Jan Chabrowski

ON ELLIPTIC PROBLEMS
 WITH A NONLINEARITY DEPENDING ON THE GRADIENT

Abstract

We investigate the solvability of the Neumann problem (1.1) involving the nonlinearity depending on the gradient. We prove the existence of a solution when the right hand side f of the equation belongs to $L^{m}(\Omega)$ with $1 \leq m<2$.

Keywords: Neumann problem, nonlinearity depending on the gradient, L^{1} data.

Mathematics Subject Classification: 35D05, 35J25, 35J60.

1. INTRODUCTION

In this paper we investigate the solvability of the nonlinear Neumann problem with a nonlinearity depending on the gradient. First we consider the following problem

$$
\left\{\begin{align*}
-\Delta u+|\nabla u|^{q}+\lambda u & =f(x) & \text { in } \quad \Omega \tag{1.1}\\
\frac{\partial u}{\partial \nu} & =0 & \text { on } \quad \partial \Omega
\end{align*}\right.
$$

where $\lambda>0$ is a parameter, $1 \leq q \leq 2$ and $\Omega \subset \mathbb{R}^{N}, N \geq 3$, is a bounded domain with a smooth boundary $\partial \Omega$. It is assumed that $f \in L^{1}(\Omega)$. If $f>0$ on Ω, then solutions, if they exist, are positive. In Section 3 we consider problem (1.1) with $|\nabla u|^{q}$ replaced by a nonlinearity satisfying a sign condition. The boundary value problems with data in L^{1} has been studied quite extensively in recent years. The Dirichlet problem with a nonlinearity depending only on u has been considered in papers [7,10]. Some extensions to the Neumann problem can be found in paper [12]. These results has been extended to the case where a nonlinearity depends on the gradient. In particular, more general elliptic operators with more general nonlinearities with $f \in L^{1}(\Omega)$ or being a Radon measure have been investigated in [3-6,11]. Further extensions to the Dirichlet problem with L^{2} boundary data can be found in [11]. We refer to paper [2] for the bibliographical references. It seems that less is known for the Neumann problem.

By $W^{1, p}(\Omega), 1 \leq p<\infty$, we denote the Sobolev space equipped with norm

$$
\|u\|_{W^{1, p}}^{p}=\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x
$$

Throughout this paper, in a given Banach space X, we denote strong convergence by " \rightarrow " and weak convergence by " \rightharpoonup ". The norms in the Lebesgue spaces $L^{p}(\Omega)$, $1 \leq p<\infty$, are denoted by $\|\cdot\|_{L^{p}}$.

The paper is organized as follows. In Section 2 we prove the existence of positive solutions of (1.1) assuming that f is positive and belongs to $L^{1}(\Omega)$. Section 3 is devoted to the problem with a nonlinearity satisfying a sign condition, where we do not assume that f is positive. The crucial point in our approach are estimates of $W^{1, q}$ - norm of solutions of (1.1) in terms of L^{m} - norm of f (see Lemmas 2.1, 3.1, 3.3). The estimates in terms of L^{m} norm of f (see Lemmas 3.1, 3.3) in a linear case were given in [8] and are extended in this paper to solutions of (1.1). In these two lemmas the important assumption is that $q \neq \frac{N}{N-1}$, which is due to the use of special test functions in the proofs. We were unable to show whether these lemmas continue to hold for $q=\frac{N}{N-1}$. In Section 4 we establish the higher integrability property for positive solutions of (1.1).

The main results of this paper are Theorems 2.2, 3.2, 3.4. In the proofs we use some ideas from paper [4].

2. EXISTENCE OF POSITIVE SOLUTIONS

In this section consider problem (1.1) assuming that $f>0$ on Ω. Then a solution, if it exists, is positive on Ω. We need the following definition of a solution of (1.1): let $f \in L^{1}(\Omega)$, then a function $u \in W^{1, q}(\Omega)$ is a solution of (1.1) if

$$
\begin{equation*}
\int_{\Omega} \nabla u \nabla v d x+\int_{\Omega}|\nabla u|^{q} v d x+\lambda \int_{\Omega} u v d x=\int_{\Omega} f v d x \tag{2.1}
\end{equation*}
$$

for every function $v \in W^{1, \infty}(\Omega)$.
Lemma 2.1. Let $1 \leq q \leq 2$ and $f \in L^{\infty}(\Omega)$ with $f>0$ on Ω. If $u \in W^{1,2}(\Omega)$ is a positive solution of (1.1), then

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u|^{q}+u^{q}\right) d x \leq C_{1} \int_{\Omega} f d x+C_{2}\left(\int_{\Omega} f d x\right)^{q} \tag{2.2}
\end{equation*}
$$

where $C_{1}, C_{2}>0$ are constants independent of u and f.
Proof. Testing (2.1) with the constant function 1 we get

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{q} d x+\lambda \int_{\Omega} u d x=\int_{\Omega} f d x . \tag{2.3}
\end{equation*}
$$

It is clear that equality (2.3) yields (2.2) if $q=1$. To proceed further we use a decomposition $W^{1,2}(\Omega)=V \oplus \operatorname{span} 1$, where

$$
V=\left\{v \in W^{1,2}(\Omega) ; \int_{\Omega} v d x=0\right\} .
$$

Then $u=v+t$, with $v \in V$ and $t=\frac{1}{|\Omega|} \int_{\Omega} u d x>0$, because u is positive. From (2.3) we deduce

$$
\begin{equation*}
t \leq \frac{1}{\lambda|\Omega|} \int_{\Omega} f d x \tag{2.4}
\end{equation*}
$$

We now observe that the Poincaré inequality is valid in V, that is, there exists a constant $C(\Omega)>0$ such that

$$
\int_{\Omega}|v|^{q} d x \leq C(\Omega) \int_{\Omega}|\nabla v|^{q} d x
$$

for every $v \in V$. Consequently, using (2.4), we can estimate the norm of u in $W^{1, q}(\Omega)$ as follows

$$
\begin{aligned}
\int_{\Omega}\left(|\nabla u|^{q}+u^{q}\right) d x & \leq \int_{\Omega}|\nabla v|^{q} d x+2^{q-1} \int_{\Omega}\left(v^{q}+t^{q}\right) d x \leq \\
& \leq \int_{\Omega}|\nabla v|^{q} d x+2^{q-1} C(\Omega) \int_{\Omega}|\nabla v|^{q} d x+2^{q-1}|\Omega| t^{q}
\end{aligned}
$$

This combined with (2.4) and (2.3) implies (2.2).
We are now in a position to formulate the first existence result.
Theorem 2.2. Let $1 \leq q \leq 2$ and f be a positive function in $L^{1}(\Omega)$. Then problem (1.1) admits a positive solution in $W^{1, q}(\Omega)$.

Proof. The proof will be given in 2 steps.
Step 1. Assume $f \in L^{\infty}(\Omega)$. Consider the problem

$$
\left\{\begin{align*}
-\Delta u+\lambda u & =f(x) & & \text { in } \quad \Omega, \tag{2.5}\\
\frac{\partial u}{\partial \nu} & =0 & & \text { on } \quad \partial \Omega, \\
u & >0 & & \text { on } \quad \Omega .
\end{align*}\right.
$$

This problem has a unique positive solution $v \in W^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ (see [1]). We now use some ideas from papers [5] and [6]. For each $n \in \mathbb{N}$ we consider the following problem

$$
\left\{\begin{array}{rlrl}
-\Delta w_{n}+\frac{\left|\nabla w_{n}\right|^{q}}{1+\frac{1}{n}\left|\nabla w_{n}\right|^{q}}+\lambda w_{n} & =f(x) & \text { in } \Omega \tag{2.6}\\
\frac{\partial w_{n}}{\partial \nu} & =0 & & \text { on } \quad \partial \Omega \\
w_{n}>0 & & \text { on } \quad \Omega
\end{array}\right.
$$

It is clear that v is a super-solution to problem (2.6) and 0 is a sub-solution. Thus problem (2.6) admits a solution $0 \leq w_{n} \leq v$. This fact is known for equation (2.6) with the Dirichlet boundary conditions (see [5]). The result from [5] can be easily extended to the Neumann problem (2.6). The sequence $\left\{w_{n}\right\}$ is uniformly bounded in $L^{\infty}(\Omega)$. Testing (2.6) with w_{n} we obtain

$$
\int_{\Omega}\left(\left|\nabla w_{n}\right|^{2}+\lambda w_{n}^{2}\right) d x \leq\|f\|_{L^{2}}\left\|w_{n}\right\|_{L^{2}}
$$

which shows that the sequence $\left\{w_{n}\right\}$ is bounded in $W^{1,2}(\Omega)$. We may assume that $w_{n} \rightharpoonup w$ in $W^{1,2}(\Omega), w_{n} \rightarrow w$ in $L^{2}(\Omega)$ and $w_{n} \rightarrow w$ a.e. on Ω. We now show that $w_{n} \rightarrow w$ in $W^{1,2}(\Omega)$. We put $\phi(s)=s \exp \left(\frac{s^{2}}{4}\right)$ for $s \in \mathbb{R}$. We introduce notation $H_{n}(s)=\frac{|s|^{q}}{1+\frac{1}{n}|s|^{q}}$. The function ϕ satisfies $\phi^{\prime}(s)-|\phi(s)| \geq \frac{1}{2}$ for $s \in \mathbb{R}$. Testing (2.6) with $\phi\left(w_{n}-w\right)$ we obtain

$$
\begin{align*}
\int_{\Omega} \nabla w_{n} \phi^{\prime}\left(w_{n}-w\right) \nabla\left(w_{n}-w\right) d x & +\int_{\Omega} H_{n}\left(\left|\nabla w_{n}\right|\right) \phi\left(w_{n}-w\right) d x+ \\
& +\lambda \int_{\Omega} w_{n} \phi\left(w_{n}-w\right) d x=\int_{\Omega} f(x) \phi\left(w_{n}-w\right) d x \tag{2.7}
\end{align*}
$$

It is easy to check that

$$
\begin{equation*}
\int_{\Omega} \nabla w_{n} \phi^{\prime}\left(w_{n}-w\right) \nabla\left(w_{n}-w\right) d x=\int_{\Omega}\left|\nabla\left(w_{n}-w\right)\right|^{2} \phi^{\prime}\left(w_{n}-w\right) d x+o(1) \tag{2.8}
\end{equation*}
$$

To estimate the second term on the left side of (2.7) we use the inequality: if $1 \leq q<2$, then for every $\epsilon>0$ there exists $C_{\epsilon}>0$ such that

$$
\begin{equation*}
s^{q} \leq \epsilon s^{2}+C_{\epsilon} \quad \text { for every } \quad s \geq 0 \tag{2.9}
\end{equation*}
$$

We then have

$$
\begin{align*}
\int_{\Omega} H_{n}\left(\left|\nabla w_{n}\right|\right)\left|\phi\left(w_{n}-w\right)\right| d x \leq & \epsilon \int_{\Omega}\left|\nabla w_{n}\right|^{2}\left|\phi\left(w_{n}-w\right)\right| d x+C_{\epsilon} \int_{\Omega}\left|\phi\left(w_{n}-w\right)\right| d x= \\
= & \epsilon \int_{\Omega}\left|\nabla\left(w_{n}-w\right)\right|^{2}\left|\phi\left(w_{n}-w\right)\right| d x- \\
& -\epsilon \int_{\Omega}|\nabla w|^{2}\left|\phi\left(w_{n}-w\right)\right| d x+ \tag{2.10}\\
& +2 \epsilon \int_{\Omega} \nabla w_{n} \nabla w\left|\phi\left(w_{n}-w\right)\right| d x+ \\
& +C_{\epsilon} \int_{\Omega}\left|\phi\left(w_{n}-w\right)\right| d x
\end{align*}
$$

Since

$$
\int_{\Omega}|\nabla w|^{2}\left|\phi\left(w_{n}-w\right)\right| d x \rightarrow 0, \quad \int_{\Omega} \nabla w_{n} \nabla w\left|\phi\left(w_{n}-w\right)\right| d x \rightarrow 0
$$

and

$$
\int_{\Omega}\left|\phi\left(w_{n}-w\right)\right| d x \rightarrow 0
$$

as $n \rightarrow \infty$, we derive from (2.10) that

$$
\begin{equation*}
\int_{\Omega} H_{n}\left(\left|\nabla w_{n}\right|\right)\left|\phi\left(w_{n}-w\right)\right| d x \leq \epsilon \int_{\Omega}\left|\nabla w_{n}-\nabla w\right|^{2}\left|\phi\left(w_{n}-w\right)\right| d x+o(1) . \tag{2.11}
\end{equation*}
$$

If $q=2$, then instead of (2.10) we have

$$
\int_{\Omega} H_{n}\left(\left|\nabla w_{n}\right|\right)\left|\phi\left(w_{n}-w\right)\right| d x \leq \int_{\Omega}\left|\nabla w_{n}\right|^{2} \phi\left(w_{n}-w\right) d x
$$

and (2.11) holds with $\epsilon=1$. We also have

$$
\begin{equation*}
\int_{\Omega} f(x) \phi\left(w_{n}-w\right) d x \rightarrow 0 \text { and } \int_{\Omega} w_{n} \phi\left(w_{n}-w\right) d x \rightarrow 0 \tag{2.12}
\end{equation*}
$$

as $n \rightarrow \infty$. If $1 \leq q<2$ we derive from (2.7), (2.8), (2.11) and (2.12) that

$$
\frac{1}{2} \int_{\Omega}\left|\nabla\left(w_{n}-w\right)\right|^{2} d x \leq \int_{\Omega}\left(\phi^{\prime}\left(w_{n}-w\right)-\epsilon\left|\phi\left(w_{n}-w\right)\right|\right)\left|\nabla\left(w_{n}-w\right)\right|^{2} d x=o(1)
$$

Thus $w_{n} \rightarrow w$ in $W^{1,2}(\Omega)$. If $q=2$, the above inequality continues to hold with $\epsilon=1$. In this case we also have that $w_{n} \rightarrow w$ in $W^{1,2}(\Omega)$. Since $1 \leq q \leq 2, \nabla w_{n} \rightarrow \nabla w$ in $L^{q}(\Omega)$. For each $\phi \in W^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ and for each n we have

$$
\int_{\Omega} \nabla w_{n} \nabla \phi d x+\int_{\Omega} \frac{\left|\nabla w_{n}\right|^{q}}{1+\frac{1}{n}\left|\nabla w_{n}\right|^{q}} \phi d x+\lambda \int_{\Omega} w_{n} \phi d x=\int_{\Omega} f \phi d x .
$$

Letting $n \rightarrow \infty$ we get

$$
\int_{\Omega} \nabla w \nabla \phi d x+\int_{\Omega}|\nabla w|^{q} \phi d x+\lambda \int_{\Omega} w \phi d x=\int_{\Omega} f \phi d x .
$$

So $w \in W^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ is a weak solution of (1.1).

Step 2. First we consider the case $1 \leq q<2$. Let $f \in L^{1}(\Omega)$ and let $\left\{f_{n}\right\} \subset L^{\infty}(\Omega)$ such that $f_{n} \rightarrow f$ in $L^{1}(\Omega)$. By Step 1 for each $n \in \mathbb{N}$ there exists a solution $u_{n} \in W^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ to problem (1.1) with $f=f_{n}$. For each $k>1$ we put $T_{k}(s)=\min (s, k)$ for $0 \leq s$. Taking $T_{k} u_{n}$ as a test function in (1.1) we get

$$
\int_{\Omega}\left|\nabla T_{k} u_{n}\right|^{2} d x+\lambda \int_{\Omega}\left|T_{k} u_{n}\right|^{2} d x \leq \int_{\Omega} f_{n} T_{k} u_{n} d x \leq k\left\|f_{n}\right\|_{L^{1}}
$$

Consequently, $\left\{T_{k} u_{n}\right\}$ is bounded in $W^{1,2}(\Omega)$. By Lemma 2.1 we may assume that $u_{n} \rightharpoonup u$ in $W^{1, q}(\Omega)$. We may also assume that $T_{k} u_{n} \rightharpoonup T_{k} u$ in $W^{1,2}(\Omega)$ and $T_{k} u_{n} \rightarrow$ $T_{k} u$ in $L^{2}(\Omega)$. Let $G_{k}(s)=s-T_{k}(s)$ and put $\psi_{k-1}(s)=T_{1}\left(G_{k-1}(s)\right)$. Thus

$$
\psi_{k-1}\left(u_{n}\right)\left|\nabla u_{n}\right|^{q} \geq\left|\nabla u_{n}\right|^{q} \chi_{\left(u_{n}>k\right)}
$$

Using $\psi_{k-1}\left(u_{n}\right)$ as a test function in (2.1) (with $\left.f=f_{n}\right)$ we get
$\int_{\Omega}\left|\nabla \psi_{k-1}\left(u_{n}\right)\right|^{2} d x+\int_{\Omega} \psi_{k-1}\left(u_{n}\right)\left|\nabla u_{n}\right|^{q} d x+\lambda \int_{\Omega} u_{n} \psi_{k-1}\left(u_{n}\right) d x=\int_{\Omega} f_{n} \psi_{k-1}\left(u_{n}\right) d x$.
Since $\left\{u_{n}\right\}$ is bounded in $L^{p}(\Omega)$ for each $p \leq q^{*}=\frac{N q}{N-q}$ we see that

$$
\left|\left\{x \in \Omega ; k-1<u_{n}(x)<k\right\}\right| \rightarrow 0 \text { and }\left|\left\{x \in \Omega ; k<u_{n}(x)\right\}\right| \rightarrow 0
$$

as $k \rightarrow \infty$ uniformly in n. So

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{u_{n}>k}\left|\nabla u_{n}\right|^{q} d x=0 \tag{2.13}
\end{equation*}
$$

uniformly in n. Using as a test function $\phi\left(T_{k} u_{n}-T_{k} u\right)$ and repeating the argument from Step 1 we show that $T_{k} u_{n} \rightarrow T_{k} u$ in $W^{1,2}(\Omega)$. We now use this to show that the sequence $\left\{\left|\nabla u_{n}\right|^{q}\right\}$ is equi-integrable. This follows from (2.13) and the following inequality: for every measurable subset $E \subset \Omega$ we have

$$
\int_{E}\left|\nabla u_{n}\right|^{q} d x \leq \int_{E}\left|\nabla T_{k} u_{n}\right|^{q} d x+\int_{\left(u_{n} \geq k\right) \cap E}\left|\nabla u_{n}\right|^{q} d x
$$

Indeed, given $\epsilon>0$, according to (2.13), we can find k large enough such that

$$
\int_{u_{n} \geq k}\left|\nabla u_{n}\right|^{q} d x<\frac{\epsilon}{2}
$$

for all n. Since $\nabla T_{k}\left(u_{n}\right) \rightarrow T_{k}(u)$ in $L^{2}(\Omega)$ there exists $\delta>0$ such that

$$
\int_{E}\left|\nabla T_{k}\left(u_{n}\right)\right|^{q} d x<\frac{\epsilon}{2}
$$

provided $|E| \leq \delta$ and for all n. By Vitali's theorem $\nabla u_{n} \rightarrow \nabla u$ in $L^{q}(\Omega)$. Thus u is a weak solution of (1.1). If $q=2$, then by Lemma 2.1 the sequence $\left\{u_{n}\right\}$ is bounded in $W^{1,2}(\Omega)$. An obvious modification of Step 2 completes the proof.

3. NONLINEARITY WITH A SIGN CONDITION

In this section we discuss the solvability of the following problem

$$
\left\{\begin{align*}
-\Delta u+g(x, u, \nabla u)+\lambda u & =f(x) & & \text { in } \Omega \tag{3.1}\\
\frac{\partial u}{\partial \nu} & =0 & & \text { on } \partial \Omega .
\end{align*}\right.
$$

We assume that the nonlinearity $g: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function, that is, $g(\cdot, s, \xi)$ is measurable on Ω for every $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$ and $g(x, \cdot, \cdot)$ is continuous on $\mathbb{R} \times \mathbb{R}^{N}$ for a.e. $x \in \Omega$. Moreover, we assume that
$\left(g_{1}\right)$ there exist an increasing and continuous function $b:[0, \infty) \rightarrow[0, \infty)$ with $b(0)=0$ and a positive function $a \in L^{1}(\Omega)$ such that

$$
|g(x, s, \xi)| \leq b(|s|)\left(|\xi|^{q}+a(x)\right)
$$

for a.e. $x \in \Omega$ and for every $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$.
$\left(g_{2}\right) g(x, s, \xi) \operatorname{sgn} s \geq 0$ for a.e. $x \in \Omega$ and for every $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$.

A typical example of a nonlinearity satisfying $\left(g_{1}\right)$ and $\left(g_{2}\right)$ is $g(x, s, \xi)=s|\xi|^{q}$.
We now consider equation (3.1) without assumption that f is positive on Ω. Obviously, it is assumed that $f \not \equiv 0$ on Ω. We assume that $\frac{N}{N-1}<q<2$. Then there exists $1<m<\frac{2 N}{N+q}$ such that $q=m^{*}=\frac{N m}{N-m}$. In this case m is given by $m=\frac{N q}{N+q}$. We also use notation $q^{*}=\frac{N q}{N-q}$. With these notations we establish the estimates of norms $\|u\|_{L^{q^{*}}}$ and $\|u\|_{W^{1, q}}$ of a solution u of (1.1) in terms of the norm $\|f\|_{L^{m}}$.

Lemma 3.1. Let $f \in L^{\infty}(\Omega)$ and $\frac{N}{N-1}<q<2$. If $u \in W^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ is a solution of (3.1), then

$$
\begin{align*}
\int_{\Omega}|u|^{q^{*}} d x & \leq C_{1}\left(\int_{\Omega}\left(|\nabla u|^{q}+|u|^{q}\right) d x\right)^{\frac{q^{*}}{q}} \leq \tag{3.2}\\
& \leq C_{2}\|f\|_{L^{\frac{q^{*}}{2}}}\left(\int_{\Omega}|u|^{q^{*}} d x\right)^{\frac{(1-r)}{2}}\left(\int_{\Omega}\left(1+u^{2}\right)^{q^{*}} d x\right)^{\frac{r}{2}},
\end{align*}
$$

where $r=\frac{N(2-q)}{N-q}$ and $C_{1}>0$ and $C_{2}>0$ are constants independent of u and f.

Proof. We follow some ideas from [8], where the same estimate was proved for the linear problem. Put $\varphi(x)=\frac{u}{\left(1+u^{2}\right)^{\frac{r}{2}}}$. Since $\frac{N}{N-1}<q<2$, we have $0<r<1$. Since $u \in L^{\infty}(\Omega), \varphi$ is a legitimate test function. Upon the substitution we obtain

$$
\begin{align*}
(1-r) \int_{\Omega} \frac{|\nabla u|^{2}}{\left(1+u^{2}\right)^{\frac{r}{2}}} d x+\lambda \int_{\Omega} \frac{u^{2}}{\left(1+u^{2}\right)^{\frac{r}{2}}} d x & \leq \int_{\Omega} \frac{|f u|}{\left(1+u^{2}\right)^{\frac{r}{2}}} d x \leq \\
& \leq\|f\|_{L^{m}}\left(\int_{\Omega}|u|^{(1-r) m^{\prime}} d x\right)^{\frac{1}{m^{\prime}}} \tag{3.3}
\end{align*}
$$

where $m^{\prime}=\frac{m}{m-1}$. Here we used the fact that

$$
\int_{\Omega} \frac{u g(x, u, \nabla u)}{\left(1+u^{2}\right)^{\frac{r}{2}}} d x \geq 0
$$

due to assumption $\left(g_{2}\right)$. In what follows we denote by $C>0$ a constant which is independent of u and f and may vary from line to line. By the Sobolev inequality we have

$$
\begin{align*}
\left(\int_{\Omega}|u|^{q^{*}} d x\right)^{\frac{q}{q^{*}}} \leq & C \int_{\Omega}\left(|\nabla u|^{q}+|u|^{q}\right) d x= \\
= & C \int_{\Omega} \frac{|\nabla u|^{q}}{\left(1+u^{2}\right)^{\frac{r q}{4}}}\left(1+u^{2}\right)^{\frac{r q}{4}} d x+ \\
& +C \int_{\Omega} \frac{|u|^{q}}{\left(1+u^{2}\right)^{\frac{r q}{4}}}\left(1+u^{2}\right)^{\frac{r q}{4}} d x \leq \tag{3.4}\\
\leq & C\left(\int_{\Omega} \frac{|\nabla u|^{2}}{\left(1+u^{2}\right)^{\frac{r}{2}}} d x\right)^{\frac{q}{2}}\left(\int_{\Omega}\left(1+u^{2}\right)^{\frac{r q}{2(2-q)}} d x\right)^{\frac{2-q}{2}}+ \\
& +C\left(\int_{\Omega} \frac{u^{2}}{\left(1+u^{2}\right)^{\frac{r}{2}}} d x\right)^{\frac{q}{2}}\left(\int\left(1+u^{2}\right)^{\frac{r q}{2(2-q)}} d x\right)^{\frac{2-q}{2}} .
\end{align*}
$$

Inserting (3.3) into (3.4) we derive

$$
\begin{aligned}
\left(\int_{\Omega}|u|^{q^{*}} d x\right)^{\frac{q}{q^{*}}} & \leq C \int_{\Omega}\left(|\nabla u|^{q}+|u|^{q}\right) d x \leq \\
& \leq C\|f\|_{L^{m}}^{\frac{q}{2}}\left(\int_{\Omega}|u|^{(1-r) m^{\prime}} d x\right)^{\frac{q}{2 m^{\prime}}}\left(\int_{\Omega}\left(1+u^{2}\right)^{\frac{r q}{2(2-q)}} d x\right)^{\frac{2-q}{2}}
\end{aligned}
$$

Since $r=\frac{N(2-q)}{N-q}$, we have $\frac{r q}{2-q}=q^{*}$ and $(1-r) m^{\prime}=q^{*}$. Therefore the above inequality becomes

$$
\begin{aligned}
\int_{\Omega}|u|^{q^{*}} d x & \leq C\left(\int_{\Omega}\left(|\nabla u|^{q}+|u|^{q}\right) d x\right)^{\frac{q^{*}}{q}} \leq \\
& \leq C\|f\|_{L^{m}}^{\frac{q^{*}}{2}}\left(\int_{\Omega}|u|^{q^{*}} d x\right)^{\frac{q^{*}}{2 m^{\prime}}}\left(\int_{\Omega}\left(1+u^{2}\right)^{\frac{q^{*}}{2}} d x\right)^{\frac{(2-q) q^{*}}{2 q}}
\end{aligned} .
$$

Since $\frac{q^{*}}{2 m^{\prime}}=\frac{1-r}{2}$ and $\frac{(2-q) q^{*}}{2 q}=\frac{r}{2}$, the result follows.
We are now in a position to formulate the second existence result.
Theorem 3.2. Let $\frac{N}{N-1}<q<2$ and $f \in L^{m}(\Omega)$ with $m=\frac{N q}{N+q}$. Suppose that assumptions $\left(g_{1}\right)$ and $\left(g_{2}\right)$ hold. Then problem (1.1) admits a solution in $W^{1, q}(\Omega)$.
Proof. The proof is similar to that of Theorem 2.2 except some technical modifications. First we assume that $f \in L^{\infty}(\Omega)$. For every $n \in \mathbb{N}$ we put

$$
g_{n}(x, s, \xi)=\frac{g(x, s, \xi)}{1+\frac{1}{n}|g(x, s, \xi)|}
$$

and consider the following problem

$$
\left\{\begin{align*}
-\Delta u+g_{n}(x, u, \nabla u)+\lambda u & =f(x) & & \text { in } \Omega \tag{3.5}\\
\frac{\partial u}{\partial \nu} & =0 & & \text { on } \partial \Omega .
\end{align*}\right.
$$

Then the functions $v_{1}=\frac{\|f\|_{\infty}}{\lambda}$ and $v_{2}=-\frac{\|f\|_{\infty}}{\lambda}$ are a super-solution and a sub-solution to problem (3.5), respectively. For every n problem (3.5) has a solution w_{n} satisfying $v_{1} \leq w_{n} \leq v_{2}$ on Ω. Hence the sequence $\left\{w_{n}\right\}$ is bounded in $L^{\infty}(\Omega)$, that is, $\left\|w_{n}\right\|_{\infty} \leq$ M for some constant $M>0$ and for all $n \in \mathbb{N}$. Testing (3.5) with w_{n} we show that $\left\{w_{n}\right\}$ is bounded in $W^{1,2}(\Omega)$. So we may assume that $w_{n} \rightharpoonup w$ in $W^{1,2}(\Omega), w_{n} \rightarrow w$ in $L^{2}(\Omega)$ and $w_{n} \rightarrow w$ a.e. on Ω. Let ϕ be a function introduced in the proof of Theorem 2.2. Testing (3.5) with $\phi\left(w_{n}-w\right)$ we obtain

$$
\begin{align*}
\int_{\Omega} \nabla w_{n} \phi^{\prime}\left(w_{n}-w\right) \nabla\left(w_{n}-w\right) d x & +\int_{\Omega} g_{n}\left(x, w_{n}, \nabla w_{n}\right) \phi\left(w_{n}-w\right) d x+ \\
& +\lambda \int_{\Omega} w_{n} \phi\left(w_{n}-w\right) d x=\int_{\Omega} f(x) \phi\left(w_{n}-w\right) d x . \tag{3.6}
\end{align*}
$$

It is clear that

$$
\begin{equation*}
\int_{\Omega} \nabla w_{n} \phi^{\prime}\left(w_{n}-w\right) \nabla\left(w_{n}-w\right) d x=\int_{\Omega}\left|\nabla\left(w_{n}-w\right)\right|^{2} \phi^{\prime}\left(w_{n}-w\right) d x+o(1) \tag{3.7}
\end{equation*}
$$

We use inequality (2.9) and assumption $\left(g_{1}\right)$ to estimate the second integral on the left side of (3.6)

$$
\begin{aligned}
\int_{\Omega}\left|g_{n} \phi\left(w_{n}-w\right)\right| d x \leq & b(M) \int_{\Omega}\left|\nabla w_{n}\right|^{q}\left|\phi\left(w_{n}-w\right)\right| d x+\int_{\Omega} a(x)\left|\phi\left(w_{n}-w\right)\right| d x \leq \\
\leq & b(M) \epsilon \int_{\Omega}\left|\nabla w_{n}\right|^{2}\left|\phi\left(w_{n}-w\right)\right| d x+C_{\epsilon} \int_{\Omega}\left|\phi\left(w_{n}-w\right)\right| d x+ \\
& +\int_{\Omega} a(x)\left|\phi\left(w_{n}-w\right)\right| d x
\end{aligned}
$$

Since $\phi\left(w_{n}-w\right) \rightarrow 0$ a.e. on Ω and $\sup _{n}\left|\phi\left(w_{n}-w\right)\right|<\infty$ by the Lebesgue dominated convergence theorem we get

$$
\int_{\Omega}\left|g_{n} \phi\left(w_{n}-w\right)\right| d x \leq b(M) \epsilon \int_{\Omega}\left|\nabla w_{n}\right|^{2}\left|\phi\left(w_{n}-w\right)\right| d x+o(1) .
$$

As in the proof of Theorem 2.2 we deduce from this that

$$
\begin{equation*}
\int_{\Omega}\left|g_{n} \phi\left(w_{n}-w\right)\right| d x \leq b(M) \epsilon \int_{\Omega}\left|\nabla w_{n}-\nabla w\right|^{2}\left|\phi\left(w_{n}-w\right)\right| d x+o(1) . \tag{3.8}
\end{equation*}
$$

Taking $\epsilon b(M) \leq 1$ we deduce from (3.6), (3.7) and (3.8) that

$$
\int_{\Omega}\left|\nabla w_{n}-\nabla w\right|^{2} d x \leq \int_{\Omega}\left(\phi^{\prime}\left(w_{n}-w\right)-\epsilon b(M)\left|\phi\left(w_{n}-w\right)\right|\right)\left|\nabla w_{n}-\nabla w\right|^{2} d x=o(1)
$$

Thus $w_{n} \rightarrow w$ in $W^{1,2}(\Omega)$. It is clear that w is a solution of (3.1). In the final step we choose a sequence $\left\{f_{n}\right\} \subset L^{\infty}(\Omega)$ such that $f_{n} \rightarrow f$ in $L^{m}(\Omega)$. Then for every $n \in \mathbb{N}$ problem (3.1) with $f=f_{n}$ admits a solution $u_{n} \in W^{1,2}(\Omega) \cap L^{\infty}(\Omega)$. We now define a sequence of truncations $\left\{T_{k}\left(u_{n}\right)\right\}$ for every $k>0$, where $T_{k}=\max (-k, \min (s, k))$. Let $G_{k}(s)=s-T_{k}(s)$ and put $\psi_{k-1}(s)=T_{1}\left(G_{k-1}(s)\right)$. Thus

$$
\psi_{k-1}\left(u_{n}\right)\left|\nabla u_{n}\right|^{2} \geq\left|\nabla u_{n}\right|^{2} \chi_{\left|u_{n}\right| \geq k}
$$

As in the proof of Theorem 2.2 we show that the sequence $\left\{T_{k}\left(u_{n}\right)\right\}$ is bounded in $W^{1,2}(\Omega)$. Hence we can assume that $T_{k}\left(u_{n}\right) \rightharpoonup T_{k} u$ in $W^{1,2}(\Omega), T_{k}\left(u_{n}\right) \rightarrow T_{k} u$ in $L^{2}(\Omega)$ and $T_{k}\left(u_{n}\right) \rightarrow T_{k}(u)$ a.e. on Ω. By Lemma 3.1 we may also assume that $u_{n} \rightharpoonup u$ in $W^{1, q}(\Omega)$. Using as a test function $\psi_{k-1}\left(u_{n}\right)$ we show that $\nabla u_{n} \rightarrow \nabla u$ in $L^{q}(\Omega)$ and u is a weak solution of (3.1).

We now turn our attention to positive solutions of (3.1). If $f>0$ on Ω, then a solution obtained in Theorem 4.3 is positive. In this case we can also consider the interval $1 \leq q<\frac{N}{N-1}$. We commence with an apriori estimate.

Lemma 3.3. Suppose that $1 \leq q<\frac{N}{N-1}, f>0$ on Ω and $f \in L^{\infty}(\Omega)$. If $u \in$ $W^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ is a positive solution of problem (3.1), then

$$
\begin{aligned}
\int_{\Omega} u^{q^{*}} d x & \leq C_{1}\left(\int_{\Omega}\left(|\nabla u|^{q}+u^{q}\right) d x\right)^{\frac{q^{*}}{q}} \leq \\
& \leq C_{2}\left(\int_{\Omega}(1+u)^{q^{*}} d x\right)^{\frac{(2-q) q^{*}}{2 q}}\left(\|f\|_{L^{\frac{q^{*}}{2}}}^{2}+\|f\|_{L^{1}}^{\frac{(2-r) q^{*}}{2}}\right)
\end{aligned}
$$

where $C_{1}, C_{2}>0$ are constants independent of f and u and $r=\frac{N(2-q)}{N-q}$.
Proof. The proof is a modification of the argument used in the proof of Lemma 2.5 in [8]. We take as a test function $\phi(x)=(1+u)^{1-r}$. Since $q<\frac{N}{N-1}$, we have $r>1$. Also $r<2$ because $N \geq 3$. Hence $\phi(x) \leq 1$ on Ω and upon a substitution we obtain

$$
\begin{align*}
(r-1) \int_{\Omega} \frac{|\nabla u|^{2}}{(1+u)^{r}} d x= & \int_{\Omega} g(x, u, \nabla u)(1+u)^{1-r} d x+ \\
& +\lambda \int_{\Omega} u(1+u)^{1-r} d x- \\
& -\int_{\Omega} f(1+u)^{1-r} d x \leq \tag{3.9}\\
\leq & \int_{\Omega} g(x, u, \nabla u) d x+\lambda \int_{\Omega} u d x
\end{align*}
$$

Testing equation (3.1) with a constant function 1 we obtain

$$
\begin{equation*}
\int_{\Omega} g(x, u, \nabla u) d x+\lambda \int_{\Omega} u d x=\int_{\Omega} f d x . \tag{3.10}
\end{equation*}
$$

From (3.9) and (3.10) we derive

$$
\begin{equation*}
\int_{\Omega} \frac{|\nabla u|^{2}}{(1+u)^{r}} d x \leq \frac{1}{r-1} \int_{\Omega} f d x \text { and } \int_{\Omega} u d x \leq \frac{1}{\lambda} \int_{\Omega} f d x \tag{3.11}
\end{equation*}
$$

By the Sobolev inequality we obtain

$$
\begin{aligned}
\left(\int_{\Omega} u^{q^{*}} d x\right)^{\frac{q}{q^{*}} \leq} \leq & C \int_{\Omega}\left(|\nabla u|^{q}+u^{q}\right) d x= \\
= & C \int_{\Omega} \frac{|\nabla u|^{q}}{(1+u)^{\frac{r q}{2}}}(1+u)^{\frac{r q}{2}} d x+C \int_{\Omega} \frac{u^{q}}{(1+u)^{\frac{r q}{2}}}(1+u)^{\frac{r q}{2}} d x \leq \\
\leq & C\left(\int_{\Omega} \frac{|\nabla u|^{2}}{(1+u)^{r}} d x\right)^{\frac{q}{2}}\left(\int_{\Omega}(1+u)^{\frac{r q}{2-q}} d x\right)^{\frac{2-q}{2}}+ \\
& +C\left(\int_{\Omega} \frac{u^{2}}{(1+u)^{r}} d x\right)^{\frac{q}{2}}\left(\int_{\Omega}(1+u)^{\frac{r q}{2-q}} d x\right)^{\frac{2-q}{2}} \leq \\
\leq & C\left(\int_{\Omega} \frac{|\nabla u|^{2}}{(1+u)^{r}} d x\right)^{\frac{q}{2}}\left(\int_{\Omega}(1+u)^{\frac{r q}{2-q}} d x\right)^{\frac{2-q}{2}}+ \\
& +C\left(\int_{\Omega} u^{2-r} d x\right)^{\frac{q}{2}}\left(\int_{\Omega}(1+u)^{\frac{r q}{2-q}} d x\right)^{\frac{2-q}{2}} \leq \\
\leq & C\left(\int_{\Omega} \frac{|\nabla u|^{2}}{(1+u)^{r}} d x\right)^{\frac{q}{2}}\left(\int_{\Omega}(1+u)^{\frac{r q}{2-q}} d x\right)^{\frac{2-q}{2}}+ \\
& +C|\Omega|^{\frac{q(r-1)}{2}}\left(\iint_{\Omega}|u|^{\frac{(2-r) q}{2}} d x\right)\left(\int_{\Omega}(1+u)^{\frac{r q}{2-q}} d x\right)^{\frac{2-q}{2}} .
\end{aligned}
$$

We now observe that $q^{*}=\frac{r q}{2-q}$. Hence combining the above estimate with (3.11) the result follows.

It is clear that Lemma 3.3 leads to the following existence result.
Theorem 3.4. Suppose that $1 \leq q<\frac{N}{N-1}, f>0$ on Ω and $f \in L^{1}(\Omega)$. The problem (3.1) has a positive solution $u \in W^{1, q}(\Omega)$.

4. HIGHER INTEGRABILITY PROPERTY FOR SOLUTIONS OF (1.1)

The method used in the proof of Lemma 2.1 allows only to estimate the norm $W^{1, q}$ of a positive solution, where q is the exponent appearing in the equation. In the case $1 \leq q<2$, a question arises whether a solution to (1.1) belongs to $W^{1, \bar{q}}(\Omega)$ with $q<\bar{q}$. We distinguish two cases: (i) $1 \leq q<\frac{N}{N-1}$ and (ii) $\frac{N}{N-1}<q<2$. In the case (i) assuming that $f \in L^{1}(\Omega)$ we show that a solution belongs to $W^{1, \bar{q}}(\Omega)$ or every $q<\bar{q}<\frac{N}{N-1}$. In the case (ii) we show that a solution belongs $W^{1, \bar{q}}(\Omega)$ for some $q<\bar{q}<2$ under some additional assumption on f. According to Step 1 of the proof of Theorem 2.2, if $f \in L^{\infty}(\Omega)$, then problem (1.1) has a solution $u \in W^{1,2}(\Omega) \cap L^{\infty}(\Omega)$.

Lemma 4.1. Suppose that $f>0$ on $\Omega, f \in L^{\infty}(\Omega)$ and $1 \leq q<\bar{q}<\frac{N}{N-1}$. If $u \in W^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ is a positive solution of (1.1), then there exist constants $C_{1}, C_{2}>0$, independent of u and f such that

$$
\begin{aligned}
\int_{\Omega} u^{\bar{q}^{*}} d x & \leq C_{1}\left(\int_{\Omega}\left(|\nabla u|^{\bar{q}}+u^{\bar{q}}\right) d x\right)^{\frac{\bar{q}^{*}}{\bar{q}}} \leq \\
& \leq C_{2}\left(\int_{\Omega}\left(1+u^{\bar{q}^{*}}\right) d x\right)^{\frac{(2-\bar{q}) \bar{q}^{*}}{2 \bar{q}}}\left(\|f\|_{L^{1}}^{\frac{\bar{q}^{*}}{2}}+\|f\|_{L^{1}}^{\frac{(2-\bar{r}) \bar{q}^{*}}{2}}\right),
\end{aligned}
$$

where $\bar{r}=\frac{N(2-\bar{q})}{N-\bar{q}}$ and $\bar{q}^{*}=\frac{N \bar{q}}{N-\bar{q}}$.
Proof. As in the proof of Lemma 3.3 we take as a test function $\phi(x)=(1+u)^{1-\bar{r}}$. Since $\bar{q}<\frac{N}{N-1}$, we have $\bar{r}>1$. Also $\bar{r}<2$ because $N \geq 3$. Hence $\phi(x) \leq 1$ on Ω and upon a substitution we obtain

$$
\begin{align*}
(\bar{r}-1) \int_{\Omega} \frac{|\nabla u|^{2}}{(1+u)^{\bar{r}}} d x= & \int_{\Omega}|\nabla u|^{q}(1+u)^{1-\bar{r}} d x+\lambda \int_{\Omega} u(1+u)^{1-\bar{r}} d x- \\
& -\int_{\Omega} f(1+u)^{1-\bar{r}} d x \leq \int_{\Omega}|\nabla u|^{q} d x+\lambda \int_{\Omega} u d x \tag{4.1}
\end{align*}
$$

Testing (1.1) with a constant function 1 we obtain

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{q}+\lambda \int_{\Omega} u d x=\int_{\Omega} f d x \tag{4.2}
\end{equation*}
$$

By the Sobolev inequality we obtain

$$
\begin{aligned}
\left(\int_{\Omega} u^{\bar{q}^{*}} d x\right)^{\frac{\bar{q}}{\bar{q}^{*}}} \leq & C \int_{\Omega}\left(|\nabla u|^{\bar{q}}+u^{\bar{q}}\right) d x= \\
= & C \int_{\Omega} \frac{|\nabla u|^{\bar{q}}}{(1+u)^{\frac{\bar{r} \bar{q}}{2}}}(1+u)^{\frac{\overline{\bar{q}} \bar{q}}{2}} d x+C \int_{\Omega} \frac{u^{\bar{q}}}{(1+u)^{\frac{\bar{r} \bar{q}}{2}}}(1+u)^{\frac{\bar{r} \bar{q}}{2}} d x \leq \\
\leq & C\left(\int_{\Omega} \frac{|\nabla u|^{2}}{(1+u)^{\bar{r}}} d x\right)^{\frac{\bar{q}}{2}}\left(\int_{\Omega}(1+u)^{\frac{\bar{r} \bar{q}}{2-\bar{q}}} d x\right)^{\frac{2-\bar{q}}{2}}+ \\
& +C\left(\int_{\Omega} \frac{u^{2}}{(1+u)^{\bar{r}}} d x\right)^{\frac{\bar{q}}{2}}\left(\int_{\Omega}(1+u)^{\frac{\overline{\bar{q}} \overline{\bar{q}}}{2-\bar{q}}} d x\right)^{\frac{2-\bar{q}}{2}} .
\end{aligned}
$$

Combining the above inequality with (4.1) and (4.2) we obtain

$$
\begin{aligned}
\left(\int_{\Omega} u^{\bar{q}^{*}} d x\right)^{\frac{\bar{q}}{\bar{q}^{*}}} \leq & C \int_{\Omega}\left(|\nabla u|^{\bar{q}}+u^{\bar{q}}\right) d x \leq \\
\leq & C\left(\int_{\Omega} f d x\right)^{\frac{\bar{q}}{2}}\left(\int_{\Omega}(1+u)^{\bar{q}^{*}} d x\right)^{\frac{2-\bar{q}}{2}}+ \\
& +C\left(\int_{\Omega}(1+u)^{\bar{q}^{*}} d x\right)^{\frac{2-\bar{q}}{2}}\left(\int_{\Omega} u^{2-\bar{r}} d x\right)^{\frac{\bar{q}}{2}} \leq \\
\leq & C\left(\int_{\Omega}(1+u)^{\bar{q}^{*}} d x\right)^{\frac{2-\bar{q}}{2}}\left[\|f\|_{L^{1}}^{\frac{\bar{q}}{2}}+\|f\|_{L^{1}}^{(2-\bar{r}) \bar{q}_{2}^{2}}\right] .
\end{aligned}
$$

This yields the desired estimate.
Lemma 4.2. Let $f>0$ on $\Omega, f \in L^{\infty}(\Omega)$ and $\frac{N}{N-1}<q<\bar{q}<2$. If $u \in W^{1,2}(\Omega) \cap$ $L^{\infty}(\Omega)$ is a positive solution of (1.1), then

$$
\begin{aligned}
\int_{\Omega} u^{\bar{q}^{*}} d x & \leq C_{1}\left(\int_{\Omega}\left(|\nabla u|^{\bar{q}}+u^{\bar{q}}\right) d x\right)^{\frac{\bar{q}^{*}}{\bar{q}}} \leq \\
& \leq C_{2}\|f\|_{L^{\bar{m}}}^{\frac{\bar{q}^{*}}{2}}\left(\int_{\Omega} u^{\bar{q}^{*}} d x\right)^{\frac{1-\bar{r}}{2}}\left(\int_{\Omega}\left(1+u^{2}\right)^{\frac{\bar{q}^{*}}{2}} d x\right)^{\frac{\bar{\tau}}{2}}
\end{aligned}
$$

where $C_{1}, C_{2}>0$ are positive constants independent of u and f, and $\bar{r}=\frac{N(2-\bar{q})}{N-\bar{q}}$, $\bar{m}=\frac{N \bar{q}}{N+\bar{q}}$.

The proof is similar to that of Lemma 3.1 and is omitted.
These two lemmas yield the following result.
Theorem 4.3. Suppose that $f>0$ on Ω.
(i) If $f \in L^{1}(\Omega)$ and $1 \leq q<\frac{N}{N-1}$, then problem (1.1) has a solution that belongs to $W^{1, \bar{q}}(\Omega)$ for every $q \leq \bar{q}<\frac{N}{N-1}$.
(ii) If $f \in L^{\bar{m}}(\Omega)$ with $\bar{m}=\frac{N \bar{q}}{N+\bar{q}}, \frac{N}{N-1} \leq q<\bar{q}<2$, then problem (1.1) has a solution belonging to $W^{1, \bar{q}}(\Omega)$.

Higher integrability property can also be established to solutions of problem (3.1).

REFERENCES

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions I, Commun. Pure Appl. Math. 12 (1959), 623-727.
[2] B. Abdellaoui, I. Peral, A. Primo, Breaking of resonance and regularizing effect of a first order quasi-linear term in some elliptic equation, Ann. I.H. Poincaré, Analyse non linéaire (2007), online.
[3] Ph. Bénilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre J.L. Vazquez, An L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Sup. Pisa 22 (1995) 2, 242-273.
[4] L. Boccardo, T. Gallouët, L. Orsina, Existence and nonexistence of solutions for some nonlinear elliptic problems, J. d'Anal. Math. 73 (1997), 203-223.
[5] L. Boccardo, F. Murat, J.P. Puel, Résultats d'existence pour certain problèmes elliptiques quasi-linéaires, Ann. Sc. Norm. Sup. Pisa 11 (1984) 2, 213-235.
[6] L. Boccardo, F. Murat, J.P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires, Portugaliae Math. 41 (1982), 507-534.
[7] H. Brezis, W.A. Strauss, Semi-linear second-order elliptic equations in L^{1}, J. Math. Soc. Japan 25 (1973) 4, 565-590.
[8] J. Chabrowski, On the Neumann problem with L^{1} data, Coll. Math. 107 (2007) 2, 301-316.
[9] J. Chabrowski, On the existence of solutions of the Dirichlet problem for nonlinear elliptic equations, Rend. Circ. Mat. Palermo 37 (1988), 65-87.
[10] T. Gallouët, J.M. Morel, On some linear problems in L^{1}, Bollettino U.M.I. (6) 4-A (1985), 123-131.
[11] Sergio Seguria de León, Existence and uniqueness for L^{1} data of some elliptic equations with natural growth, Advances in Diff. Equations 8 (2003) 11, 1377-1408.
[12] J.R. Ward Jr, Perturbations with some superlinear growth for a class of second order elliptic boundary value problems, Nonlin. Anal. TMA 6 (1982) 4, 367-374.

Jan Chabrowski
jhc@maths.uq.edu.au
University of Queensland
Department of Mathematics
St. Lucia 4072, Qld, Australia
Received: July 29, 2009.
Accepted: August 17, 2009.

