Denise Amar, Evelyne Flandrin, Grzegorz Gancarzewicz

CYCLABILITY IN BIPARTITE GRAPHS

Abstract. Let G = (X, Y; E) be a balanced 2-connected bipartite graph and $S \subset V(G)$. We will say that S is *cyclable* in G if all vertices of S belong to a common cycle in G. We give sufficient degree conditions in a balanced bipartite graph G and a subset $S \subset V(G)$ for the cyclability of the set S.

Keywords: graphs, cycles, bipartite graphs.

Mathematics Subject Classification: 05C20, 05C35, 05C38, 05C45.

1. INTRODUCTION

We shall consider only finite graphs without loops and multiple edges.

Several authors have given results about cycles containing specific subsets of vertices, see for example [7] or [9].

The set S of vertices is called *cyclable* in G if all vertices of S belong to a common cycle in G. We also speak about *cyclability* or *noncyclability* of the vertex set S.

In a bipartite graph G = (X, Y; E) we will call the independent sets of vertices X and Y the partite sets.

Let G = (X, Y; E) be a bipartite graph and let $S \subset V(G)$, then $S_X = S \cap X$ and $S_Y = S \cap Y$. We will say that S is *balanced* iff $|S_X| = |S_Y|$.

In 1992 Shi Ronghua [8] obtained the following result:

Theorem 1.1. Let G be a 2-connected graph of order n and S a subset of V(G) with $|S| \ge 3$. If for every pair of nonadjacent vertices x and y in S we have

$$d(x) + d(y) \ge n,$$

then S is cyclable in G.

Note that the assumption of 2-connectivity may be omitted in Theorem 1.1. It is an easy corollary of a result of K. Ota [7].

Recently R. Čada, E. Flandrin and Z. Ryjáček [3] proved the following generalization of Theorem 1.1: **Theorem 1.2.** Let G be a 2-connected graph of order n and S a subset of V(G). If for every pair of nonadjacent vertices x and y in S we have

$$d(x) + d(y) \ge n - 1,$$

then either S is cyclable in G, or n is odd and G contains an independent set $S_1 \subseteq S$ such that $|S_1| = \frac{n}{2}$ and every vertex of S_1 is adjacent to all vertices in $G \setminus S_1$.

In 2002 E. Flandrin, H. Li, A. Marczyk and M. Woźniak [4] obtained the following generalization of Theorem 1.1:

Theorem 1.3. Let G be a k-connected graph, $k \ge 2$ of order n. Denote $S_1, \ldots S_k$ subsets of the vertex set V(G) and let $S = S_1 \cup S_2 \cup \cdots \cup S_k$. If for any $x, y \in S_i$, $xy \notin E$ we have

 $d(x) + d(y) \ge n,$

then S is cyclable in G.

The notion of cyclability is a generalization of the term of hamiltonicity. If we consider S = V(G) then S is cyclable iff G is hamiltonian. In fact Theorem 1.1 is a generalization of the following result of O. Ore [6]:

Theorem 1.4. Let G be a graph on $n \ge 3$ vertices. If for all nonadjacent vertices $x, y \in V(G)$ we have

$$d(x) + d(y) \ge n,$$

then G is hamiltonian.

A similar result for bipartite graphs was proved by J. Moon and M. Moser [5] in 1963:

Theorem 1.5. Let G = (X, Y; E) be a balanced bipartite graph of order 2n. If for all nonadjacent vertices $x \in X$ and $y \in Y$ we have

$$d(x) + d(y) \ge n + 1,$$

then G is hamiltonian.

Given a balanced bipartite graph and a selected subset of vertices, we are interested in properties that imply cyclability.

In 2000 D. Amar, M. El Kadi Abderrezzak, E. Flandrin [2] proved the following generalization of Theorem 1.1 for bipartite graphs:

Theorem 1.6. Let G = (X, Y; E) be a balanced 2-connected bipartite graph of order $2n, S \subset X$. If for every $x \in S, y \in Y, xy \notin E$ we have

$$d(x) + d(y) \ge n + 1,$$

then S is cyclable in G.

Note that in this case $S = S_X$ and Theorem 1.6 is also a generalization of Theorem 1.5.

The main result of the present paper, given in Section 3, is Theorem 3.1, which improves upon Theorem 1.6.

2. DEFINITIONS

Let G be a graph and H a subgraph of G.

Definition 2.1. $N_G(H)$ denotes the set of all vertices of the graph G which are adjacent to a vertex of the subgraph H, i.e. $N_G(H) = \{u \in V(G) : \exists v \in V(H) \text{ such that } uv \in E(G)\}.$

Consider an arbitrary vertex $x \in V(G)$. N(x) denotes the set of all neighbors of the vertex x in G, i.e. $N(x) = \{u \in V(G) : xu \in E(G)\}$. $N_H(x)$ denotes the set of all neighbors of the vertex x in the subgraph H, i.e. $N_H(x) = \{u \in V(H) : xu \in E(G)\}$.

 $d_H(x)$ denotes the number of neighbors of x in the subgraph H i.e. $d_H(x) = |N_H(x)|$, and $d_H(x)$ denotes the degree of the vertex x in the subgraph H.

In the proof we will only use cycles and paths with a given orientation. For a cycle $C: c_1 \ldots c_k$ or a path $P: p_1 \ldots p_l$ we will use implicit orientation.

Thus it makes sense to speak of a successor c_{i+1} and a predecessor c_{i-1} of a vertex c_i (addition modulo l + 1). Denote the successor of a vertex x by x^+ and its predecessor by x^- . This notation can be extended to $A^+ = \{x^+ : x \in A\}$, and similarly, to A^- when $A \subseteq V(G)$.

Let P be a path $p_1 \ldots p_k$ and $u, v \in V(G)$ such that $up_1, vp_k \in E(G)$, then: uPv is the path $up_1 \ldots p_k v$ and vPu is the path $vp_k \ldots p_1 u$.

Definition 2.2. We shall call a path $P : p_1 \dots p_l$ a *C*-path of the cycle *C* iff $V(P) \cap V(C) = \{p_1, p_l\}$. Note that a *C*-path is a generalized chord of the cycle.

Definition 2.3. Let $C : c_1 \ldots c_l$ be a cycle in G with the orientation, the indices $1, \ldots, l$ are considered modulo l. For any pair of vertices $c_i, c_j \in V(C)$ $(i \neq j)$ we define four intervals:

- $]c_i, c_j[$ is the path $c_{i+1} \ldots c_{j-1}$.
- $[c_i, c_j]$ is the path $c_i \ldots c_{j-1}$.
- $[c_i, c_j]$ is the path $c_{i+1} \ldots c_j$.
- $-[c_i, c_j]$ is the path $c_i \ldots c_j$.

Note that these four intervals are subsets of the cycle C.

For notation and terminology not defined above a good reference is [1].

3. THEOREM

Theorem 3.1. If G = (X, Y; E) is a balanced 2-connected bipartite graph of order 2n and $S \subset V(G)$ satisfying conditions:

For every $x \in S_X$, $y \in Y$, $xy \notin E$ we have $d(x) + d(y) \ge n + 1$ (3.1) For every $x \in X$, $y \in S_Y$, $xy \notin E$ we have $d(x) + d(y) \ge n + 1$ (3.2)

then S is cyclable in G.

Fig. 1. $G_{p,3}$

Theorem 3.1 is obviously a generalization of Theorem 1.6. We first tried to find a generalization satisfying two conditions:

- The vertices of S are in both partite sets X and Y.
- The degree sum condition holds only for vertices from S.

However, even if we assume that S is balanced (i.e. $|S_X| = |S_Y|$), such a result is not true.

For every $k \ge 1$ we will give an example of a 2-connected, balanced bipartite graph G = (X, Y; E) and a balanced set $S \subset V(G)$, satisfying the following condition:

For every $x \in S_X$, $y \in S_Y$ if $xy \notin E$ then $d(x) + d(y) \ge n + k$, (3.3)

such that S is not cyclable in G.

Let $k \ge 1$, $p \ge k + 2$ and $2 \le r \le 1 + \frac{p - k}{2}$.

First consider bipartite graphs $K_{pr,2r}$, $K_{2,2}$ and r copies of $K_{2,p}$. In $K_{2,2}$ we have two partite sets say X_2 and Y_2 . The graph G = (X, Y; E) is obtained out of $K_{pr,2r}$, $K_{2,2}$ and the r copies of $K_{2,p}$ by joining every vertex of degree pr from $K_{pr,2r}$ with all vertices from X_2 and every vertex of degree p from the r copies of $K_{2,p}$ with all vertices from Y_2 .

Let S_1 be the set of all vertices from $K_{pr,2r}$ of degree pr in $K_{pr,2r}$.

In each copy of $K_{2,p}$ we take the two vertices of degree p in $K_{2,p}$. In this way we will get 2r vertices and we define the set S_2 as the set containing these 2r vertices.

We can define now the set S. Let $S = S_1 \cup S_2 \cup V(K_{2,2})$.

For $k \ge 1$, $p \ge k+2$ and $2 \le r \le 1 + \frac{p-k}{2}$ we have obtained a balanced, 2-connected bipartite graph $G_{p,r} = (X, Y; E)$ of order 2n with n = pr + 2r + 2 and a balanced set S which is not cyclable, but satisfies (3.3).

We can find an example of the graph $G_{p,3}$ on the Figure 1.

This example shows that it is not enough to assume that the degree sum condition holds only for the vertices from S in a bipartite graph. Even increasing the connectivity will not be sufficient, as we can see in the following example.

For every $k \ge 1$ and $l \ge 2$ we will give an example of an *l*-connected, balanced bipartite graph G' = (X, Y; E) and a balanced set $S' \subset V(G')$, satisfying (3.3), such that S' is not cyclable in G'.

Let $k \ge 1, l \ge 2, p \ge l^2 - l + k$ and $l \le r < 1 + \frac{p - k}{l}$.

First consider bipartite graphs $K_{pr,lr}$, $K_{l,l}$ and r copies of $K_{l,p}$. In $K_{l,l}$ we have two partite sets say X_l and Y_l . The graph G' = (X, Y; E) is obtained out of $K_{pr,lr}$, $K_{l,l}$ and the r copies of $K_{l,p}$ by joining every vertex of degree pr from $K_{pr,lr}$ with all vertices from X_l and every vertex of degree p from the r copies of $K_{l,p}$ with all vertices from Y_l .

Let S'_1 be the set of all vertices from $K_{pr,lr}$ of degree pr in $K_{pr,lr}$.

In each copy of $K_{l,p}$ we take the *l* vertices of degree *p* in $K_{l,p}$. In this way we will get *lr* vertices and we define the set S'_2 as the set containing these *lr* vertices.

We can define now the set S'. Let $S' = S'_1 \cup S'_2 \cup V(K_{l,l})$.

For $k \ge 1$, $l \ge 2$, $p \ge l^2 - l + k$ and $l \le r < 1 + \frac{p-k}{l}$ we have obtained a balanced, *l*-connected bipartite graph $G'_{p,r,l} = (X, Y; E)$ of order 2*n* with n = pr + lr + l and a balanced set S' which is not cyclable in G', but satisfies (3.3).

4. PROOF OF THEOREM 3.1

4.1. PRELIMINARY NOTATIONS

Let G = (X, Y; E) be a bipartite graph and let C be a cycle in G.

In this chapter for a given cycle C and a vertex $x \in V(G \setminus C)$, a C-path Q through x will be denoted $Q: uQ_1xQ_2u'$, where Q_1 and Q_2 are two vertex disjoint paths. The end vertices of the C-path Q: u and u' and the vertex x do not belong to Q_1 nor Q_2 .

Note that the path Q_1 may be empty or in other words $V(Q_1) = \emptyset$ and in this case $xu \in E$. Similarly for Q_2 .

An example of a C-path $P: uP_1xP_2u'$ through a vertex x can be found on Figure 2.

Fig. 2. An example of a cycle C and a C-path P with $x, u', u_1 \in X$ and $u, u_2 \in Y$

Remark 4.1. Given a 2-connected graph G, a nonhamiltonian cycle C and a vertex $x \in V(G \setminus C)$, G contains necessarily a C-path through x.

In the remaining part of Section 4 we will always consider a 2-connected bipartite graph G and a subset $S \subset V(G)$ not cyclable in G. Given a cycle C, a vertex $x \in V(G \setminus C) \cap S$ such that C contains $S \setminus \{x\}$ but does not contain S, we will denote by P a C-path through x. We will always assume that the cycle C and the C-path P are chosen such that P is shortest possible among all C-paths through x for all cycles C containing $S \setminus \{x\}$, i.e. for any cycle C' containing $S \setminus \{x\}$, and for any C'-path P' containing the vertex x we have $|V(P)| \leq |V(P')|$. We will denote this C-path $P: uP_1xP_2u'$ (note that P_1 and/or P_2 may be empty).

We will denote by u_1 the first vertex on the cycle C from S after u (u_1 exists since S is not cyclable). Similarly u_2 is the first vertex on the cycle C from S after u'.

R is the subgraph induced in G by $V(G) \setminus V(C)$.

All the intervals of type [a, b], [a, b[,]a, b] and]a, b[are intervals on the cycle C and we sometimes identify the vertex set of an interval with the corresponding interval.

Remark 4.2. The *C*-path $P: uP_1xP_2u'$ has the following properties:

$$- \text{ If } V(P_1) \neq \emptyset \text{ or } V(P_2) \neq \emptyset \text{ then } d_C(x) \le 1.$$

$$(4.1)$$

- If
$$V(P_1) \neq \emptyset$$
 and $V(P_2) \neq \emptyset$ then $d_C(x) = 0.$ (4.2)

Remark 4.2 is an immediate consequence of the choice of the cycle C and the C-path P.

4.2. FORMULATION AND PROOF OF LEMMA 4.3

In the proof of Theorem 3.1 we shall use the following lemma. Notations G, S, C, R, x and C-path $P : uP_1xP_2u'$, u_1 and u_2 are defined in Section 4.1 but we recall them for completeness. We denote by C a cycle containing $S \setminus \{x\}$. Let P be a C-path through x. The cycle C and the C-path P are chosen such that P is shortest possible among all C-paths through x for all cycles C containing $S \setminus \{x\}$. Let u_1 be the first vertex from S after u on the cycle C, and let u_2 be the first vertex from S after u' on the cycle C. The subgraph of G induced by $V(G) \setminus V(C)$, will be denoted R.

Lemma 4.3. Let G = (X, Y; E) be a 2-connected bipartite graph and let C, P, R and S be as above. Then we have:

- For every $C path \ Q : aQ_1xQ_2a'$ through x we have: $V(]a, a'[) \cap S \neq \emptyset \text{ and } V(]a', a[) \cap S \neq \emptyset.$ (4.3)
- For any $b \in V(]u, u_1]$ and $c \in V(]u', u_2]$ we have: $N_{D,\alpha, D}(b) = N_{D,\alpha, D}(c) = \emptyset.$ (4.4)

$$F_1 x F_2 (Y) = F_1 x F_2 (Y) = f_1 x F_2 (Y) = f_1 (Y$$

$$- N_R([u, u_1]) \cap N_R([u', u_2]) = \emptyset.$$
(4.5)

- For any
$$y \in N_R(x)$$
 we have $N_{[u, u_1]}(y) = N_{[u', u_2]}(y) = \emptyset.$ (4.7)

Proof of Lemma 4.3. Suppose that $V(]a, a'[) \cap S = \emptyset$, then the cycle:

$$C': \quad aQ_1xQ_2a'a'^+\dots a, \tag{4.8}$$

is a cycle containing S, a contradiction. If $V(]a', a[) \cap S = \emptyset$, then using similar arguments we get a contradiction and hence (4.3) is proved.

In order to prove (4.4) suppose that there is a vertex $b \in V(]u, u_1]$ such that $N_{P_1xP_2}(b) \neq \emptyset$. We have a vertex $z \in N_{P_1xP_2}(b)$ and we assume that the vertices on the path P_1xP_2 are labeled as follows: $P_1xP_2: p_1^1 \dots p_1^l xp_2^k \dots p_2^l$.

We shall consider three cases.

1. When z = x, then the following cycle:

$$C': \quad uP_1xbb^+\dots u'\dots u_2\dots u, \tag{4.9}$$

contains S, a contradiction.

2. If $z \in V(P_1)$, then the following cycle:

$$C': \quad up_1^1 \dots p_1^i zbb^+ \dots u_1 \dots u' \dots u_2 \dots u, \tag{4.10}$$

contains $S \setminus \{x\}$ and has a C'-path

$$P': \quad zp_1^{i+2}\dots xP_2u', \tag{4.11}$$

shorter then P, a contradiction with the choice of C and P.

3. If $z \in V(P_2)$, then the following cycle:

$$C': \quad uP_1xp_2^k\dots p_2^jzbb^+\dots u'\dots u_2\dots u, \tag{4.12}$$

contains S, a contradiction.

So we have $N_{P_1xP_2}(b) = \emptyset$. Using similar arguments we can prove that for any $c \in V(]u', u_2]$ $N_{P_1xP_2}(c) = \emptyset$, and hence (4.4) is true.

We will prove now (4.5).

Suppose that $N_R(z) \cap (N(]u, u_1]) \cup N(]u', u_2]) \neq \emptyset$.

So we have a vertex $w \in N_R(z) \cap (N(]u, u_1]) \cup N(]u', u_2])$. Without loss of generality we can assume that $w \in N_R(z) \cap N(]u, u_1]$. Let $a \in V(]u, u_1]$, such that $aw \in E$. From (4.4) we know that $w \notin V(P_1xP_2)$.

Fig. 3. $u_2, w, x \in X$ and $u, u_1, u', z \in Y$

As in the proof of (4.4), we shall consider three cases:

- 1. $z \in V(P_1)$.
- 2. $z \in V(P_2)$.
- 3. z = x.

Using similar arguments we get contradiction.

In any case we obtain a contradiction by replacing in (4.10), (4.12) and (4.9), the edge za by the path zwua. Hence (4.5) is true.

For $a = u_1$, you can find the illustrations of Cases 1 and 2 on Figures 3 and 4 respectively.

In order to prove (4.6), suppose that $b \in V(]u, u_1]$, $c \in V(]u', u_2]$ and $z \in N_R(\{b, c\})$.

From (4.4) we know that $N_{P_1xP_2}(b) = N_c(P_1xP_2) = \emptyset$, and so $z \notin V(P)$. In this case the cycle:

$$C': \quad uP_1xP_2u'u'^- \dots u_1 \dots bzc \dots u_2u_2^+ \dots u$$

Fig. 4. $u_2, w, x \in X$ and $u, u_1, u', z \in Y$

Hence (4.6) is true.

In order to prove (4.7), suppose that there is a vertex $y \in N_R(x)$ such that $N_{[u, u_1]}(y) \neq \emptyset$. From (4.4) we know that $y \notin V(P_1xP_2)$. We have a vertex $b \in V([u, u_1])$ such that $yb \in E$ and the following cycle:

$$C': uP_1xybb^+ \dots u_1 \dots u' \dots u_2 \dots u$$

contains S, a contradiction and so $N_{[u, u_1]}(y) = \emptyset$.

Using the same arguments we can prove $N_{]u, u_2]}(y) = \emptyset$. Hence (4.7) is true and the proof of Lemma 4.3 is finished.

4.3. PROOF OF THEOREM 3.1

We may assume that $S_Y \neq \emptyset$ and $|S_Y| \ge |S_X|$. We will proceed by induction over the number of vertices in S_X .

If $|S_X| = 0$, then $S = S_Y$ and from Theorem 1.6 we know that S is cyclable in G. So the first step of the induction is finished.

Suppose now that S satisfies the assumptions of Theorem 3.1 and $|S_X| \ge 1$.

From the induction hypothesis, we assume that for any $x \in S_X$ the set $S \setminus \{x\}$ is cyclable in G, while S itself is not cyclable. Let us choose a vertex $x \in S_X$.

We have a cycle C containing $S \setminus \{x\}$ such that $x \notin V(C)$. We recall that the cycle C and the C-path P are chosen such that P is shortest possible among all C-paths containing x for all cycles C containing $S \setminus \{x\}$. As in Section 4.1, u_1 is the first vertex from S on the cycle C after u and u_2 is the first vertex from S on the cycle C after u and u_2 is the first vertex from S on the cycle C after u and u_2 is the first vertex from S on the cycle C after u', R is the subgraph induced in G by $V(G) \setminus V(C)$.

It is clear that in this case R is a balanced bipartite graph.

Note that if c = |V(C)|, r = |V(R)|, then c and r are even and $n = \frac{c+r}{2}$. From Remark 4.2 and Lemma 4.3 C and P satisfy (4.3) — (4.7). We shall consider four cases:

- 1. $N_R(x) = \emptyset$.

- 2. $N_R(x) \neq \emptyset$ and $u_1, u_2 \in S_Y$. 3. $N_R(x) \neq \emptyset$ and $u_1, u_2 \in S_X$. 4. $N_R(x) \neq \emptyset$ and u_1 and u_2 are in different partite sets.

Case 1. $N_R(x) = \emptyset$

In this case P_1 and P_2 are empty and $xu, xu' \in E$.

Since R is balanced there is an $y \in Y \cap V(R)$. Since $xy \notin E$ then from (3.1) we have:

$$d(x) + d(y) \ge n + 1.$$
 (4.13)

Since $N_R(x) = \emptyset$ we have:

$$d_R(x) = 0$$
 and $d_R(y) \le \frac{r}{2} - 1$. (4.14)

Fig. 5. $a^+, b^+, x \in X$ and $a, b, y \in Y$

Suppose that y has two neighbors a^+ , b^+ in $N_C(x)^+$, then $xa, xb \in E$ and the cycle C' (see Fig. 5):

$$C': \quad xbb^{-} \dots a^{+}yb^{+}b^{++} \dots ax$$

contains S, a contradiction with noncyclability of S. So y has at most one neighbor in $\mathcal{N}_C(x)^+$ and thus:

$$d_C(x) + d_C(y) \le \frac{c}{2} + 1.$$
 (4.15)

From (4.14) and (4.15) we have:

$$d(x) + d(y) \le \frac{r}{2} - 1 + \frac{c}{2} + 1 \le n,$$

a contradiction with (3.1).

Case 2. $N_R(x) \neq \emptyset$ and $u_1, u_2 \in S_Y$

Subcase 2.1. There is a vertex $x_0 \in V(]u, u_1[) \cap X$ or $x_0 \in V(]u', u_2[) \cap X$ We can assume that $x_0 \in V(]u, u_1[) \cap X$. Since $V(]u, u_1[) \cap S = \emptyset$, then from Lemma 4.3 (4.4) $xu_1 \notin E$. Note that if $x_0u_2 \in E$, then the cycle:

$$C': \quad uP_1xP_2u'u'^-\dots u_1\dots x_0u_2u_2^+\dots u$$

contains S, a contradiction.

Using the same arguments we can show that:

$$N_{]u, u_1[}(u_2) = \emptyset \text{ and } N_{]u', u_2[}(x_0) = \emptyset.$$
 (4.16)

So we have $u_1, u_2 \in Y, xu_1 \notin E, x_0u_2 \notin E$ and from (3.1), (3.2) we have:

$$d(x_0) + d(x) + d(u_1) + d(u_2) \ge 2n + 2.$$
(4.17)

Consider the interval $]u_2, u_1[.$

If $a \in V(]u_2, u_1[)$ and $x_0a \in E$ then $a^+u_2 \notin E$.

Suppose that there is a vertex $a \in V(]u_2, u_1[)$ such that $x_0a, a^+u_2 \in E$. From (4.16) we have $a \in V(]u_2, u[)$ and in this case the cycle:

$$C': \quad x_0 a a^- \dots u_2^+ u_2 a^+ \dots u P_1 x P_2 u' u'^- \dots u_1 \dots x_0 \tag{4.18}$$

contains S, a contradiction.

Using similar arguments we can show that if $a \in V(]u_1, u_2[)$ and $u_2a \in E$ then $a^+x_0 \notin E$.

Since also $u_1u_2 \notin E$ we have:

$$d_C(x_0) + d_C(u_2) \le \frac{c}{2}.$$
 (4.19)

If $a \in V(C) \setminus \{u\}$ and $xa \in E$ then $u_1a^+ \notin E$.

Suppose that there is a vertex $a \in V(C) \setminus \{u\}$ such that $xa, u_1a^+ \in E$. From (4.4) we know that $a \notin V([u, u_1])$ and thus the cycle:

$$C': \quad xaa^{-}\dots u_{1}a^{+}a^{++}\dots uP_{1}x$$

So we have:

$$d_C(x) + d_C(u_1) \le \frac{c}{2} + 1.$$
 (4.20)

From Lemma 4.3 (4.5) we have:

$$d_R(x) + d_R(x_0) \le \frac{r}{2}.$$
 (4.21)

From Lemma 4.3 (4.6) we have:

$$d_R(u_1) + d_R(u_2) \le \frac{r}{2}.$$
 (4.22)

From (4.19) - (4.22) we have:

$$d(x_0) + d(x) + d(u_1) + d(u_2) \le \frac{c}{2} + \frac{c}{2} + 1 + \frac{r}{2} + \frac{r}{2} = 2n + 1,$$

a contradiction with (4.17).

Subcase 2.2. $u^+ = u_1$ and $u'^+ = u_2$

If $u^+ = u_1$ and $u'^+ = u_2$ then $u, u' \in X$ and so $V(P_1) \neq \emptyset$ and $V(P_2) \neq \emptyset$ and from Remark 4.2 (4.2) we have $d_C(x) = 0$.

Subcase 2.2.1. $N_R(u_1) = \emptyset$ or $N_R(u_2) = \emptyset$ We can assume that $N_R(u_1) = \emptyset$. From Lemma 4.3 (4.4) $xu_1 \notin E$ and so from (3.1) we have:

$$d(x) + d(u_1) \ge n + 1.$$
(4.23)

From Remark 4.2 (4.2) and the assumption that $N_R(u_1) = \emptyset$ we have:

$$d(x) + d(u_1) = d_C(x) + d_R(x) + d_C(u_1) + d_R(u_1) \le 0 + \frac{r}{2} + \frac{c}{2} + 0 = n,$$

a contradiction with (4.23).

Subcase 2.2.2. $N_R(u_1) \neq \emptyset$ and $N_R(u_2) \neq \emptyset$

Take an $a \in N_R(u_1)$. From Lemma 4.3 (4.4) $a \notin V(P)$ and $u_1 x \notin E$. From (4.6) $u_2a \notin E$ and so from (3.1), (3.2) we have:

$$d(u_1) + d(u_2) + d(x) + d(a) \ge 2n + 2.$$
(4.24)

Note that for any $b \in V(]u_2, u[)$ if $ab \in E$ then $u_2b^+ \notin E$. Suppose that ab, $u_2b^+ \in E$, then the cycle:

$$C: abb^{-} \dots u_{2}b^{+} \dots u_{P_{1}}xP_{2}u'u'^{-} \dots u_{1}a$$

contains S, a contradiction.

Note that for any $b \in V([u_1, u'])$ if $ab \in E$ then $u_2b^- \notin E$. Suppose that ab, $u_2b^- \in \mathbf{E}$, then the cycle:

$$C: abb^+ \dots u' P_2 x P_1 u u^- \dots u_2 b^- \dots u_1 a$$

Since S is not cyclable $N_{u_2}(]u, u_1]) = \emptyset$. Note that in this case $u_2 = u'^+$ and so it is impossible that $au', u'^+u_2 \in E$. From the above we have:

$$\mathbf{d}_C(u_2) + \mathbf{d}_C(a) \le \frac{c}{2}.\tag{4.25}$$

Since from Remark 4.2 (4.2) we have $d_C(x) = 0$ then:

$$\mathrm{d}_C(x) + \mathrm{d}_C(u_1) \le \frac{c}{2}$$

and

$$d_C(x) + d_C(a) + d_C(u_1) + d_C(u_2) \le c.$$
 (4.26)

Suppose now that we have a vertex $b \in V(R)$ such that $ab, xb \in E$. Then the cycle:

$$C: \quad u_1 a b x P_1 u u^- \dots u_2 u' u'^- \dots u_1$$

contains S, a contradiction and so we have:

$$\mathbf{d}_R(x) + \mathbf{d}_R(a) \le \frac{r}{2}.\tag{4.27}$$

From Lemma 4.3 (3.1) for any vertex $b \in V(R)$ if $u_1 b \in E$ then $u_2 b \notin E$. Since also $x \notin N(u_1) \cup N(u_2)$ we have:

$$d_R(u_1) + d_R(u_2) \le \frac{r}{2} - 1.$$
 (4.28)

From (4.26) - (4.28) we have

$$d(u_1) + d(u_2) + d(x) + d(a) \le c + r - 1 \le 2n - 1,$$

a contradiction with (4.24).

Case 3. $N_R(x) \neq \emptyset$ and $u_1, u_2 \in S_X$

Subcase 3.1. $V([u, u_1[) \cap Y \neq \emptyset \text{ or } V([u', u_2[) \cap Y \neq \emptyset)$

Choose a vertex $y \in V(]u, u_1[) \cap Y$. From Lemma 4.3 (4.3) we have $xy \notin E$ and so from (3.1) we have:

$$d(x) + d(y) \ge n + 1.$$
 (4.29)

Subcase 3.1.1. x has a neighbor in $R \setminus P_1$

Let y' be a neighbor of x from $R \setminus P_1$. Note that since S is not cyclable $u_1 y' \notin E$ and from (3.1) we have:

$$d(x) + d(y) + d(y') + d(u_1) \ge 2n + 2.$$
(4.30)

Note that y and y' cannot have common neighbors in R, because if we have a vertex $b \in V(R) \cap X$ such that $yb, y'b \in E$ then the following cycle:

$$C: \quad uP_1xy'byy^+\dots u_1\dots u'\dots u_2\dots u^-u$$

Using the same arguments we can show that u_1 and x don't have common neighbors in R and thus:

$$d_R(x) + d_R(y) + d_R(y') + d_R(u_1) \le \frac{r}{2} + \frac{r}{2} = r.$$
 (4.31)

Subcase 3.1.1.1. $V(P_1) \neq \emptyset$

Since $V(P_1) \neq \emptyset$ and P is a shortest C-path containing x, we have $xu \notin E$ and since from Lemma 4.3 (4.4) $d_{]u,u_1]}(x) = 0$, we have $d_{[u,u_1]}(x) = 0$.

Note that by the choice of C and P, for any $a \in V([u_1, u])$ $V(P_1) \neq \emptyset$

 $xa \in E$ then $ya^+ \notin E$. Suppose that $xa, ya^+ \in E$ then the cycle:

$$C: \quad xaa^{-} \dots ya^{+}a^{++} \dots uP_{1}x$$

contains S, a contradiction.

From this:

$$d_C(x) + d_C(y) \le \frac{c}{2}.$$
(4.32)

If $a \in V([u_1, u])$ and $y'a \in E$ then $u_1a^+ \notin E$. Take a vertex $a \in V(C) \setminus \{u\}$ and suppose that y'a, $u_1a^+ \in E$, then the cycle:

$$C: \quad xy'aa^{-}\dots u_{1}a^{+}a^{++}\dots uP_{1}x$$

contains S, a contradiction.

From Lemma 4.3 (4.7) $d_{u'}([u, u_1]) = 0.$

Since it is possible that $y'u \in E$, from the above we get:

$$d_C(y') + d_C(u_1) \le \frac{c}{2} + 1.$$
(4.33)

From (4.32) and (4.33) we have:

$$d_C(x) + d_C(y) + d_C(y') + d_C(u_1) \le c + 1.$$
(4.34)

Subcase 3.1.1.2. $V(P_1) = \emptyset$

For any $a \in V(C) \setminus \{u\}$ if $xa \in E$ then $ya^+ \notin E$, except xu and yu^+ . Hence:

$$d_C(x) + d_C(y) \le \frac{c}{2} + 1.$$
 (4.35)

As in Subcase 3.1.1.1 for any $a \in V(]u_1, u[)$ if $y'a \in E$ then $u_1a^+ \notin E$. From Lemma 4.3 (4.7) $d_{]u,u_1]}(y') = 0.$

Since in this case $xu \in E$, we know that $u \in Y$ and $y'u \notin E$, thus $d_{y'}([u, u_1]) = 0$. From the above:

$$d_C(y') + d_C(u_1) \le \frac{c}{2}.$$
 (4.36)

From (4.35) and (4.36) we have:

$$d_C(x) + d_C(y) + d_C(y') + d_C(u_1) \le c + 1$$
(4.37)

Conclusion from Subcases 3.1.1.1 and 3.1.1.2

Independently of the fact if $V(P_1)$ is empty or not, when x has a neighbor in $R \setminus P_1$ from (4.37) and (4.34) we have:

$$d_C(x) + d_C(y) + d_C(y') + d_C(u_1) \le c + 1$$

and from (4.31):

$$d_R(x) + d_R(y) + d_R(y') + d_R(u_1) \le r.$$

Hence from (4.31) and (4.37) we have:

$$d(x) + d(y) + d(y') + d(u_1) \le r + c + 1 = 2n + 1,$$

a contradiction with (4.30). This ends the proof of Subcase 3.1.1.

Subcase 3.1.2. $N_R(x) \subset P_1$

We recall that $N_R(x) \neq \emptyset$. In this case $N_R(x) = \{y'\}$ and x has no other neighbors in R. We will get a contradiction by calculating the degree sum of the vertices x, y, y', and u_2 .

We recall that $xy \notin E$ and we have the inequality (4.29):

$$d(x) + d(y) \ge n + 1.$$

Let y' be a neighbor of x in $R \cap P_1$. From (4.4) we have $u_2 y' \notin E$ and from (3.1):

$$d(y') + d(u_2) \ge n + 1. \tag{4.38}$$

Hence from (3.1) we have:

$$d(x) + d(y) + d(y') + d(u_2) \ge 2n + 2.$$
(4.39)

From Lemma 4.3 (4.4) and (4.7) we have:

$$d_R(y) + d_R(y') \le \frac{r}{2}.$$
 (4.40)

Since S is not cyclable x and u_2 cannot have common neighbors in R we have:

$$d_R(x) + d_R(u_2) \le \frac{r}{2}.$$
 (4.41)

From (4.40) and (4.41) we get:

$$d_R(x) + d_R(y) + d_R(y') + d_R(u_2) \le r.$$
(4.42)

Using the same arguments as those used to show (4.32) in Subcase 3.1.1.1 we can show that:

$$d_C(x) + d_C(y) \le \frac{c}{2}.$$
(4.43)

Since $N_R(x) \subset P_1$ we have $P_2 = \emptyset$ and $xu' \in ED$. Hence $u' \in Y$. Since $y', u' \in Y$ we know that $y'u' \notin E$ and since also S is not cyclable we have:

$$- \operatorname{N}_{[u', u_2[}(y') = \emptyset.$$

- If $a \in \operatorname{V}([u_2, u'])$ and $y'a \in \operatorname{E}$ then $a^+u_2 \notin \operatorname{E}$.

From the above we have:

$$d_C(u_2) + d_C(y') \le \frac{c}{2}.$$
 (4.44)

From (4.42) - (4.44) we have:

$$d(x) + d(y) + d(y') + d(u_2) \le r + c \le 2n,$$

a contradiction with (3.1).

Subcase 3.2. $V(]u, u_1[) \cap Y = V(]u', u_2[) \cap Y = \emptyset$

From the main assumption in Case 1 we know that $u_1, u_2 \in X$. Since also $V(]u, u_1[) \cap Y = V(]u', u_2[) \cap Y = \emptyset$ we have:

$$]u, u_1[=]u', u_2[=\emptyset.$$
(4.45)

From (4.45): $u_1 = u^+$ and $u_2 = u'^+$ and thus $u, u' \in Y$. Subcase 3.2.1. $N_P(u_1) = \emptyset$ or $N_P(u_2) = \emptyset$

Subcase 3.2.1. $N_R(u_1) = \emptyset$ or $N_R(u_2) = \emptyset$ We may assume that $N_R(u_1) = \emptyset$. In this case $u, u' \in Y$ and since $N_R(x) \neq \emptyset, x$ has a neighbor in $R \setminus P_1$ or $R \setminus P_2$. We can assume that there is a vertex $y \in V(R \setminus P_1)$, such that $xy \in E$. From Lemma 4.3 (4.7) we know that $u_1y \notin E$ and from (3.1) we have:

$$d(y) + d(u_1) \ge n + 1. \tag{4.46}$$

Note that for any $a \in V(]u_1, u^-[)$ if $ya \in E$ then $u_1a^+ \notin E$, because if $ya, u_1a^+ \in E$ then the cycle:

$$C: \quad xyaa^{-}\dots u_{1}a^{+}a^{++}\dots u^{-}uP_{1}x$$

contains S, a contradiction.

Note that since S is not cyclable $yu^-\not\in \mathcal{E}$ and since $u,\,y\in Y$ we have $yu\not\in \mathcal{E}$ and so

$$d_C(y) + d_C(u_1) \le \frac{c}{2}$$
 (4.47)

Since $u_1 y \notin E$ and $N_R(u_1) = \emptyset$ we have:

$$d_R(y) + d_R(u_1) \le \frac{r}{2} - 1$$
 (4.48)

and from (4.47), (4.48) we have:

$$d(y) + d(u_1) \le \frac{c}{2} + \frac{r}{2} - 1 \le n - 1,$$

a contradiction with (3.1).

Subcase 3.2.2. $N_R(u_1) \neq \emptyset$ and $N_R(u_2) \neq \emptyset$

From the noncyclability of S we know that u_1 and x cannot have common neighbors in R. We choose a vertex $y_1 \in N_R(u_1)$. Note that $y_1 \notin V(P)$. We chose also a $y \in N_R(x) \setminus \{y_1\}$.

Since $u_1 y \notin E$ and $xy_1 \notin E$, from (3.1) we have:

$$d(x) + d(y) + d(u_1) + d(y_1) \ge 2n + 2.$$
(4.49)

From the noncyclability of S we know that y and y_1 cannot have common neighbors in R and so:

$$d_R(y) + d_R(y_1) \le \frac{r}{2}.$$
 (4.50)

For the same reasons x and u_1 cannot have common neighbors in R and so:

$$d_R(x) + d_R(u_1) \le \frac{r}{2}.$$
 (4.51)

We recall that in this case $N_R(x) \subset P_1$ and $N_R(x) \neq \emptyset$, hence $xu \notin E$. Note that for any $a \in V(C) \setminus \{u\}$, if $ax \in E$ then $a^+y_1 \notin E$. Suppose that ax, $a^+y_1 \in E$, then the cycle:

$$C: \quad xaa^{-} \dots u_1 y_1 a^{+} a^{++} \dots u^{-} u P_1 x$$

contains S, a contradiction. From this:

$$d_C(x) + d_C(y_1) \le \frac{c}{2}.$$
 (4.52)

Using the same arguments we can show that for any $a \in V(C)$, if $ay \in E$ then $a^+u_1 \notin E$ and thus:

$$d_C(y) + d_C(u_1) \le \frac{c}{2}.$$
 (4.53)

From (4.50) - (4.53) we have

$$d(x) + d(y) + d(y_1) + d(u_1) \le \frac{r}{2} + \frac{r}{2} + \frac{c}{2} + \frac{c}{2} = 2n,$$

a contradiction with (4.49).

Case 4. $N_R(x) \neq \emptyset$ and u_1 and u_2 are in different partite sets

We can assume that $u_1 \in X$ and $u_2 \in Y$.

Subcase 4.1. $N_R(x) \cap (V(R \setminus P_1)) \neq \emptyset$ We choose a vertex $y \in N_R(x) \cap (V(R \setminus P_1))$. From Lemma 4.3 (4.4) we know

that $xu_2 \notin E$ and so from (3.1) we have:

$$d(x) + d(u_2) \ge n + 1. \tag{4.54}$$

From Lemma 4.3 (4.7) we know that $yu_1 \notin E$ and so from (3.2) we have:

$$d(u_1) + d(y) \ge n + 1. \tag{4.55}$$

Thus from (4.54) and (4.55) we have:

$$d(x) + d(y) + d(u_1) + d(u_2) \ge 2n + 2.$$
(4.56)

For any $a \in V(]u_2, u'[)$ if $xa \in E$ then $u_2a^+ \notin E$. Suppose that $xa, u_2a^+ \in E$ then the cycle:

$$C: \quad xaa^{-} \dots u_{2}^{+} u_{2}a^{+}a^{++} \dots uu^{+} \dots u_{1} \dots u'P_{2}x$$

Note that however from Lemma 4.3 (4.4) we know that $N_{]u', u_2]}(x) = \emptyset$, but if a = u' it may happen that $xa, u_2a^+ \in E$ and so:

if
$$xu' \notin \mathbf{E}$$
 then $\mathbf{d}_C(x) + \mathbf{d}_C(u_2) \le \frac{c}{2}$, (4.57)

if
$$xu' \in E$$
 then $d_C(x) + d_C(u_2) \le \frac{c}{2} + 1.$ (4.58)

Using the same arguments we can show that for any $a \in V(]u_1, u[)$ if $ya \in E$ then $u_1a^+ \notin E$. Note that however from Lemma 4.3 (4.7) we know that $N_{]u, u_1]}(y) = \emptyset$, but if a = u it may happen that $ya, u_1a^+ \in E$ and so:

if
$$yu \notin E$$
 then $d_C(y) + d_C(u_1) \le \frac{c}{2}$, (4.59)

if
$$yu \in E$$
 then $d_C(y) + d_C(u_1) \le \frac{c}{2} + 1.$ (4.60)

Suppose now that $d_C(x) + d_C(u_2) = \frac{c}{2} + 1$ and $d_C(y) + d_C(u_1) = \frac{c}{2} + 1$. In this case we have $xu', yu \in E$. Since $xu' \in E$ we have $y \notin V(P_2)$ and since $yu \in E$ we have $u \in X$. Since $u \in X$ we have $V(P_1) \neq \emptyset$. Hence from Remark 4.2 (4.1) $d_C(x) = 1$.

From the noncyclability of S we have $u_1u_2 \notin E$ and so $d_C(u_1) \leq \frac{c}{2} - 1$ and $d_C(u_2) \leq \frac{c}{2} - 1$.

From the above if $xu', yu \in E$ then:

$$d_C(x) + d_C(u_2) \le \frac{c}{2} \tag{4.61}$$

and this improves upon the inequality (4.58). In fact we cannot have $d_C(y)+d_C(u_1) = d_C(x) + d_C(u_2) = \frac{c}{2} + 1$, and so from (4.57) — (4.61) we know that in any case:

$$d_C(x) + d_C(u_2) + d_C(y) + d_C(u_1) \le c + 1.$$
(4.62)

From Lemma 4.3 (4.7) vertices u_2 and y cannot have common neighbors in R and so:

$$d_R(u_2) + d_R(y) \le \frac{r}{2}.$$
 (4.63)

For the same reasons we have:

$$d_R(u_1) + d_R(x) \le \frac{r}{2}.$$
 (4.64)

From (4.62) - (4.64) we have:

$$d(x) + d(y) + d(u_1) + d(u_2) \le c + 1 + r = 2n + 1,$$

a contradiction with (4.56).

Subcase 4.2. $N_R(x) \subset P_1$

Since $N_R(x) \subset P_1$ we have: $xu' \in E$ and there is a vertex $y \in V(P_1)$ such that $xy \in E$ and so from Lemma 4.3 we have $d_C(x) \leq 1$.

Note that from noncyclability of $S xu_2 \notin E$. From Lemma 4.3 (4.4) we know that $yu_1 \notin E$ and from (3.1) we have:

$$d(x) + d(y) + d(u_1) + d(u_2) \ge 2n + 2.$$
(4.65)

Using the same arguments as in Subcase 4.1 to show (4.57) and (4.58) we have:

$$d_C(x) + d_C(u_2) \le \frac{c}{2} + 1.$$
 (4.66)

From Lemma 4.3 (4.4) we have $V(]u, u_1]) \cap N(y) = \emptyset$. For any $a \in V(]u_1, u[)$ if $ya \in E$ then $u_1a^+ \notin E$. In this case $xy \in E$, $y \in V(P_1)$ and the vertices of the path $P = P_1xP_2$ are labelled in the following way: $p_1^1 \dots p_l^1xp_2^k \dots p_2^1$. Since P is the shortest C-path $y = p_l^1$.

Suppose that $y_a, u_1a^+ \in E$, then the cycle:

$$C': yaa^- \dots u_1a^+ \dots up_1^1 \dots p_{l-1}^1 y$$

contains $S \setminus \{x\}$ and has a *C*-path P' : yxu', shorter than P, a contradiction with the choice of C and P. However it is possible that if a = u then $ya, u_1a^+ \in E$. So we have shown that:

if
$$yu \notin E$$
 then $d_C(y) + d_C(u_1) \le \frac{c}{2}$. (4.67)

Suppose now that $yu \in E$. Since $xu' \in E$ we have $u' \in Y$ and $u_2 \in Y$. From this $V(]u', u_2[) \cap X \neq \emptyset$. We choose a vertex $v \in V(]u', u_2[) \cap X$. From the noncyclability of $S \ u_1v^+ \notin E$ and $yv \notin E$.

Since if $yu \in E$, then we have a vertex $v \in V(C) \cap X$ such that $u_1v^+ \notin E$ and $yv \notin E$, so we have:

$$d_C(y) + d_C(u_1) \le \frac{c}{2}.$$
 (4.68)

From (4.67) and (4.68) in any case:

$$d_C(y) + d_C(u_1) \le \frac{c}{2}.$$
 (4.69)

From Lemma 4.3 (4.7) vertices u_2 and y cannot have common neighbors in R and so:

$$d_R(u_2) + d_R(y) \le \frac{r}{2}.$$
 (4.70)

For the same reasons we have:

$$d_R(u_1) + d_R(x) \le \frac{r}{2}.$$
 (4.71)

From (4.66) and (4.69) - (4.71) we have:

$$d(x) + d(y) + d(u_1) + d(u_2) \le \frac{c}{2} + 1 + \frac{c}{2} + \frac{r}{2} + \frac{r}{2} = 2n + 1,$$

a contradiction with (4.65).

We have shown that in any case we get a contradiction with the hypothesis that S is not cyclable, so the proof of Theorem 3.1 is finished.

Acknowledgments

Research partially supported by the UST-AGH grant 1142004. This work was carried out in part while GG was visiting LRI UPS, Orsay, France.

REFERENCES

- [1] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976), 111–135.
- D. Amar, M. El Kadi Abderrezzak, E. Flandrin, Cyclability and pancyclability in bipartite graphs, Discrete Math. 236 (2001), 3–11.
- [3] R. Čada, E. Flandrin, H. Li, Z. Ryjáček, Cycles trough given vertices and closures, Discrete Mathematics 276 (2004), 65–70.
- [4] E. Flandrin, H. Li, A. Marczyk, M. Woźniak, A note on a generalization of Ore's condition, Rapport de Recherche LRI (2002).
- [5] J. Moon, M. Moser, On hamiltonian bipartite graphs, Israel J. Math. 1 (1963), 357–369.
- [6] O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
- [7] K. Ota, Cycles through prescribed vertices with large degree sum, Discrete Mathematics 145 (1995), 201–210.
- [8] Shi Ronghua, 2-neighborhoods and hamiltonian conditions, J. Graph Theory 16 (1992), 267–271.
- [9] M.E. Watkins, D.M. Mesner, Cycles and connectivity in graphs, Canad. J. Math. 19 (1967), 1319–1328.

Denise Amar, amar@labri.u-bordeaux.fr

LaBRI Université de Bordeaux 1, 351 Coursde la Liberation, 33405 Talence, France

Evelyne Flandrin fe@lri.fr

LRI,UMR8623, Bâtiment 490, Université Paris-Sud 91405 Orsay Cedex France

Grzegorz Gancarzewicz (corresponding author) gancarz@agh.edu.pl

AGH University of Science and Technology Faculty of Applied Mathematics al. Mickiewicza 30, 30-059 Cracow, Poland

Received: August 31, 2008. Revised: July 1, 2009. Accepted: July 23, 2009.