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THE UPPER EDGE GEODETIC NUMBER
AND THE FORCING EDGE GEODETIC NUMBER
OF A GRAPH

Abstract. An edge geodetic set of a connected graph G of order p > 2 is a set S C V(G)
such that every edge of G is contained in a geodesic joining some pair of vertices in S. The
edge geodetic number g1(G) of G is the minimum cardinality of its edge geodetic sets and any
edge geodetic set of cardinality g1 (G) is a minimum edge geodetic set of G or an edge geodetic
basis of G. An edge geodetic set S in a connected graph G is a minimal edge geodetic set if
no proper subset of S is an edge geodetic set of G. The upper edge geodetic number gi (G) of
G is the maximum cardinality of a minimal edge geodetic set of G. The upper edge geodetic
number of certain classes of graphs are determined. It is shown that for every two integers a
and b such that 2 < a < b, there exists a connected graph G with g1(G) = a and g{ (G) = b.
For an edge geodetic basis S of G, a subset T' C S is called a forcing subset for S if S is the
unique edge geodetic basis containing 7'. A forcing subset for S of minimum cardinality is
a minimum forcing subset of S. The forcing edge geodetic number of S, denoted by f1(5),
is the cardinality of a minimum forcing subset of S. The forcing edge geodetic number of
G, denoted by f1(G), is f1(G) = min{fi1(S)}, where the minimum is taken over all edge
geodetic bases S in G. Some general properties satisfied by this concept are studied. The
forcing edge geodetic number of certain classes of graphs are determined. It is shown that
for every pair a, b of integers with 0 < a < b and b > 2, there exists a connected graph G
such that f1(G) =a and g1(G) =b.

Keywords: geodetic number, edge geodetic basis, edge geodetic number, upper edge geode-
tic number, forcing edge geodetic number.
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1. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops
or multiple edges. The order and size of G are denoted by p and ¢ respectively.
For basic graph theoretic terminology, we refer to Harary [6]. The distance d(u,v)
between two vertices v and v in a connected graph G is the length of a shortest u — v
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path in G. A u — v path of length d(u,v) is called a u — v geodesic. For a vertex
v of G, the eccentricity e(v) is the distance between v and a vertex farthest from
v. The minimum eccentricity among the vertices of G is the radius, rad G and the
maximum eccentricity is its diameter, diam G of G. Two vertices u and v of G are
called antipodal if d(u,v)=diam G. A vertex v is a peripheral vertex if e(v)=diam
G. A geodetic set of G is a set S C V(G) such that every vertex of G is contained
in a geodesic joining some pair of vertices of S. The geodetic number g(G) of G is
the minimum cardinality of its geodetic sets and any geodetic set of cardinality g(G)
is a minimum geodetic set or a geodetic basis or a g-set of G. The geodetic number
of a graph was introduced in [1,7] and further studied in [2-4]. It was shown in [7]
that determining the geodetic number of a graph is an NP-hard problem. The forcing
geodetic number of a graph was introduced and studied in [5] . Santhakumaran et.al
studied the connected geodetic number of a graph in [9] and the upper connected
geodetic number and the forcing connected geodetic number of a graph in [10].

An edge geodetic set of G is a set S C V(G) such that every edge of G is contained
in a geodesic joining some pair of vertices of S. The edge geodetic number g1(G)
of G is the minimum cardinality of its edge geodetic sets and any edge geodetic
set of cardinality g1(G) is a minimum edge geodetic set of G or an edge geodetic
basis of G or a gi-set of G. The edge geodetic number of a graph was studied by
Santhakumaran and John in [8]. These concepts have many applications in location
theory and convexity theory. There are interesting applications of these concepts to
the problem of designing the route for a shuttle and communication network design.

For the graph G given in Figure 1, S = {v3,v5} is a minimum geodetic set of
G so that g(G) = 2. The edge v1vo does not lie on any geodesic joining a pair of
vertices in .S so that S is not an edge geodetic set of G. However, S; = {v1,v2,v4} is
a minimum edge geodetic set of G so that g;(G) = 3. It is proved in [8] that for any
connected graph G of order p, 2 < ¢;(G) < p and no cut vertex of G belongs to any
edge geodetic basis of G. Further, several interesting results and realization theorems
were proved in [8].

U1

V2 U3

Us V4

Fig. 1. Graph G

For a cut-vertex v in a connected graph G and a component H of G — v, the
subgraph H and the vertex v together with all edges joining v to V(H) is called
a branch of G at v. A vertex v is an extreme vertex of a graph G if the subgraph
induced by its neighbours is complete. The following theorems will be used in the
sequel.
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Theorem 1.1 ([8]). Each extreme vertex of a connected graph G belongs to every edge
geodetic set of G. In particular, each end-vertex of G belongs to every edge geodetic

set of G.

Theorem 1.2 ([8]). For any non-trivial tree T', the edge geodetic number g1(T) equals
the number of end-vertices in T. In fact, the set of all end-vertices of T is the unique
edge geodetic basis of T .

Theorem 1.3 ([8]). For the complete graph G = K,, (p > 2),1(G) = p.

Throughout the following G denotes a connected graph with at least two vertices.

2. THE UPPER EDGE GEODETIC NUMBER OF A GRAPH

Definition 2.1. An edge geodetic set S in a connected graph G is called a minimal
edge geodetic set if no proper subset of S is an edge geodetic set of G. The upper edge
geodetic number gi (G) of G is the maximum cardinality of a minimal edge geodetic
set of G.

Example 2.2. For the graph G given in Figure 2, S = {vq, v4,v5} is an edge geodetic
basis of G so that ¢g;(G) = 3. The set S’ = {v1,v3,v4,v5} is an edge geodetic set of
G and it is clear that no proper subset of S’ is an edge geodetic set of G and so S’ is
a minimal edge geodetic set of G. Since |V (G)| = 5, it follows that g; (G) = 4.

V2

U1 ’ U3

Vg

Fig. 2. Graph G

Remark 2.3. Every minimum edge geodetic set of G is a minimal edge geodetic set of
G and the converse is not true. For the graph G given in Figure 2, S’ = {v1, vs, v4,v5}
is a minimal edge geodetic set but not a minimum edge geodetic set of G.

Theorem 2.4. Fach extreme vertex of a connected graph G belongs to every minimal
edge geodetic set of G.

Proof. This follows from Theorem 1.1. O

Theorem 2.5. For a connected graph G, 2 < g,(G) < g1 (G) < p.



430 A.P. Santhakumaran, J. John

Proof. Any edge geodetic set needs at least two vertices and so ¢1(G) > 2. Since
every minimal edge geodetic set is an edge geodetic set, g1(G) < gi (G). Also, since
V(G) is an edge geodetic set of G, it is clear that g (G) < p. Thus 2 < ¢;(G) <
9{ (G) <p. O

Remark 2.6. The bounds in Theorem 2.5 are sharp. For any non-trivial path P,
g1(P) = 2. Tt follows from Theorem 1.2 and Theorem 1.3 that ¢, (T) = g; (T) for any
tree T and gi (K,) = p (p > 2) respectively. Also, all the inequalities in the theorem
are strict. For the graph G given in Figure 2, ¢1(G) = 3, g{ (G) = 4 and p = 5.

Theorem 2.7. For a connected graph G, g1(G) = p if and only if g (G) = p.

Proof. Let g (G) = p. Then S = V(G) is the unique minimal edge geodetic set
of G. Since no proper subset of S is an edge geodetic set, it is clear that S is the

unique minimum edge geodetic set of G and so g1 (G) = p. The converse follows from
Theorem 2.5. O

Corollary 2.8. For the complete graph G = K, (p > 2), g7 (G) = p.

Proof. This follows from Theorem 1.3 and Theorem 2.7. O

Theorem 2.9. If G is a connected graph of order p with g,(G) = p—1, then g (G) =
p—1.

Proof. Since g1(G) = p — 1, it follows from Theorem 2.5 that g;" (G) = p or p — 1.
If ¢/ (G) = p, then by Theorem 2.7, ¢g;(G) = p, which is a contradiction. Hence
9 (G)=p—1. m

Remark 2.10. The converse of the Theorem 2.9 is false. For the graph G given in
Figure 2, g (G) =4=p—1and ¢;(G) =3 =p— 2.

Theorem 2.11. Let G be a connected graph with cut-vertices and let S be minimal
edge geodetic set of G. If v is a cut-vertex of G, then every component of G — v
contains an element of S

Proof. Suppose that there is a component B of G — v such that B contains no vertex
of S. By Theorem 1.1, B does not contain any end-vertex of G. Hence B contains at
least one edge say uw. Since S is an edge geodetic set, there exist vertices z,y € S
such that uw lies on some z — y geodesic P : & = ug, U1, U2, , Uy W, ..., Ut = Y
in G. Let P; be the x — u subpath of P and P, be the u — y subpath of P. Since
v is a cut-vertex of G, both P; and P, contain v so that P is not a path, which is a
contradiction. Thus every component of G — v contains an element of S. O

Corollary 2.12. Let G be a connected graph with cut-vertices and let S be a minimal
edge geodetic set of G. Then every branch of G contains an element of S.

Theorem 2.13. No cut-vertex of a connected graph G belongs to any minimal edge
geodetic set of G.
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Proof. Let S be any minimal edge geodetic set of G and let v € S be any vertex.
We claim that v is not a cut vertex of G. Suppose that v is a cut vertex of G. Let
G1,Ga,...,G,. (r > 2) be the components of G — v. Then v is adjacent to at least
one vertex of G; for every ¢ (1 < i <r). Let S =5 — {v}. Let uw be an edge of
G which lies on a geodesic P joining a pair of vertices, say x and v of S. Assume
without loss of generality that x € G;. Since v is adjacent to atleast one vertex of
each G; (1 <i <r), assume that v is adjacent to a vertex y in Gy, (k # 1). Since S is
an edge geodetic set, vy lies on a geodesic ) joining v and a vertex z of S such that
z (possibly y itself) must necessarily belong to G. Thus z # v. Now, since v is a cut
vertex of GG, the union P U @ of the two geodesics P and @ is obviously a geodesic
in G joining x and z in S and thus the edge uw lies on this geodesic joining the two
vertices x and z of S’. Thus we have proved that every edge that lies on a geodesic
joining a pair of vertices x and v of S also lies on a geodesic joining two vertices of
S’. Hence it follows that every edge of G lies on a geodesic joining two vertices of S,
which shows that S’ is an edge geodetic set of G. Since |S’| = |S|—1, this contradicts
the fact that .S is a minimal edge geodetic set of G. Hence v ¢ S. Thus no cut vertex
of G belongs to any minimal edge geodetic set of G. O

Theorem 2.14. For any tree T with k end-vertices, g1(T) = g; (T) = k.
Proof. This follows from Theorem 1.2 and Theorem 2.13. O

Theorem 2.15. For the complete bipartite graph G = Ky, 1,

(i) g7 (G)=2if m=n=1.

(i) g7 (G) =n if m=1,n > 2.

(iii) ¢ (G) = max{m,n} if m,n > 2.

Proof. (i) and (ii) follow from Theorem 2.14.

(iii) Let m,n > 2. Assume without loss of generality that m < n. First assume that
m < n. Let X = {z1,29,...,2m} and Y = {y1,92,...,yn} be a bipartition of G.
Let S =Y. We prove that S is a minimal edge geodetic set of G. Any edge y;z;
(I1<i<nand1l<j<m)lies on the geodesic y;x;yx for k # ¢ so that S is an edge
geodetic set of G. Let S’ ; S. Then there exists a vertex y; € S such that y; ¢ S’
Then the edge y;2; (1 < ¢ < m) does not lie on a geodesic joining a pair of vertices
in S’. Thus S’ is not an edge geodetic set of G. This shows that S is a minimal edge
geodetic set of G. Hence g{ (G) > n.

Let S; be any minimal edge geodetic set of G such that |S1| > n+1. Since any edge
z;y; (1 <i<mand 1< j<n) lies on the geodesic z;y;xy for any k # i, it follows
that X is an edge geodetic set of G. Hence S; cannot contain X. Similarly, since Y’
is a minimal edge geodetic set of G, S; cannot contain Y also. Hence S; g X' Uy’
where X’ & X and Y' G Y. Hence there exists a vertex z; € X (1 < i < m) and
a vertex y; € Y (1 < j < n) such that z;,y; ¢ S1. Hence the edge z;y; does not
lie on a geodesic joining a pair of vertices in S;. It follows that S is not an edge
geodetic set of GG, which is a contradiction. Thus any minimal edge geodetic set of
G contains at most n elements so that ¢g; (G) < n. Hence g (G) = n. Similarly, if
m=n, g/ (G) =m =n. O
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In view of Theorem 2.5, the following theorem gives a realization result.

Theorem 2.16. For every two positive integers a and b, where 2 < a < b, there
exists a connected graph G with g1(G) = a and g (G) = b.

Proof. If a = b, let G = K;,. Then by Theorem 2.14, ¢;(G) = ¢ (G) = a. So,
let 2 < a < b Let V(K) = {z,y} and V (Kp_qt1) = {v1,02,...,0p—at1}- Let
H = Ky_oqr1 + Ko. Let G be the graph in Figure 3 obtained from H by adding
a — 1 new vertices uy, usg, ..., uq—1 and joining each vertex u; (1 <1i < a— 1) with y.
Let S = {u1,ua,...,uq—1}. It is clear that S is not an edge geodetic set of G. Let
S’ = SU{z}. Then S’ is an edge geodetic set of G and so by Theorem 1.1, S’ is an
edge geodetic basis of G. Hence ¢1(G) = a.

Vp—a+1 Ug—1

Fig. 3. Graph G

Now, T'= SU {v1,v2,...,Up—at+1} is an edge geodetic set of G. We show that T'
is a minimal edge geodetic set of G. Let W be any proper subset of 7. Then there
exists at least one vertex say v € T such that v ¢ W. Assume first that v = wu; for
some ¢ (1 <i<a—1). Then the edge yu; does not lie on any geodesic joining a pair
of vertices in W and so W is not an edge geodetic set of G. Now, assume that v = v;
for some j (1 < j <b—a+1). Then the edges zv; and yv; do not lie on a geodesic
joining any pair of vertices in W and so W is not an edge geodetic set of G. Hence T
is a minimal edge geodetic set of G so that g; (G) > b.

Now, we show that there is no minimal edge geodetic set X of G with |X| > b+1.
Suppose that there exists a minimal edge geodetic set X of G such that | X| > b+ 1.
Since |V (G)| = b+2 and since S’ is an edge geodetic set of G, it follows that | X | = b+1.
Now, by Theorem 2.13, y ¢ X and so X = V(G)—{y}. Since S’ is an edge geodetic set
of G, it follows that X is not a minimal edge geodetic set of GG, which is a contradiction.
Thus g7 (G) = b. O

Remark 2.17. Let b — a > 2 in Theorem 2.16. Suppose that there exists a minimal
edge geodetic set M such that a < |M| < b. By Theorem 1.1, S C M and so there
exists at least one vertex v; (1 < ¢ < b—a+ 1) such that v; ¢ M. Then the edges
av; and yv; do not lie on a geodesic joining any pair of vertices of M, which is a
contradiction. Hence it follows that if k is an integer such that a < k < b, then there
need not be a graph G with ¢;(G) = a and g (G) = b containing a minimal edge
geodetic set of cardinality k, that is, a graph G need not contain an “intermediate”
minimal edge geodetic set.
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3. THE FORCING EDGE GEODETIC NUMBER OF A GRAPH

The concept of “forcing subsets” was introduced and studied by Chartrand and Zhang
in [7]. For each edge geodetic basis S in a connected graph G, there is always some
subset T" of S that uniquely determines S as the edge geodetic basis containing 7'
Such “forcing subsets” will be considered in this section.

Definition 3.1. Let G be a connected graph and S an edge geodetic basis of G.
A subset T' C S is called a forcing subset for S if S is the unique edge geodetic basis
containing 7. A forcing subset for S of minimum cardinality is a minimum forcing
subset of S. The forcing edge geodetic number of S, denoted by f1(.5), is the cardinality
of a minimum forcing subset of S. The forcing edge geodetic number of GG, denoted
by f1(G), is f1(G) = min{f1(S)}, where the minimum is taken over all edge geodetic
bases S in G.

Example 3.2. For the graph G given in Figure 2, S = {vy,v4,v5} is the unique
edge geodetic basis of G so that fi1(G) = 0 and for the graph G given in Figure 4,
Sy = {1, vs,v7} and S = {v1,v5,v6} are the only two edge geodetic bases of G. It
is clear that f1(S1) = f1(S2) =1 so that f1(G) = 1.

U7 Vg

U1 U2 U3 Vg Us

Fig. 4. Graph G

The next theorem follows immediately from the definition of the edge geodetic
number and the forcing edge geodetic number of a connected graph G.

Theorem 3.3. For every connected graph G, 0 < f1(G) < 1(G) < p.

Remark 3.4. The bounds in Theorem 3.3 are sharp. For the graph G given in
Figure 2, f1(G) = 0 and for the complete graph K, (p > 2), ¢1(K,) = p. Also, for
the graph G given in Figure 4, g1(G) = 3 and f1(G) = 1. Thus 0 < f1(G) < g1(G).

The following theorem is an easy consequence of the definitions of the edge geodetic
number, the forcing edge geodetic number and Theorem 2.5. In fact, the theorem
characterizes graphs G for which the lower bound in Theorem 3.3 is attained and also
graphs G for which f1(G) =1 and f1(G) = ¢1(G).

Theorem 3.5. Let G be a connected graph. Then

(a) f1(G) =0 if and only if G has a unique edge geodetic basis.
(b) f1(G) =1 if and only if G has at least two edge geodetic bases, one of which is a
unique edge geodetic basis containing one of its elements, and
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(¢) f1(G) = g1(Q) if and only if no edge geodetic basis of G is the unique edge geodetic
basis containing any of its proper subsets.

Definition 3.6. A vertex v of a connected graph G is said to be an edge geodetic
verter of G if v belongs to every edge geodetic basis of G.

Example 3.7. For the graph G given in Figure 5, S; = {v1,vs,v4} and So =
{v1,v3,v5} are the only edge geodetic bases so that v; and vs are the edge geodetic
vertices of G.

V1 V3

Fig. 5. Graph G

The following theorem and corollary follow immediately from the definitions of an
edge geodetic vertex and a forcing subset.

Theorem 3.8. Let G be a connected graph and let S be the set of relative complements
of the minimum forcing subsets in their respective edge geodetic bases in G. Then
Npeg F is the set of edge geodetic vertices of G.

Corollary 3.9. Let G be a connected graph and S an edge geodetic basis of G. Then
no edge geodetic vertex of G belongs to any minimum forcing set of S.

Theorem 3.10. Let G be a connected graph and W be the set of all edge geodetic
vertices of G. Then f1(G) < g1(G) — |W].

Proof. Let S be any edge geodetic basis of G. Then ¢;(G) = |S|, W C S and S is the
unique edge geodetic basis containing S — W. Thus f1(G) < |[S —W|=|S| - |W| =

91(G) = [W|. O
Corollary 3.11. If G is a connected graph with k extreme vertices, then f1(G) <
91(G) — k.

Proof. This follows from Theorem 1.1 and Theorem 3.10. O

Remark 3.12. The bound in Theorem 3.10 is sharp. For the graph G given in
Figure 5, S1 = {v1, vs,v5}, So = {v1,v3,v4} are the only two g1-sets so that ¢g;(G) = 3
and f1(G) = 1. Also, W = {v1,vs} is the set of all edge geodetic vertices of G and
so f1(G) = g1(G) — |W|. Also, the inequality in Theorem 3.10 can be strict. For the
graph G given in Figure 6, S1 = {v1,v4,v5}, So = {v1,v4,v6} and S5 = {v1, vs,v5}
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are the only three g-sets of G so that ¢1(G) = 3 and f1(G) = 1. Now, v; is the only
edge geodetic vertex of G and so f1(G) < ¢1(G) — [W].

U1
V2

U3 U6

V4 Us

Fig. 6. Graph G

Now, we proceed to determine the forcing edge geodetic numbers of certain classes
of graphs.

Theorem 3.13. For any even cycle G = C, (p > 4), a set S C V(G) is an edge
geodetic basis if and only if S consists of two antipodal vertices.

Proof. If S consists of two antipodal vertices, then it is clear that .S is an edge geodetic
basis of C,. Conversely, let S be any edge geodetic basis of C,. Then ¢;1(C,) = |S|.
Let S’ be any set of two antipodal vertices of Cp. Then, as in the first part of this
theorem, S’ is an edge-geodetic basis of Cp. Hence |S’| = |S]. Thus S consists of two
vertices, say S = {u,v}. If u and v are not antipodal, then any edge that is not on
the u — v geodesic does not lie on the u — v geodesic. Thus S is not an edge geodetic

basis, which is a contradiction. O
Corollary 3.14. For an even cycle C, (p > 4), ¢1(Cp) = 2.
Proof. This follows from Theorem 3.13. O

Theorem 3.15. For any cycle C, (p > 4),

1 if p is even,

11(Gy) {2 if p is odd.

Proof. If p is even, then by Theorem 3.13, every gi-set of C, consists of a pair of
antipodal vertices. Hence C, has § gi-sets and it is clear that each singleton set is
the minimum forcing set for exactly one g;-set of C},. Hence it follows from Theorem
3.5 (a) and (b) that fi(C,) = 1.

Let p be odd. Let p = 2n + 1. Let the cycle be C : v1,va, ..., U0, Unt1, Unta,

oy Vapg1,01. IFS = {u, v} is any set of two vertices of C),, then no edge of the u —v
longest path lies on the u — v geodesic in C}, and so no two element subset of C,, is
an edge geodetic set of C),. Now, it is clear that the sets S1 = {v1, Uny1, Unt2}, S2 =
{v2avn+27vn+3}» vy Sy = {Un+2av1av2}a ooy Sopyr = {'U2n+17vnavn+1} are gj-sets
of Cp,. (Note that there are more gi-sets of C),, for example, S" = {v1,Un41, Unt3}
is a gp-set different from these). It is clear from the gi-sets S; (1 < i < 2n + 1)
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that each {v;} (1 < ¢ < 2n + 1) is a subset of more than one g;-set S;. Hence it
follows from Theorem 3.5 (a) and (b) that f1(Cp) > 2. Now, since v,41 and v,19 are

antipodal to vy, it is clear that S7 is the unique gi-set containing {v,41,vn+2} and
so f1(Cp) = 2. O

Theorem 3.16. For any complete graph G = K, (p > 2) or any non-trivial tree
G=T, f1(G)=0

Proof. For G = K, it follows from Theorem 1.1 that the set of all vertices of G is
the unique edge geodetic basis. Now, it follows from Theorem 3.5 (a) that f1(G) = 0.
If G is a non-trivial tree, then by Theorem 1.2, the set of all end-vertices of G is the
unique edge geodetic basis of G and so f1(G) = 0 by Theorem 3.5 (a). O

Theorem 3.17. For the complete bipartite graph G = Ky, , (m,n > 2),

fl(G){O if m #n,

1 if m=n.

Proof. Without loss of generality, assume that m < n. First assume that m < n. Let
U= {ui,ug,...,un} and W = {wy,ws,...,w,} be a bipartition of G. Let S = U.
We prove that S is an edge geodetic basis of G. Any edge u;w; (1 <i<m,1<j<n)
lies on the geodesic u;wjuy for any k # ¢ so that S is an edge geodetic set of G. Let T’
be any set of vertices such that [T < |S|. If T'G U, then there exists a vertex u; € U
such that u; ¢ T. Then for any edge w;w; (1 < j < n), the only geodesics containing
ww; are ww;u, (k # 1) and wiu;w; (I # j) and so u;w; cannot lie on a geodesic
joining two vertices of T'. Thus T is not an edge geodetic set of G. If T ; W, again
T is not an edge geodetic set of G by a similar argument. If T g U UW such that T
contains at least one vertex from each of U and W, then, since |T| < |S|, there exist
vertices u; € U and w; € W such that u; ¢ T and w; ¢ T. Then, clearly the edge
u;w; does not lie on a geodesic connecting two vertices of 1" so that 7' is not an edge
geodetic set. Thus in any case, T is not an edge geodetic set of G. Hence S is an edge
geodetic basis so that g1 (K n) = |S| = m. Now, let S; be a set of vertices such that
|Si| = m. If Sy is a subset of W, then since m < n, there exists a vertex w; € W
such that w; ¢ S1. Then the edge u;w; (1 <14 < m) does not lie on a geodesic joining
a pair vertices in Sy. If Sy ;Cé U U W such that S; contains at least one vertex from
each of U and W, then since S; # U, there exist vertices u; € U and w; € W such
that u; ¢ S1 and w; ¢ S1. Then, clearly the edge u;w; does not lie on a geodesic
joining two vertices of S7 so that S7 is not an edge geodetic set of G. It follows that
U is the unique edge geodetic basis of G. Hence it follows from Theorem 3.5 (a) that
fi(G) =0.

Now, let m = n. Then, as in the first part of this theorem, both U and W are
edge geodetic bases of G. Now, let S’ be any set of vertices such that |S’| = m and
S" # U, W. Then there exist vertices u; € U and w; € W such that u; ¢ S" and
wj ¢ S'. Then, as earlier, S is not an edge geodetic set of G. Hence it follows that U
and W are the only two edge geodetic bases of G. Since U is the unique edge geodetic
basis containing {u;}, it follows that fi(G) = 1. O
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Theorem 3.18. If S = {u,v} is an edge geodetic basis of a connected graph G, then
u and v are two antipodal vertices of G.

Proof. Let S = {u,v} be an edge geodetic basis for G. Then every edge of G lies on
a geodesic joining u and v. Hence every vertex of G also lies on a geodesic joining
u and v. Let d(G) denote the diameter of G. We claim that d(u,v) = d(G). If
d(u,v) < d(G), then let x and y be two vertices of G such that d(z,y) = d(G). Now,
it follows that x and y lie on distinct geodesics joining u and v. Hence

d(u,v) = d(u, z) + d(z,v) (3.1)
and

Ao, v) = d(u,y) + d(y,v). (3:2)
By the triangle inequality,

d(z,y) < d(z,u) + d(u,y). (3.3)

Since d(u,v) < d(z,y), (3.3) becomes
d(u,v) < d(z,u) + d(u,y). (3.4)
Using (3.4) in (3.1), we get d(z,v) < d(z,u) + d(u,y) — d(u, z) = d(u,y). Thus,
d(z,v) < d(u,y). (3.5)
Also, by triangle inequality, we have
d(z,y) < d(z,v) +d(v,y). (3.6)

Now, using (3.5) and (3.2), (3.6) becomes d(x,y) < d(u,y) + d(v,y) = d(u,v). Thus,
d(G@) < d(u,v), which is a contradiction. Hence d(u,v) = d(G) so that u and v are
antipodal vertices. O

Theorem 3.19. If G is a connected graph with g1(G) = 2, then f1(G) < 1.

Proof. Let S = {u,v} be any edge geodetic basis of G. Then by Theorem 3.18, u and
v are antipodal vertices of G. Suppose that f1(G) = 2. Then f;(S) = 2. Hence it
follows that S is not the unique g;-set containing w. Then there exists x # u such
that ' = {u,x} is also a g;-set of G. By Theorem 3.18, v and x are two antipodal
vertices of G. Hence v is an internal vertex of some u — = geodesic in G. Therefore,
d(u,v) < d(u,x), which is a contradiction. O

Next we show that every pair a,b of integers with 0 < a < b and b > 2 can be re-
alized as the forcing edge geodetic number and the edge geodetic number respectively
of some graph.

Theorem 3.20. For every pair a,b of integers with 0 < a < b and b > 2, there exists
a connected graph G such that f1(G) = a and g1(G) = b.
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Proof. If a =0, let G = K. Then by Theorem 3.16, f1(G) = 0 and by Theorem 1.3,
91(G) = b. Thus, we assume that 0 < a < b. We consider four cases.

Case 1. a = 1. If b = 2, then for any even cycle G, g1(G) = b by Corollary 3.14
and f1(G) = a by Theorem 3.15. So, we assume that b > 3. Let G be the graph
in Figure 7 obtained from the cycle C5 : vy, v2,v3,v4,v5,v1 by first adding the b — 2
new vertices ui,us, ..., up—2 and the b — 2 edges viu; (1 < i <b—2). Let U =
{u1,us,...,up—2} be the set of all end-vertices of G. Then U is not an edge geodetic
set of G. Hence it follows from Theorem 1.1 that S; = U U{vs,v4}, S2 = UU{vs,v5}
and S3 = UU{ws,v4} are the only three g;-sets of G. Thus g1 (G) = b. Moreover, since
S5 is the unique g;-set containing {vs}, it follows that f1(S2) = 1 and so f1(G) = 1.

U2
c. Up—2
U1
U2 Us
U3 V4

Fig. 7. Graph G

Case 2. a = 2. If b = 3, then for any odd cycle G of order at least 5, g1(G) =3 = b,
as in the proof of Theorem 3.15 and f1(G) = a by Theorem 3.15. Now, let b > 4.
Let H be the graph obtained from the cycle C5 : v, va,v3,v4, v5,v1 by first adding a
new vertex z and joining the edges zv; and xvy. Now, let G be the graph in Figure 8
obtained from H by adding (b— 3) new vertices u1, ua, ..., uy—3 and joining the edges
zu; (1 <i<b-—3). Let U = {uy,ug,...,up—3} be the set of all end-vertices of G.
Then U is not an edge geodetic set of G. Hence it follow from Theorem 1.1 that
S = UU{’Ul,Ug,’U4}7 Sy = UU{U1,113,U4}, S3 = UU{’UQ,Ug,U5}, Sy = UU{’Ul,’Ug,U5}
and S5 = U U {vg, v4,v5} are the only five g1-sets of G. Thus ¢g1(G) = b. It is clear
that no singleton subset of any S; is a forcing subset of S;. Moreover, since S is the
unique g;-set containing {vy, v}, it follows that f1(S1) =2 and so f1(G) =2 =a.

U ugu3

Fig. 8. Graph G

Case 3. a > 3 and b = a + 1. For each integer i with 0 < ¢ < b, let F; : u;,v; be a
path of order 2. Then the graph G given in Figure 9 is obtained from the graph F;
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by adding the 2b edges wugu;,vov; for all j with 1 < j < b. First we show that
91(G) =b. Let U = {ug,uz,...,up} and W = {v1,vs,...,v,}. We observe that a set
S of vertices of G is a g;-set if and only if S has the following two properties (3.1) S
contains exactly one vertex from each set {u;,v;} (1 < j <b)and (3.2) SNU # ¢
and SNW # ¢. Then (3.1) implies that g1 (G) > b. Since S" = {uq,ug,v3,v4,...,Vp}
is an edge geodetic set of G with |S’| = b, it follows that ¢1(G) =b=a + 1.

Now, we prove that f1(G) = a. First assume that a g;-set, say S contains exactly
one vertex from U or W. Without loss of generality, let S7 = {u1,v2,v3,v4,..., 05}
be a g1-set of G. We claim that f;(G) = b— 1. Let T be a subset of S; such that
|T| < b—2. Then there exist at least two vertices say x,y € Sy such that z,y ¢ T.
Suppose that z = u; and y = v; for some j (2 < j < b). Now, S = (S1 —{v;})U{u,;}
satisfies (3.1) and (3.2) and so Sy is a gi-set such that T C Sy. Therefore Sy is not
the unique g;-set containing 7" and so T is not a forcing subset of S;. Suppose that
x = v; for some i (2 < ¢ <b) and y = v; for some j (2 < j < b) and ¢ # j. Now,
Sg = (S1 —{vi,vj}) U{u;, u;} satisfies (3.1) and (3.2) and so Ss is a g1-set containing
T. Hence T is not a forcing subset of S7 and so f1(S1) > b — 1. Now, it is clear that
Sy is the unique g;-set containing {vg, v3, vy, ..., vy} so that f1(S;) =b— 1.

Next assume that any g;-set contains at least two vertices from each U and W
(This is possible since b > 4). Without loss of generality, let S = {u1, us, v3,v4,..., 05}
be a gi-set of G. Let T be any proper subset of Sand x € S—T. If z = u; fori =1, 2,
then S” = (S —{u;})U{v;} satisfies properties (3.1) and (3.2). Thus S’ is a g;-set of G
such that TG S’. Since S # S and T'G S, it follows that S is not the unique g;-set
containing 7T'. Similarly, if x = v; for some i (3 <4 <b), then S* = (S — {v;}) U{u;}
is a g1-set distinct from S and T ; S*. Thus S is not the unique g;-set containing T’
and so f1(S) =b=a+ 1. Hence it follows that fi(G) =b—1=a.

Uo Vo

Ui U1

U2 V2

us Us,

Up Ub

Fig. 9. Graph G

Case 4. a >3 and b # a+1. Let F; : u;,v;, w;, x5, u;(1 <4 <a)beacopy of Cy. Let
G be the graph obtained from F;(1 < i < a) by first identifying the vertices ;1 of
F;_; and u; of F; (2 <i < a) and then adding b — a new vertices 21, 29,. .., 2p—q—1,U
and joining the b — a edges u12; (1 <i <b—a—1) and xz,u. The graph G is given



440 A.P. Santhakumaran, J. John

in Figure 10. Let Z = {z1,292,...,2p—qa—1,u} be the set of end-vertices of G. Let

First we show that g;(G) = b. Since none of the edges u;v;, v;w; and w;x; of
F; (1 <i < a) lies on a geodesic joining a pair of vertices of Z, Z is not an edge
geodetic set of G. We observe that every edge geodetic set of G must contain at least
one vertex from H; (1 < i < a). Thus ¢1(G) > b—a+a = b. On the other hand,
since the set S;1 = Z U {v1,v9,...,v,} is an edge geodetic set of G, it follows that
91(G) < |S1] = b. Thus ¢1(G) =b.

Next we show that f1(G) = a. Since every gi-set of G contains Z, it follows from
Theorem 3.10 that f1(G) < ¢1(G) — |Z] =b— (b — a) = a. Now, since g;(G) = b and
every edge geodetic basis of G contains Z, it is easily seen that every edge geodetic
basis S is of the form Z U {c1,ca,...,¢q}, where ¢; € H;(1 < i < a). Let T be any
proper subset of S with |T| < a. Then there is a vertex ¢; (1 < j < a) such that
c; ¢ T. Let d; be a vertex of H; distinct from ¢;. Then Sy = (S — {¢;}) U {d,} is
a gi-set properly containing 7. Thus S is not the unique g;-set containing 7" and so
T is not a forcing subset of S. This is true for all edge geodetic bases of G and so it

follows that f1(G) = a. O
21
22
U1 wi V2 W2 Vg Wgq
] T1=u To=U3 Tq_1=U, Ta U
beafl/l 1=u2 2=U3 Tg—1=Uq a

Fig. 10. Graph G
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