hurwith formula
29 —2=4dny —4n+nki + 2ka(n — 1) + k3(2n — 1) (3.4)
and according to Theorem 2.1
nky = s — kg, 2ko =1 — k3. (3.5)

By substituting the last equalities to (3.4), we obtain p = ny + b(n — 1)/2, for an
integer b such that a = 2b+ 2 — k3. Thus

kit=2¢q+a—4y—2b, ke=a—0b, ks=2+2b—a (3.6)

are nonnegative integers if and only if the inequalities (3.1) are satisfied.

Conversely, assume that ¢ = ng+ a(n — 1)/2 and p = ny + b(n — 1)/2 for some
integers a, b and -y satisfying the inequalities (3.1). Then there exists a Fuchsian group
A with the signature (3.3). Let 6 : A — (p) @ (6) be an epimorphism which maps all
hyperbolic generators of A onto pd, the first k1 of elliptic generators onto p and the
remaining in the following way :

§...6 61862 ps. . ps ps L ps Tt pd2if ke =1 (2) and ks =1 (2),
—— — —— —_——— ———/
(ka+1)/2  (k2=3)/2 (ks+1)/2  (k3—3)/2

§...6 6167672 ps.pd po Tt pdT if ko =1 (2) and k3 =0 (2),
N\ e’ D Y —
(k2+1)/2  (k2—3)/2 k3/2 k3 /2

6.8 6.6 ps...ps ps . pdt p62if ke =0 (2) and k3 =1 (2),
N N N N——— ————
k2/2 ka/2 (k3+1)/2 (k3—3)/2

§...8 667" po...pd pdt ... pdT" if k2 =0 (2) and k3 = 0 (2).
N N——— N e e’
k2 /2 ko /2 k3 /2 k3 /2

Then the kernel of 6§ is a surface Fuchsian group I' of genus g while §~1(p) and
6~1(8) are Fuchsian groups with the signatures (3.2). Thus H/T is a p-hyperelliptic
Riemann surface admitting (g, n)-gonal automorphism. It is easy to notice that for
ke < 3 or k3 < 3, such an epimorphism does not exist if and only if ks + ks +v =10
or ko + ks = 1. The first equality is never satisfied since if ko + k3 = 0 then b = —2
and p = n(y — 1) + 1 what requires v > 1. The second one occurs for b = —1 and
therefore this value of b is rejected. O
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Corollary 3.2. Let X be a p-hyperelliptic Riemann surface of genus g > 4p + 1.
Then for any prime n > 3,

(i) X can be realized as n-sheeted covering of the Riemann sphere if and only if p =0
and g=n—1 or g = (n—1)/2 and its n-gonality automorphism admits 4 or 3
fized points, respectively.

(ii) X can be realized as n-sheeted covering of an elliptic curve if and only if p =0
andg € {2n—1,3n—1)/2,n} orp=(n—1)/2 and g € {3n—2,(5n—3)/2} and
its (1,n)-gonal automorphism admits 4,3,2 or 6,5 fized points, respectively.

Corollary 3.3. Let X = H/T be a Riemann surface of genus g > 2 which admits
p-hyperelliptic involution p and (g,n)-gonal automorphism 0 for p < n. If 6 and p
commute then p =b(n—1)/2, g = nqg+a(n—1)/2 for integers a,b in range 0 < b < 2
and b < a < 2b+ 2 and a Fuchsian group A such that (5, p) = A/T has a signature
(0;2,2019720 2 avh n 2n, 204270 2n). Furthermore, § admits a+2 < 8 fized points.

Theorem 3.4. All group actions on a p-hyperelliptic and cyclic n-gonal Riemann
surface are given in Table 1, up to topological conjugacy; four of them correspond to
the full automorphism groups: 2.b,3.a,3.b and 5.c.

Proof. Let X = H/T be a p-hyperelliptic Riemann surface of genus g > 2 admitting
a n-gonality automorphism ¢. Then by Corollary 3.2, X is hyperelliptic, d admits
4 or 3 fixed points and its order is one of two possible prime orders greater than
g, namely n = g+ 1 or n = 2g + 1, respectively. The automorphism groups of
hyperelliptic Riemann surfaces are given in [12] and we need to chose those which
admit an automorphism satisfying the above conditions. The action of finite group
G on X is determined by the signature of a Fuchsian group A and an epimorphism
0 : A — G with kernel I'. Let x1,...,z, be all elliptic generators of A. An element
of A has a fixed point in H if and only if it has a finite order and it is conjugate
to some power of precisely one of elliptic generators x;. Consequently an element of
G has a fixed point in X if and only if it is conjugate to some power of the image
of x; via homomorphism 6. Since 6 preserves orders, it follows that the order n of
the n-gonality automorphism divides one of periods m; in the signature of A. First
we chose all signatures corresponding to group actions on a hyperelliptic Riemann
surface of genus g for which g + 1 or 2g + 1 divides one of its periods. The authors
of [12] denoted by ¢ the number of periods 2 in the signature of A which correspond
to elliptic generators mapped by € on the hyperelliptc involution and expressed ¢ in
terms of the genus g and the the number N = |G|/2. Let us consider for example
o(A) =1(2,.1.,2,2,3,3) with t = (9 + 1)/6. The number 3 is the only prime integer
greater that 2 which divides a period of A. Thus § has order 3 and so g = 2. However
t is not integer for ¢ = 2 and therefore this signature is not suitable. In the similar
way we reject the remaining signatures except:

2.a: o(A)=(2,.t.,2,N,N), t=(29+2)/N,
2b: o(A)=(2,.t.,2,N,2N), t=(29+1)/N,
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3a: o(A)=1(2,.1.,2,2,2,N/2), t=(2g9+2)/N,

3b: o(A)=(2,.1.,2,2,4,N/2), t=(2g+2)/N—1/2,
3.c: o(A)=(2,.1.,2,4,4,N/2), t=(29+2)/N —1,
4d: o(A)=(2,.1.,2,4,3,3), =(9—2)/6,9g=2,
5.c: o(A)=1(2,.1.,2,2,3,8), t:( —2)/12,9 = 2.

In the case 2.a, G = (2 : 22) @ (x : V) and z is the hyperelliptic involution. The
order n of § divides a period of A if and only if n = g+1 and N has one of values 2g+2
or g+1. Thus (§) = (22) or {x), respectively and we shall denote these two possibilities
by 2.a and 2.a’ in Table 1. With the help of Macbeath’s theorem we check that in
both cases § has 4 fixed points as required. Using the pair of automorphisms (idy, ¢),
where p(z) = 2z and ¢(z) = z if necessary, we can show that any generating vector
is equivalent to v = (z,.%.,z,xz',271). A similar consideration of the all signatures
listed above provides the remaining results in Table 1.

Table 1. Actions on a p-hyperelliptic cyclic n-gonal Riemann surface

a(A) G = A/T of oder 2N N gen. vector 0
2.a |[2,N,N] (z:22)® (x: xN) 29+ 2 | (2, 2,27 1) x2
2.0’ [[2,2,N,N] |(z:22)® (x:zN) g+1 |(z,2,z,271) x
2.b |[2,N,2N] | (z:z2N) 29+ 1 | (zN, 22,2V 2) x?
3.a [[2,2,2,N] |(z:22) @ (x,y: 22,92 (zy)) g+1 |(z2z,y, (zy)~ 1) |2y
30 |[2,4,N/2] |(z,y: a2t yN2 (2y)?, (27 )?) | dg+4 | ((2y) " 2,y) 2
3c |[4,4,N] (z,y 2t 2%y, (2y)V) g+1 |(zy (zy)™ ") zy
4.d |[4,3,3] (z,y 2t y?, (2y)® y2?y~ta?) | 12 (z,y, (zy) ™) y
S.c |[2,3,8] (x,y 22,97, (xy)* (yo)*, (zy)®) | 24 (z,y, (xy) ™) zyx

If the signature of A does not appear in the first column of the Tables 1.5.1 or
1.5.2 in [25] then A can be chosen to be maximal [25] and so G can be assumed to be
the full group of automorphisms of X. In the other case A is always contained in a
Fuchsian group A’ and the signature of of such a group is given in the second column
of the corresponding row, what we shall denote by o(A) C o(A’). By inspecting the
signatures from Table 1 we obtain: [2,2g+2,2¢+2] C [2,4,29+2], [2,2,9+1,9+1] C
(2,2,2,9+1], [4,4,9+1] C [2,4,29+2], [4,3,3] C [2,3,8] and [2, N,2N] C 2,3,2N]. In
each of these cases except the last one, there exists a group G’ acting on a hyperelliptic
Riemann surface of genus g, group embeddings ¢ : A — A’, j : G — G’ and an
epimorphism ¢’ : A’ — G’ such that [A’ : A] = [G’ : G] and #'i = j6. In the last case
the genus of a surface on which G’ acts is different from g. Consequently G is the
full automorphism group of a hyperelliptic Riemann surface only in cases 2.b, 3.a, 3.b
and 5.c. O

Using Corollary 3.2, Macbeath’s theorem and group actions on hyperelliptic,
elliptic-hyperelliptic and 2-hyperelliptic Riemann surfaces given, up to topological
conjugacy, in [12,20] and [21], we obtain the next theorems. Their proofs are similar
to the previous one and so we omit them.
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Theorem 3.5. A p-hyperelliptic Riemann surface of genus g > 4p+1 can be realized
as cyclic 3-sheeted covering of an elliptic curve if and only if p = 0 and g = 3,4,5
orp =1 and g = 6,7 while the topologically non-equivalent group actions on such

surfaces are listed in Table 2

Theorem 3.6. A p-hyperelliptic Riemann surface of genus g > 4p+1 can be realized
as cyclic 5-sheeted covering of an elliptic curve if and only if p = 0 and g = 5,7,9
orp =2 and g = 11,13 while the topologically non-equivalent group actions on such

surfaces are listed in Table 3.

Theorem 3.7. For any prime n > 5, a hyperelliptic (1,n)-gonal Riemann surface
has genus 2n — 1,(3n — 1)/2 or n and the finite group actions on such surfaces are

given in Table 4.

Table 2. Actions on a p-hyperelliptic cyclic (1, 3)-gonal Riemann surface

g o(A) G=A/T gen. vector P )
3 | [22,62] (z: x8) (o2, 1) x3 x2
[2,67] (2:2%) @ (z,y : 22,9°, (29)?) (z,0p,(28)"'p) | = y
2,6,4]  |(z:2%) @ (w,y: 2% 9% (x)?) (z,0p, (@6)"1p) | 2 y
[2,122] (z: x12) (p, 27,2~ 1) x0 xt
2%, 6] (@,y a2,y ,(ry)6> (b, px,y, po (zy)® | (zy)?
42, 6] (@,y : a?y?, 4% a yay) (=, (y2) =", y) a? y?
4 104,3,6] | (w,y:at,y8, (2y)?, yaPy~12?) (2,0, (26)~") a? y
[23,3,6] |(x:25) (B3, 8, 2) x3 z?
[2,9,18] | (x: z'8) (p, 2%, 27) z° 8
512297 |2 eyt @) | (pend @) | = | oy
(4,3,4] | (z,y:a% % ya?y~ 122, (zy)?) (2,8, (z8)~1) z? y
[24,32] (z:22) ® (x: 23) (pt4, 6,67 1) z x
[22,62] (z:22) ® (zx: x5) (o2, z, 2~ 1) z z?
[2,122] (z:22) @ (x: 2'2) (p, px~1,x) z xt
243 |G ety @) |Pens ) | 2 | ay
2,42,3] | (o2t 222, (29)%) (5,670 | a2 | ay
(42, 6] (z,2: %, 2%y?, (zy)°) (z,y, (zy)™") 2| (=)
6 |[22,32,6] |(z:22) @ {(c:c?) (p131,68,672, po) z c
12,4,3,12]| (c: c'?) (p, 3,8, pd) b ct
7 |[4,3,6] (w,y,c,2: 22,8, y%2, 222, [z, y]2,
cyc Yy~ lz, cxely7 12, [z, c]) (c2x, Py, c) z ct
[23,3,6] |(2:22) @ {c: ) (o, ¢3,8,¢) z c?
[24,33] (z:22) @ {c: c3) (p14,8,672,6) z c
2,32,6] |(z:22)@(y:9®) ®(c:c?) (p3, 6y, yop) z c
12,3,12] | (x,y,c:ct?,By=6, 22y? xyx—1y5,
cxc iy, cy cly~lz) (3z, c?y, c) 8 ct
(32,6] (x,y,c,2: 22,¢3,9y02, [z, 9]z, 2292,
cxe Yy~ la, cyclx, [c, 2], [z, 2]) (6,6x,x716) z c
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Table 3. Actions on p-hyperelliptic cyclic (1,5)-gonal Riemann surfaces

g | o(A) G=A/T gen. vector P 0

5 |[22,10?] (z: z10) (o, 2,2~ 1) x® x?
[2,20?] <x : x20> (p, pr,z~1) 210 z*
2%, 10] (z, ( ¥'°) (b, pz,y, (xy) ™) | (2y)® | (zy)?
42, 10] (z,y: 2295, y'0 2™ Lyay) (z, (yz) ™1, y) a? |y
(2,3,10] (z:2%) @ (2,9 22,9°, (29)°) | (pz,y,8%p) z (zy)?

7 | [23,5,10] (x: 210), (131,68, (p6)~1) x® x?
[2,15,30] (x : x30), (p,x , 62) x1® x0

9 |[24,52] (z:22) ® (x: xP) (p41,6,671) z T
[22,107] (z:22) ® (x: z10) (p[2 z~1) z x?
[2,202] (z:2%) @ (x: 220) (p, px~ 1, 2) z x4
(2%,5] (z:2%) @ (w,y: 22,92, (29)®) | (1, 2,9,670) |2 zy
(2,42, 5] (z,y 2 2%, 2?y?, (21)°) (pp,y, 671 |2® |y
42, 10] (z,2: 2%, 2%y?, (2y)'0) (z,y, (zy) ") a? | (2y)?
(2,6, 5] (z:2%) @ (z,y : 22, %, (xy)®) | (pz,yp, 0 1) z zy

11 |[10,52,23] | (2:22) @ (z : 25) (6p, 8,83, pl3l) z x
[4,5,20,2] | (x:229) (8z, 0,2, p) x10 xt

13 | [5%,2%] (z:22)® (x: xP) (6,6,6%, pl4 z T
[2,5,10,22] | (z: 22) @ (z : 210) (62,82, 2,p121) |2z x?

g o(A) G=A/T gen. vector p 0

on —1 |[24,n?] (2:22) @ (z: ™) (pt, 6,671 z x
[22,(2n)?] |(z:22) ® (x : x3") (p2, z, 2~ 1) z x?
2,40 [(z:22) @ (2 s at) P B PR P
2hnl ()@ (st @) | (0Pe,y,6) |2 ey
(2,4%,n] | (z,y: 2t 22y, (ay)™) (p, pz,y,6~ 1) z? xy
(42, 2n] (z,2: 2%, 2292, (zy)?") (2,9, (zy) ™) z? (zy)?

3"2_1 [23,n,2n] | (x:2%") (B3], 8,267 1) z" x2
[2,3n,6n] | (z:257) (p, 22, px=2) Z3n x6

n [22,(2n)?] | (z : x2™) (o2, 2,27 1) " x2
12, (4n)?] | (z: z™) (p, pz,z~ 1) z2n zt
2%2n] | (2y: 2?02 (2y)?") (b, 2.y, (xy)" 1) | (zy)" | (2y)?
(42,2n] | (z,y: 2%y, y?", 2" tyzy) (@, (yo)"hy) |2 9P
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