
Opuscula Mathematica • Vol. 29 • No. 4 • 2009

A.P. Santhakumaran, J. John

THE UPPER EDGE GEODETIC NUMBER
AND THE FORCING EDGE GEODETIC NUMBER

OF A GRAPH

Abstract. An edge geodetic set of a connected graph G of order p ≥ 2 is a set S ⊆ V (G)
such that every edge of G is contained in a geodesic joining some pair of vertices in S. The
edge geodetic number g1(G) of G is the minimum cardinality of its edge geodetic sets and any
edge geodetic set of cardinality g1(G) is a minimum edge geodetic set of G or an edge geodetic
basis of G. An edge geodetic set S in a connected graph G is a minimal edge geodetic set if
no proper subset of S is an edge geodetic set of G. The upper edge geodetic number g+

1 (G) of
G is the maximum cardinality of a minimal edge geodetic set of G. The upper edge geodetic
number of certain classes of graphs are determined. It is shown that for every two integers a
and b such that 2 ≤ a ≤ b, there exists a connected graph G with g1(G) = a and g+

1 (G) = b.
For an edge geodetic basis S of G, a subset T ⊆ S is called a forcing subset for S if S is the
unique edge geodetic basis containing T . A forcing subset for S of minimum cardinality is
a minimum forcing subset of S. The forcing edge geodetic number of S, denoted by f1(S),
is the cardinality of a minimum forcing subset of S. The forcing edge geodetic number of
G, denoted by f1(G), is f1(G) = min{f1(S)}, where the minimum is taken over all edge
geodetic bases S in G. Some general properties satisfied by this concept are studied. The
forcing edge geodetic number of certain classes of graphs are determined. It is shown that
for every pair a, b of integers with 0 ≤ a < b and b ≥ 2, there exists a connected graph G
such that f1(G) = a and g1(G) = b.

Keywords: geodetic number, edge geodetic basis, edge geodetic number, upper edge geode-
tic number, forcing edge geodetic number.
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1. INTRODUCTION

By a graph G = (V,E), we mean a finite undirected connected graph without loops
or multiple edges. The order and size of G are denoted by p and q respectively.
For basic graph theoretic terminology, we refer to Harary [6]. The distance d(u, v)
between two vertices u and v in a connected graph G is the length of a shortest u− v
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path in G. A u − v path of length d(u, v) is called a u − v geodesic. For a vertex
v of G, the eccentricity e(v) is the distance between v and a vertex farthest from
v. The minimum eccentricity among the vertices of G is the radius, rad G and the
maximum eccentricity is its diameter, diam G of G. Two vertices u and v of G are
called antipodal if d(u, v)=diam G. A vertex v is a peripheral vertex if e(v)=diam
G. A geodetic set of G is a set S ⊆ V (G) such that every vertex of G is contained
in a geodesic joining some pair of vertices of S. The geodetic number g(G) of G is
the minimum cardinality of its geodetic sets and any geodetic set of cardinality g(G)
is a minimum geodetic set or a geodetic basis or a g-set of G. The geodetic number
of a graph was introduced in [1, 7] and further studied in [2–4]. It was shown in [7]
that determining the geodetic number of a graph is an NP-hard problem. The forcing
geodetic number of a graph was introduced and studied in [5] . Santhakumaran et.al
studied the connected geodetic number of a graph in [9] and the upper connected
geodetic number and the forcing connected geodetic number of a graph in [10].

An edge geodetic set of G is a set S ⊆ V (G) such that every edge of G is contained
in a geodesic joining some pair of vertices of S. The edge geodetic number g1(G)
of G is the minimum cardinality of its edge geodetic sets and any edge geodetic
set of cardinality g1(G) is a minimum edge geodetic set of G or an edge geodetic
basis of G or a g1-set of G. The edge geodetic number of a graph was studied by
Santhakumaran and John in [8]. These concepts have many applications in location
theory and convexity theory. There are interesting applications of these concepts to
the problem of designing the route for a shuttle and communication network design.

For the graph G given in Figure 1, S = {v3, v5} is a minimum geodetic set of
G so that g(G) = 2. The edge v1v2 does not lie on any geodesic joining a pair of
vertices in S so that S is not an edge geodetic set of G. However, S1 = {v1, v2, v4} is
a minimum edge geodetic set of G so that g1(G) = 3. It is proved in [8] that for any
connected graph G of order p, 2 ≤ g1(G) ≤ p and no cut vertex of G belongs to any
edge geodetic basis of G. Further, several interesting results and realization theorems
were proved in [8].

v5 v4

v3

v1

v2

Fig. 1. Graph G

For a cut-vertex v in a connected graph G and a component H of G − v, the
subgraph H and the vertex v together with all edges joining v to V (H) is called
a branch of G at v. A vertex v is an extreme vertex of a graph G if the subgraph
induced by its neighbours is complete. The following theorems will be used in the
sequel.
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Theorem 1.1 ([8]). Each extreme vertex of a connected graph G belongs to every edge
geodetic set of G. In particular, each end-vertex of G belongs to every edge geodetic
set of G.

Theorem 1.2 ([8]). For any non-trivial tree T , the edge geodetic number g1(T ) equals
the number of end-vertices in T . In fact, the set of all end-vertices of T is the unique
edge geodetic basis of T .

Theorem 1.3 ([8]). For the complete graph G = Kp (p ≥ 2), g1(G) = p.

Throughout the following G denotes a connected graph with at least two vertices.

2. THE UPPER EDGE GEODETIC NUMBER OF A GRAPH

Definition 2.1. An edge geodetic set S in a connected graph G is called a minimal
edge geodetic set if no proper subset of S is an edge geodetic set of G. The upper edge
geodetic number g+

1 (G) of G is the maximum cardinality of a minimal edge geodetic
set of G.

Example 2.2. For the graph G given in Figure 2, S = {v2, v4, v5} is an edge geodetic
basis of G so that g1(G) = 3. The set S′ = {v1, v3, v4, v5} is an edge geodetic set of
G and it is clear that no proper subset of S′ is an edge geodetic set of G and so S′ is
a minimal edge geodetic set of G. Since |V (G)| = 5, it follows that g+

1 (G) = 4.

v4

v3

v2

v5v1

Fig. 2. Graph G

Remark 2.3. Every minimum edge geodetic set of G is a minimal edge geodetic set of
G and the converse is not true. For the graph G given in Figure 2, S′ = {v1, v3, v4, v5}
is a minimal edge geodetic set but not a minimum edge geodetic set of G.

Theorem 2.4. Each extreme vertex of a connected graph G belongs to every minimal
edge geodetic set of G.

Proof. This follows from Theorem 1.1.

Theorem 2.5. For a connected graph G, 2 ≤ g1(G) ≤ g+
1 (G) ≤ p.
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Proof. Any edge geodetic set needs at least two vertices and so g1(G) ≥ 2. Since
every minimal edge geodetic set is an edge geodetic set, g1(G) ≤ g+

1 (G). Also, since
V (G) is an edge geodetic set of G, it is clear that g+

1 (G) ≤ p. Thus 2 ≤ g1(G) ≤
g+
1 (G) ≤ p.

Remark 2.6. The bounds in Theorem 2.5 are sharp. For any non-trivial path P ,
g1(P ) = 2. It follows from Theorem 1.2 and Theorem 1.3 that g1(T ) = g+

1 (T ) for any
tree T and g+

1 (Kp) = p (p ≥ 2) respectively. Also, all the inequalities in the theorem
are strict. For the graph G given in Figure 2, g1(G) = 3, g+

1 (G) = 4 and p = 5.

Theorem 2.7. For a connected graph G, g1(G) = p if and only if g+
1 (G) = p.

Proof. Let g+
1 (G) = p. Then S = V (G) is the unique minimal edge geodetic set

of G. Since no proper subset of S is an edge geodetic set, it is clear that S is the
unique minimum edge geodetic set of G and so g1(G) = p. The converse follows from
Theorem 2.5.

Corollary 2.8. For the complete graph G = Kp (p ≥ 2), g+
1 (G) = p.

Proof. This follows from Theorem 1.3 and Theorem 2.7.

Theorem 2.9. If G is a connected graph of order p with g1(G) = p−1, then g+
1 (G) =

p− 1.

Proof. Since g1(G) = p − 1, it follows from Theorem 2.5 that g+
1 (G) = p or p − 1.

If g+
1 (G) = p, then by Theorem 2.7, g1(G) = p, which is a contradiction. Hence

g+
1 (G) = p− 1.

Remark 2.10. The converse of the Theorem 2.9 is false. For the graph G given in
Figure 2, g+

1 (G) = 4 = p− 1 and g1(G) = 3 = p− 2.

Theorem 2.11. Let G be a connected graph with cut-vertices and let S be minimal
edge geodetic set of G. If v is a cut-vertex of G, then every component of G − v
contains an element of S

Proof. Suppose that there is a component B of G− v such that B contains no vertex
of S. By Theorem 1.1, B does not contain any end-vertex of G. Hence B contains at
least one edge say uw. Since S is an edge geodetic set, there exist vertices x, y ∈ S
such that uw lies on some x − y geodesic P : x = u0, u1, u2, . . . , u, w, . . . , ut = y
in G. Let P1 be the x − u subpath of P and P2 be the u − y subpath of P . Since
v is a cut-vertex of G, both P1 and P2 contain v so that P is not a path, which is a
contradiction. Thus every component of G− v contains an element of S.

Corollary 2.12. Let G be a connected graph with cut-vertices and let S be a minimal
edge geodetic set of G. Then every branch of G contains an element of S.

Theorem 2.13. No cut-vertex of a connected graph G belongs to any minimal edge
geodetic set of G.
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Proof. Let S be any minimal edge geodetic set of G and let v ∈ S be any vertex.
We claim that v is not a cut vertex of G. Suppose that v is a cut vertex of G. Let
G1, G2, . . . , Gr (r ≥ 2) be the components of G − v. Then v is adjacent to at least
one vertex of Gi for every i (1 ≤ i ≤ r). Let S′ = S − {v}. Let uw be an edge of
G which lies on a geodesic P joining a pair of vertices, say x and v of S. Assume
without loss of generality that x ∈ G1. Since v is adjacent to atleast one vertex of
each Gi (1 ≤ i ≤ r), assume that v is adjacent to a vertex y in Gk (k 6= 1). Since S is
an edge geodetic set, vy lies on a geodesic Q joining v and a vertex z of S such that
z (possibly y itself) must necessarily belong to Gk. Thus z 6= v. Now, since v is a cut
vertex of G, the union P ∪ Q of the two geodesics P and Q is obviously a geodesic
in G joining x and z in S and thus the edge uw lies on this geodesic joining the two
vertices x and z of S′. Thus we have proved that every edge that lies on a geodesic
joining a pair of vertices x and v of S also lies on a geodesic joining two vertices of
S′. Hence it follows that every edge of G lies on a geodesic joining two vertices of S′,
which shows that S′ is an edge geodetic set of G. Since |S′| = |S|−1, this contradicts
the fact that S is a minimal edge geodetic set of G. Hence v /∈ S. Thus no cut vertex
of G belongs to any minimal edge geodetic set of G.

Theorem 2.14. For any tree T with k end-vertices, g1(T ) = g+
1 (T ) = k.

Proof. This follows from Theorem 1.2 and Theorem 2.13.

Theorem 2.15. For the complete bipartite graph G = Km,n,

(i) g+
1 (G) = 2 if m = n = 1.

(ii) g+
1 (G) = n if m = 1, n ≥ 2.

(iii) g+
1 (G) = max{m,n} if m, n ≥ 2.

Proof. (i) and (ii) follow from Theorem 2.14.
(iii) Let m,n ≥ 2. Assume without loss of generality that m ≤ n. First assume that
m < n. Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be a bipartition of G.
Let S = Y . We prove that S is a minimal edge geodetic set of G. Any edge yixj

(1 ≤ i ≤ n and 1 ≤ j ≤ m) lies on the geodesic yixjyk for k 6= i so that S is an edge
geodetic set of G. Let S′ $ S. Then there exists a vertex yj ∈ S such that yj /∈ S′.
Then the edge yjxi (1 ≤ i ≤ m) does not lie on a geodesic joining a pair of vertices
in S′. Thus S′ is not an edge geodetic set of G. This shows that S is a minimal edge
geodetic set of G. Hence g+

1 (G) ≥ n.
Let S1 be any minimal edge geodetic set of G such that |S1| ≥ n+1. Since any edge

xiyj (1 ≤ i ≤ m and 1 ≤ j ≤ n) lies on the geodesic xiyjxk for any k 6= i, it follows
that X is an edge geodetic set of G. Hence S1 cannot contain X. Similarly, since Y
is a minimal edge geodetic set of G, S1 cannot contain Y also. Hence S1 $ X ′ ∪ Y ′,
where X ′ $ X and Y ′ $ Y . Hence there exists a vertex xi ∈ X (1 ≤ i ≤ m) and
a vertex yj ∈ Y (1 ≤ j ≤ n) such that xi, yj /∈ S1. Hence the edge xiyj does not
lie on a geodesic joining a pair of vertices in S1. It follows that S1 is not an edge
geodetic set of G, which is a contradiction. Thus any minimal edge geodetic set of
G contains at most n elements so that g+

1 (G) ≤ n. Hence g+
1 (G) = n. Similarly, if

m = n, g+
1 (G) = m = n.
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In view of Theorem 2.5, the following theorem gives a realization result.

Theorem 2.16. For every two positive integers a and b, where 2 ≤ a ≤ b, there
exists a connected graph G with g1(G) = a and g+

1 (G) = b.

Proof. If a = b, let G = K1,a. Then by Theorem 2.14, g1(G) = g+
1 (G) = a. So,

let 2 ≤ a < b. Let V (K2) = {x, y} and V (Kb−a+1) = {v1, v2, . . . , vb−a+1}. Let
H = Kb−a+1 + K2. Let G be the graph in Figure 3 obtained from H by adding
a− 1 new vertices u1, u2, . . . , ua−1 and joining each vertex ui (1 ≤ i ≤ a− 1) with y.
Let S = {u1, u2, . . . , ua−1}. It is clear that S is not an edge geodetic set of G. Let
S′ = S ∪ {x}. Then S′ is an edge geodetic set of G and so by Theorem 1.1, S′ is an
edge geodetic basis of G. Hence g1(G) = a.

x

v1

v2

v3

...
vb−a+1

y

u1

u2

...
ua−1

Fig. 3. Graph G

Now, T = S ∪ {v1, v2, . . . , vb−a+1} is an edge geodetic set of G. We show that T
is a minimal edge geodetic set of G. Let W be any proper subset of T . Then there
exists at least one vertex say v ∈ T such that v /∈ W . Assume first that v = ui for
some i (1 ≤ i ≤ a− 1). Then the edge yui does not lie on any geodesic joining a pair
of vertices in W and so W is not an edge geodetic set of G. Now, assume that v = vj

for some j (1 ≤ j ≤ b− a+ 1). Then the edges xvj and yvj do not lie on a geodesic
joining any pair of vertices in W and so W is not an edge geodetic set of G. Hence T
is a minimal edge geodetic set of G so that g+

1 (G) ≥ b.
Now, we show that there is no minimal edge geodetic set X of G with |X| ≥ b+1.

Suppose that there exists a minimal edge geodetic set X of G such that |X| ≥ b+ 1.
Since |V (G)| = b+2 and since S′ is an edge geodetic set ofG, it follows that |X| = b+1.
Now, by Theorem 2.13, y /∈ X and soX = V (G)−{y}. Since S′ is an edge geodetic set
ofG, it follows thatX is not a minimal edge geodetic set ofG, which is a contradiction.
Thus g+

1 (G) = b.

Remark 2.17. Let b− a ≥ 2 in Theorem 2.16. Suppose that there exists a minimal
edge geodetic set M such that a < |M | < b. By Theorem 1.1, S ⊆ M and so there
exists at least one vertex vi (1 ≤ i ≤ b − a + 1) such that vi /∈ M . Then the edges
xvi and yvi do not lie on a geodesic joining any pair of vertices of M , which is a
contradiction. Hence it follows that if k is an integer such that a < k < b, then there
need not be a graph G with g1(G) = a and g+

1 (G) = b containing a minimal edge
geodetic set of cardinality k, that is, a graph G need not contain an “intermediate”
minimal edge geodetic set.
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3. THE FORCING EDGE GEODETIC NUMBER OF A GRAPH

The concept of “forcing subsets” was introduced and studied by Chartrand and Zhang
in [7]. For each edge geodetic basis S in a connected graph G, there is always some
subset T of S that uniquely determines S as the edge geodetic basis containing T .
Such “forcing subsets” will be considered in this section.

Definition 3.1. Let G be a connected graph and S an edge geodetic basis of G.
A subset T ⊆ S is called a forcing subset for S if S is the unique edge geodetic basis
containing T . A forcing subset for S of minimum cardinality is a minimum forcing
subset of S. The forcing edge geodetic number of S, denoted by f1(S), is the cardinality
of a minimum forcing subset of S. The forcing edge geodetic number of G, denoted
by f1(G), is f1(G) = min{f1(S)}, where the minimum is taken over all edge geodetic
bases S in G.

Example 3.2. For the graph G given in Figure 2, S = {v2, v4, v5} is the unique
edge geodetic basis of G so that f1(G) = 0 and for the graph G given in Figure 4,
S1 = {v1, v5, v7} and S2 = {v1, v5, v6} are the only two edge geodetic bases of G. It
is clear that f1(S1) = f1(S2) = 1 so that f1(G) = 1.

v1 v2 v3 v4 v5

v6v7

Fig. 4. Graph G

The next theorem follows immediately from the definition of the edge geodetic
number and the forcing edge geodetic number of a connected graph G.

Theorem 3.3. For every connected graph G, 0 ≤ f1(G) ≤ g1(G) ≤ p.

Remark 3.4. The bounds in Theorem 3.3 are sharp. For the graph G given in
Figure 2, f1(G) = 0 and for the complete graph Kp (p ≥ 2), g1(Kp) = p. Also, for
the graph G given in Figure 4, g1(G) = 3 and f1(G) = 1. Thus 0 < f1(G) < g1(G).

The following theorem is an easy consequence of the definitions of the edge geodetic
number, the forcing edge geodetic number and Theorem 2.5. In fact, the theorem
characterizes graphs G for which the lower bound in Theorem 3.3 is attained and also
graphs G for which f1(G) = 1 and f1(G) = g1(G).

Theorem 3.5. Let G be a connected graph. Then

(a) f1(G) = 0 if and only if G has a unique edge geodetic basis.
(b) f1(G) = 1 if and only if G has at least two edge geodetic bases, one of which is a

unique edge geodetic basis containing one of its elements, and
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(c) f1(G) = g1(G) if and only if no edge geodetic basis of G is the unique edge geodetic
basis containing any of its proper subsets.

Definition 3.6. A vertex v of a connected graph G is said to be an edge geodetic
vertex of G if v belongs to every edge geodetic basis of G.

Example 3.7. For the graph G given in Figure 5, S1 = {v1, v3, v4} and S2 =
{v1, v3, v5} are the only edge geodetic bases so that v1 and v3 are the edge geodetic
vertices of G.

v6

v3

v2

v4v1
v5

Fig. 5. Graph G

The following theorem and corollary follow immediately from the definitions of an
edge geodetic vertex and a forcing subset.

Theorem 3.8. Let G be a connected graph and let = be the set of relative complements
of the minimum forcing subsets in their respective edge geodetic bases in G. Then⋂

F∈= F is the set of edge geodetic vertices of G.

Corollary 3.9. Let G be a connected graph and S an edge geodetic basis of G. Then
no edge geodetic vertex of G belongs to any minimum forcing set of S.

Theorem 3.10. Let G be a connected graph and W be the set of all edge geodetic
vertices of G. Then f1(G) ≤ g1(G)− |W |.

Proof. Let S be any edge geodetic basis of G. Then g1(G) = |S|, W ⊆ S and S is the
unique edge geodetic basis containing S −W . Thus f1(G) ≤ |S −W | = |S| − |W | =
g1(G)− |W |.

Corollary 3.11. If G is a connected graph with k extreme vertices, then f1(G) ≤
g1(G)− k.

Proof. This follows from Theorem 1.1 and Theorem 3.10.

Remark 3.12. The bound in Theorem 3.10 is sharp. For the graph G given in
Figure 5, S1 = {v1, v3, v5}, S2 = {v1, v3, v4} are the only two g1-sets so that g1(G) = 3
and f1(G) = 1. Also, W = {v1, v3} is the set of all edge geodetic vertices of G and
so f1(G) = g1(G)− |W |. Also, the inequality in Theorem 3.10 can be strict. For the
graph G given in Figure 6, S1 = {v1, v4, v5}, S2 = {v1, v4, v6} and S3 = {v1, v3, v5}
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are the only three g1-sets of G so that g1(G) = 3 and f1(G) = 1. Now, v1 is the only
edge geodetic vertex of G and so f1(G) < g1(G)− |W |.

v4 v5

v3

v2

v6

v1

Fig. 6. Graph G

Now, we proceed to determine the forcing edge geodetic numbers of certain classes
of graphs.

Theorem 3.13. For any even cycle G = Cp (p ≥ 4), a set S ⊆ V (G) is an edge
geodetic basis if and only if S consists of two antipodal vertices.

Proof. If S consists of two antipodal vertices, then it is clear that S is an edge geodetic
basis of Cp. Conversely, let S be any edge geodetic basis of Cp. Then g1(Cp) = |S|.
Let S′ be any set of two antipodal vertices of Cp. Then, as in the first part of this
theorem, S′ is an edge-geodetic basis of Cp. Hence |S′| = |S|. Thus S consists of two
vertices, say S = {u, v}. If u and v are not antipodal, then any edge that is not on
the u− v geodesic does not lie on the u− v geodesic. Thus S is not an edge geodetic
basis, which is a contradiction.

Corollary 3.14. For an even cycle Cp (p ≥ 4), g1(Cp) = 2.

Proof. This follows from Theorem 3.13.

Theorem 3.15. For any cycle Cp (p ≥ 4),

f1(Cp) =

{
1 if p is even,
2 if p is odd.

Proof. If p is even, then by Theorem 3.13, every g1-set of Cp consists of a pair of
antipodal vertices. Hence Cp has p

2 g1-sets and it is clear that each singleton set is
the minimum forcing set for exactly one g1-set of Cp. Hence it follows from Theorem
3.5 (a) and (b) that f1(Cp) = 1.

Let p be odd. Let p = 2n+ 1. Let the cycle be C : v1, v2, . . . , vn, vn+1, vn+2,
. . . , v2n+1, v1. If S = {u, v} is any set of two vertices of Cp, then no edge of the u− v
longest path lies on the u − v geodesic in Cp and so no two element subset of Cp is
an edge geodetic set of Cp. Now, it is clear that the sets S1 = {v1, vn+1, vn+2}, S2 =
{v2, vn+2, vn+3}, . . . , Sn+2 = {vn+2, v1, v2}, . . . , S2n+1 = {v2n+1, vn, vn+1} are g1-sets
of Cp. (Note that there are more g1-sets of Cp, for example, S′ = {v1, vn+1, vn+3}
is a g1-set different from these). It is clear from the g1-sets Si (1 ≤ i ≤ 2n + 1)
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that each {vi} (1 ≤ i ≤ 2n + 1) is a subset of more than one g1-set Si. Hence it
follows from Theorem 3.5 (a) and (b) that f1(Cp) ≥ 2. Now, since vn+1 and vn+2 are
antipodal to v1, it is clear that S1 is the unique g1-set containing {vn+1, vn+2} and
so f1(Cp) = 2.

Theorem 3.16. For any complete graph G = Kp (p ≥ 2) or any non-trivial tree
G = T , f1(G) = 0

Proof. For G = Kp, it follows from Theorem 1.1 that the set of all vertices of G is
the unique edge geodetic basis. Now, it follows from Theorem 3.5 (a) that f1(G) = 0.
If G is a non-trivial tree, then by Theorem 1.2, the set of all end-vertices of G is the
unique edge geodetic basis of G and so f1(G) = 0 by Theorem 3.5 (a).

Theorem 3.17. For the complete bipartite graph G = Km,n (m,n ≥ 2),

f1(G) =

{
0 if m 6= n,
1 if m = n.

Proof. Without loss of generality, assume that m ≤ n. First assume that m < n. Let
U = {u1, u2, . . . , um} and W = {w1, w2, . . . , wn} be a bipartition of G. Let S = U .
We prove that S is an edge geodetic basis of G. Any edge uiwj (1 ≤ i ≤ m, 1 ≤ j ≤ n)
lies on the geodesic uiwjuk for any k 6= i so that S is an edge geodetic set of G. Let T
be any set of vertices such that |T | < |S|. If T $ U , then there exists a vertex ui ∈ U
such that ui /∈ T . Then for any edge uiwj (1 ≤ j ≤ n), the only geodesics containing
uiwj are uiwjuk (k 6= i) and wjuiwl (l 6= j) and so uiwj cannot lie on a geodesic
joining two vertices of T . Thus T is not an edge geodetic set of G. If T $ W , again
T is not an edge geodetic set of G by a similar argument. If T $ U ∪W such that T
contains at least one vertex from each of U and W , then, since |T | < |S|, there exist
vertices ui ∈ U and wj ∈ W such that ui /∈ T and wj /∈ T . Then, clearly the edge
uiwj does not lie on a geodesic connecting two vertices of T so that T is not an edge
geodetic set. Thus in any case, T is not an edge geodetic set of G. Hence S is an edge
geodetic basis so that g1(Km,n) = |S| = m. Now, let S1 be a set of vertices such that
|S1| = m. If S1 is a subset of W , then since m < n, there exists a vertex wj ∈ W
such that wj /∈ S1. Then the edge uiwj (1 ≤ i ≤ m) does not lie on a geodesic joining
a pair vertices in S1. If S1 $ U ∪W such that S1 contains at least one vertex from
each of U and W , then since S1 6= U , there exist vertices ui ∈ U and wj ∈ W such
that ui /∈ S1 and wj /∈ S1. Then, clearly the edge uiwj does not lie on a geodesic
joining two vertices of S1 so that S1 is not an edge geodetic set of G. It follows that
U is the unique edge geodetic basis of G. Hence it follows from Theorem 3.5 (a) that
f1(G) = 0.

Now, let m = n. Then, as in the first part of this theorem, both U and W are
edge geodetic bases of G. Now, let S′ be any set of vertices such that |S′| = m and
S′ 6= U, W . Then there exist vertices ui ∈ U and wj ∈ W such that ui /∈ S′ and
wj /∈ S′. Then, as earlier, S′ is not an edge geodetic set of G. Hence it follows that U
andW are the only two edge geodetic bases of G. Since U is the unique edge geodetic
basis containing {ui}, it follows that f1(G) = 1.
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Theorem 3.18. If S = {u, v} is an edge geodetic basis of a connected graph G, then
u and v are two antipodal vertices of G.

Proof. Let S = {u, v} be an edge geodetic basis for G. Then every edge of G lies on
a geodesic joining u and v. Hence every vertex of G also lies on a geodesic joining
u and v. Let d(G) denote the diameter of G. We claim that d(u, v) = d(G). If
d(u, v) < d(G), then let x and y be two vertices of G such that d(x, y) = d(G). Now,
it follows that x and y lie on distinct geodesics joining u and v. Hence

d(u, v) = d(u, x) + d(x, v) (3.1)

and
d(u, v) = d(u, y) + d(y, v). (3.2)

By the triangle inequality,

d(x, y) ≤ d(x, u) + d(u, y). (3.3)

Since d(u, v) < d(x, y), (3.3) becomes

d(u, v) < d(x, u) + d(u, y). (3.4)

Using (3.4) in (3.1), we get d(x, v) < d(x, u) + d(u, y)− d(u, x) = d(u, y). Thus,

d(x, v) < d(u, y). (3.5)

Also, by triangle inequality, we have

d(x, y) ≤ d(x, v) + d(v, y). (3.6)

Now, using (3.5) and (3.2), (3.6) becomes d(x, y) < d(u, y) + d(v, y) = d(u, v). Thus,
d(G) < d(u, v), which is a contradiction. Hence d(u, v) = d(G) so that u and v are
antipodal vertices.

Theorem 3.19. If G is a connected graph with g1(G) = 2, then f1(G) ≤ 1.

Proof. Let S = {u, v} be any edge geodetic basis of G. Then by Theorem 3.18, u and
v are antipodal vertices of G. Suppose that f1(G) = 2. Then f1(S) = 2. Hence it
follows that S is not the unique g1-set containing u. Then there exists x 6= u such
that S′ = {u, x} is also a g1-set of G. By Theorem 3.18, u and x are two antipodal
vertices of G. Hence v is an internal vertex of some u − x geodesic in G. Therefore,
d(u, v) < d(u, x), which is a contradiction.

Next we show that every pair a, b of integers with 0 ≤ a < b and b ≥ 2 can be re-
alized as the forcing edge geodetic number and the edge geodetic number respectively
of some graph.

Theorem 3.20. For every pair a, b of integers with 0 ≤ a < b and b ≥ 2, there exists
a connected graph G such that f1(G) = a and g1(G) = b.
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Proof. If a = 0, let G = Kb. Then by Theorem 3.16, f1(G) = 0 and by Theorem 1.3,
g1(G) = b. Thus, we assume that 0 < a < b. We consider four cases.
Case 1. a = 1. If b = 2, then for any even cycle G, g1(G) = b by Corollary 3.14
and f1(G) = a by Theorem 3.15. So, we assume that b ≥ 3. Let G be the graph
in Figure 7 obtained from the cycle C5 : v1, v2, v3, v4, v5, v1 by first adding the b − 2
new vertices u1, u2, . . . , ub−2 and the b − 2 edges v1ui (1 ≤ i ≤ b − 2). Let U =
{u1, u2, . . . , ub−2} be the set of all end-vertices of G. Then U is not an edge geodetic
set of G. Hence it follows from Theorem 1.1 that S1 = U ∪{v3, v4}, S2 = U ∪{v3, v5}
and S3 = U∪{v2, v4} are the only three g1-sets of G. Thus g1(G) = b. Moreover, since
S2 is the unique g1-set containing {v5}, it follows that f1(S2) = 1 and so f1(G) = 1.

v3 v4

v2

v1

v5

u1u2

ub−2
. . .

Fig. 7. Graph G

Case 2. a = 2. If b = 3, then for any odd cycle G of order at least 5, g1(G) = 3 = b,
as in the proof of Theorem 3.15 and f1(G) = a by Theorem 3.15. Now, let b ≥ 4.
Let H be the graph obtained from the cycle C5 : v1, v2, v3, v4, v5, v1 by first adding a
new vertex x and joining the edges xv1 and xv4. Now, let G be the graph in Figure 8
obtained from H by adding (b−3) new vertices u1, u2, . . . , ub−3 and joining the edges
xui (1 ≤ i ≤ b − 3). Let U = {u1, u2, . . . , ub−3} be the set of all end-vertices of G.
Then U is not an edge geodetic set of G. Hence it follow from Theorem 1.1 that
S1 = U ∪{v1, v2, v4}, S2 = U ∪{v1, v3, v4}, S3 = U ∪{v2, v3, v5}, S4 = U ∪{v1, v3, v5}
and S5 = U ∪ {v2, v4, v5} are the only five g1-sets of G. Thus g1(G) = b. It is clear
that no singleton subset of any Si is a forcing subset of Si. Moreover, since S1 is the
unique g1-set containing {v1, v2}, it follows that f1(S1) = 2 and so f1(G) = 2 = a.

v5

v4

x

v3v1
v2

u1u2u3. . . ub−3

Fig. 8. Graph G

Case 3. a ≥ 3 and b = a + 1. For each integer i with 0 ≤ i ≤ b, let Fi : ui, vi be a
path of order 2. Then the graph G given in Figure 9 is obtained from the graph Fi
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by adding the 2b edges u0uj , v0vj for all j with 1 ≤ j ≤ b. First we show that
g1(G) = b. Let U = {u1, u2, . . . , ub} and W = {v1, v2, . . . , vb}. We observe that a set
S of vertices of G is a g1-set if and only if S has the following two properties (3.1) S
contains exactly one vertex from each set {uj , vj} (1 ≤ j ≤ b) and (3.2) S ∩ U 6= φ
and S ∩W 6= φ. Then (3.1) implies that g1(G) ≥ b. Since S′ = {u1, u2, v3, v4, . . . , vb}
is an edge geodetic set of G with |S′| = b, it follows that g1(G) = b = a+ 1.

Now, we prove that f1(G) = a. First assume that a g1-set, say S1 contains exactly
one vertex from U or W . Without loss of generality, let S1 = {u1, v2, v3, v4, . . . , vb}
be a g1-set of G. We claim that f1(G) = b − 1. Let T be a subset of S1 such that
|T | ≤ b − 2. Then there exist at least two vertices say x, y ∈ S1 such that x, y /∈ T .
Suppose that x = u1 and y = vj for some j (2 ≤ j ≤ b). Now, S2 = (S1−{vj})∪{uj}
satisfies (3.1) and (3.2) and so S2 is a g1-set such that T ⊆ S2. Therefore S1 is not
the unique g1-set containing T and so T is not a forcing subset of S1. Suppose that
x = vi for some i (2 ≤ i ≤ b) and y = vj for some j (2 ≤ j ≤ b) and i 6= j. Now,
S3 = (S1−{vi, vj})∪{ui, uj} satisfies (3.1) and (3.2) and so S3 is a g1-set containing
T . Hence T is not a forcing subset of S1 and so f1(S1) ≥ b− 1. Now, it is clear that
S1 is the unique g1-set containing {v2, v3, v4, . . . , vb} so that f1(S1) = b− 1.

Next assume that any g1-set contains at least two vertices from each U and W
(This is possible since b ≥ 4). Without loss of generality, let S = {u1, u2, v3, v4, . . . , vb}
be a g1-set of G. Let T be any proper subset of S and x ∈ S−T . If x = ui for i = 1, 2,
then S′ = (S−{ui})∪{vi} satisfies properties (3.1) and (3.2). Thus S′ is a g1-set of G
such that T $ S′. Since S′ 6= S and T $ S, it follows that S is not the unique g1-set
containing T . Similarly, if x = vi for some i (3 ≤ i ≤ b), then S∗ = (S − {vi}) ∪ {ui}
is a g1-set distinct from S and T $ S∗. Thus S is not the unique g1-set containing T
and so f1(S) = b = a+ 1. Hence it follows that f1(G) = b− 1 = a.

v0u0

u1 v1

u2 v2

u3 v3...
...

ub vb

Fig. 9. Graph G

Case 4. a ≥ 3 and b 6= a+1. Let Fi : ui, vi, wi, xi, ui(1 ≤ i ≤ a) be a copy of C4. Let
G be the graph obtained from Fi(1 ≤ i ≤ a) by first identifying the vertices xi−1 of
Fi−1 and ui of Fi (2 ≤ i ≤ a) and then adding b− a new vertices z1, z2, . . . , zb−a−1, u
and joining the b − a edges u1zi (1 ≤ i ≤ b − a − 1) and xau. The graph G is given
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in Figure 10. Let Z = {z1, z2, . . . , zb−a−1, u} be the set of end-vertices of G. Let
Hi = {vi, wi} (1 ≤ i ≤ a).

First we show that g1(G) = b. Since none of the edges uivi, viwi and wixi of
Fi (1 ≤ i ≤ a) lies on a geodesic joining a pair of vertices of Z, Z is not an edge
geodetic set of G. We observe that every edge geodetic set of G must contain at least
one vertex from Hi (1 ≤ i ≤ a). Thus g1(G) ≥ b − a + a = b. On the other hand,
since the set S1 = Z ∪ {v1, v2, . . . , va} is an edge geodetic set of G, it follows that
g1(G) ≤ |S1| = b. Thus g1(G) = b.

Next we show that f1(G) = a. Since every g1-set of G contains Z, it follows from
Theorem 3.10 that f1(G) ≤ g1(G)− |Z| = b− (b− a) = a. Now, since g1(G) = b and
every edge geodetic basis of G contains Z, it is easily seen that every edge geodetic
basis S is of the form Z ∪ {c1, c2, . . . , ca}, where ci ∈ Hi(1 ≤ i ≤ a). Let T be any
proper subset of S with |T | < a. Then there is a vertex cj (1 ≤ j ≤ a) such that
cj /∈ T . Let dj be a vertex of Hj distinct from cj . Then S2 = (S − {cj}) ∪ {dj} is
a g1-set properly containing T . Thus S is not the unique g1-set containing T and so
T is not a forcing subset of S. This is true for all edge geodetic bases of G and so it
follows that f1(G) = a.

u1

v1 w1

x1=u2

v2 w2

x2=u3 xa−1=ua

va wa

xa u

z1
z2

zb−a−1

...

Fig. 10. Graph G
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