Denise Amar, Evelyne Flandrin, Grzegorz Gancarzewicz

CYCLABILITY IN BIPARTITE GRAPHS

Abstract

Let $G=(X, Y ; \mathrm{E})$ be a balanced 2-connected bipartite graph and $S \subset \mathrm{~V}(G)$. We will say that S is cyclable in G if all vertices of S belong to a common cycle in G. We give sufficient degree conditions in a balanced bipartite graph G and a subset $S \subset \mathrm{~V}(G)$ for the cyclability of the set S.

Keywords: graphs, cycles, bipartite graphs.

Mathematics Subject Classification: 05C20, 05C35, 05C38, 05 C 45.

1. INTRODUCTION

We shall consider only finite graphs without loops and multiple edges.
Several authors have given results about cycles containing specific subsets of vertices, see for example [7] or [9].

The set S of vertices is called cyclable in G if all vertices of S belong to a common cycle in G. We also speak about cyclability or noncyclability of the vertex set S.

In a bipartite graph $G=(X, Y ; \mathrm{E})$ we will call the independent sets of vertices X and Y the partite sets.

Let $G=(X, Y ; \mathrm{E})$ be a bipartite graph and let $S \subset \mathrm{~V}(G)$, then $S_{X}=S \cap X$ and $S_{Y}=S \cap Y$. We will say that S is balanced iff $\left|S_{X}\right|=\left|S_{Y}\right|$.

In 1992 Shi Ronghua [8] obtained the following result:
Theorem 1.1. Let G be a 2-connected graph of order n and S a subset of $V(G)$ with $|S| \geq 3$. If for every pair of nonadjacent vertices x and y in S we have

$$
\mathrm{d}(x)+\mathrm{d}(y) \geq n,
$$

then S is cyclable in G.
Note that the assumption of 2-connectivity may be omitted in Theorem 1.1. It is an easy corollary of a result of K. Ota [7].

Recently R. Cada, E. Flandrin and Z. Ryjáček [3] proved the following generalization of Theorem 1.1:

Theorem 1.2. Let G be a 2-connected graph of order n and S a subset of $V(G)$. If for every pair of nonadjacent vertices x and y in S we have

$$
\mathrm{d}(x)+\mathrm{d}(y) \geq n-1
$$

then either S is cyclable in G, or n is odd and G contains an independent set $S_{1} \subseteq S$ such that $\left|S_{1}\right|=\frac{n}{2}$ and every vertex of S_{1} is adjacent to all vertices in $G \backslash S_{1}$.

In 2002 E. Flandrin, H. Li, A. Marczyk and M. Woźniak [4] obtained the following generalization of Theorem 1.1:
Theorem 1.3. Let G be a k-connected graph, $k \geq 2$ of order n. Denote $S_{1}, \ldots S_{k}$ subsets of the vertex set $\mathrm{V}(G)$ and let $S=S_{1} \cup S_{2} \cup \cdots \cup S_{k}$. If for any $x, y \in S_{i}$, $x y \notin E$ we have

$$
\mathrm{d}(x)+\mathrm{d}(y) \geq n
$$

then S is cyclable in G.
The notion of cyclability is a generalization of the term of hamiltonicity. If we consider $S=\mathrm{V}(G)$ then S is cyclable iff G is hamiltonian. In fact Theorem 1.1 is a generalization of the following result of O. Ore [6]:
Theorem 1.4. Let G be a graph on $n \geq 3$ vertices. If for all nonadjacent vertices $x, y \in \mathrm{~V}(G)$ we have

$$
\mathrm{d}(x)+\mathrm{d}(y) \geq n
$$

then G is hamiltonian.
A similar result for bipartite graphs was proved by J. Moon and M. Moser [5] in 1963 :

Theorem 1.5. Let $G=(X, Y ; E)$ be a balanced bipartite graph of order $2 n$. If for all nonadjacent vertices $x \in X$ and $y \in Y$ we have

$$
\mathrm{d}(x)+\mathrm{d}(y) \geq n+1
$$

then G is hamiltonian.
Given a balanced bipartite graph and a selected subset of vertices, we are interested in properties that imply cyclability.

In 2000 D. Amar, M. El Kadi Abderrezzak, E. Flandrin [2] proved the following generalization of Theorem 1.1 for bipartite graphs:

Theorem 1.6. Let $G=(X, Y ; \mathrm{E})$ be a balanced 2-connected bipartite graph of order $2 n, S \subset X$. If for every $x \in S, y \in Y, x y \notin \mathrm{E}$ we have

$$
\mathrm{d}(x)+\mathrm{d}(y) \geq n+1
$$

then S is cyclable in G.
Note that in this case $S=S_{X}$ and Theorem 1.6 is also a generalization of Theorem 1.5.

The main result of the present paper, given in Section 3, is Theorem 3.1, which improves upon Theorem 1.6.

2. DEFINITIONS

Let G be a graph and H a subgraph of G.
Definition 2.1. $\mathrm{N}_{G}(H)$ denotes the set of all vertices of the graph G which are adjacent to a vertex of the subgraph H, i.e. $\mathrm{N}_{G}(H)=\{u \in \mathrm{~V}(G): \exists v \in \mathrm{~V}(H)$ such that $u v \in \mathrm{E}(G)\}$.

Consider an arbitrary vertex $x \in \mathrm{~V}(G) . \mathrm{N}(x)$ denotes the set of all neighbors of the vertex x in G, i.e. $\mathrm{N}(x)=\{u \in \mathrm{~V}(G): x u \in \mathrm{E}(G)\} . \mathrm{N}_{H}(x)$ denotes the set of all neighbors of the vertex x in the subgraph H, i.e. $\mathrm{N}_{H}(x)=\{u \in \mathrm{~V}(H): x u \in \mathrm{E}(G)\}$.
$\mathrm{d}_{H}(x)$ denotes the number of neighbors of x in the subgraph H i.e. $\mathrm{d}_{H}(x)=\left|\mathrm{N}_{H}(x)\right|$, and $\mathrm{d}_{H}(x)$ denotes the degree of the vertex x in the subgraph H.

In the proof we will only use cycles and paths with a given orientation. For a cycle $C: c_{1} \ldots c_{k}$ or a path $P: p_{1} \ldots p_{l}$ we will use implicit orientation.

Thus it makes sense to speak of a successor c_{i+1} and a predecessor c_{i-1} of a vertex c_{i} (addition modulo $l+1$). Denote the successor of a vertex x by x^{+}and its predecessor by x^{-}. This notation can be extended to $A^{+}=\left\{x^{+}: x \in A\right\}$, and similarly, to A^{-}when $A \subseteq \mathrm{~V}(G)$.

Let P be a path $p_{1} \ldots p_{k}$ and $u, v \in \mathrm{~V}(G)$ such that $u p_{1}, v p_{k} \in \mathrm{E}(G)$, then: $u P v$ is the path $u p_{1} \ldots p_{k} v$ and $v P u$ is the path $v p_{k} \ldots p_{1} u$.

Definition 2.2. We shall call a path $P: p_{1} \ldots p_{l}$ a C-path of the cycle C iff $\mathrm{V}(P) \cap$ $\mathrm{V}(C)=\left\{p_{1}, p_{l}\right\}$. Note that a C-path is a generalized chord of the cycle.

Definition 2.3. Let $C: c_{1} \ldots c_{l}$ be a cycle in G with the orientation, the indices $1, \ldots, l$ are considered modulo l. For any pair of vertices $c_{i}, c_{j} \in \mathrm{~V}(C)(i \neq j)$ we define four intervals:

- $] c_{i}, c_{j}\left[\right.$ is the path $c_{i+1} \ldots c_{j-1}$.
- $\left[c_{i}, c_{j}\left[\right.\right.$ is the path $c_{i} \ldots c_{j-1}$.
-] $\left.c_{i}, c_{j}\right]$ is the path $c_{i+1} \ldots c_{j}$.
$-\left[c_{i}, c_{j}\right]$ is the path $c_{i} \ldots c_{j}$.
Note that these four intervals are subsets of the cycle C.
For notation and terminology not defined above a good reference is [1].

3. THEOREM

Theorem 3.1. If $G=(X, Y ; \mathrm{E})$ is a balanced 2-connected bipartite graph of order $2 n$ and $S \subset \mathrm{~V}(G)$ satisfying conditions:

$$
\begin{array}{ll}
\text { For every } & x \in S_{X}, \quad y \in Y, \quad x y \notin \mathrm{E} \quad \text { we have } \quad \mathrm{d}(x)+\mathrm{d}(y) \geq n+1 \\
\text { For every } & x \in X, \quad y \in S_{Y}, \quad x y \notin \mathrm{E} \quad \text { we have } \quad \mathrm{d}(x)+\mathrm{d}(y) \geq n+1 \tag{3.2}
\end{array}
$$

then S is cyclable in G.

$S \quad$ ○ vertices from X vertices from Y

Fig. 1. $G_{p, 3}$

Theorem 3.1 is obviously a generalization of Theorem 1.6.
We first tried to find a generalization satisfying two conditions:

- The vertices of S are in both partite sets X and Y.
- The degree sum condition holds only for vertices from S.

However, even if we assume that S is balanced (i.e. $\left|S_{X}\right|=\left|S_{Y}\right|$), such a result is not true.

For every $k \geq 1$ we will give an example of a 2-connected, balanced bipartite graph $G=(X, Y ; \mathrm{E})$ and a balanced set $S \subset \mathrm{~V}(G)$, satisfying the following condition:

For every $x \in S_{X}, y \in S_{Y}$ if $x y \notin \mathrm{E} \quad$ then $\quad \mathrm{d}(x)+\mathrm{d}(y) \geq n+k$,
such that S is not cyclable in G.
Let $k \geq 1, p \geq k+2$ and $2 \leq r \leq 1+\frac{p-k}{2}$.

First consider bipartite graphs $K_{p r, 2 r}, K_{2,2}$ and r copies of $K_{2, p}$. In $K_{2,2}$ we have two partite sets say X_{2} and Y_{2}. The graph $G=(X, Y ; \mathrm{E})$ is obtained out of $K_{p r, 2 r}$, $K_{2,2}$ and the r copies of $K_{2, p}$ by joining every vertex of degree $p r$ from $K_{p r, 2 r}$ with all vertices from X_{2} and every vertex of degree p from the r copies of $K_{2, p}$ with all vertices from Y_{2}.

Let S_{1} be the set of all vertices from $K_{p r, 2 r}$ of degree $p r$ in $K_{p r, 2 r}$.
In each copy of $K_{2, p}$ we take the two vertices of degree p in $K_{2, p}$. In this way we will get $2 r$ vertices and we define the set S_{2} as the set containing these $2 r$ vertices.

We can define now the set S. Let $S=S_{1} \cup S_{2} \cup \mathrm{~V}\left(K_{2,2}\right)$.
For $k \geq 1, p \geq k+2$ and $2 \leq r \leq 1+\frac{p-k}{2}$ we have obtained a balanced, 2-connected bipartite graph $G_{p, r}=(X, Y ; \mathrm{E})$ of order $2 n$ with $n=p r+2 r+2$ and a balanced set S which is not cyclable, but satisfies (3.3).

We can find an example of the graph $G_{p, 3}$ on the Figure 1.
This example shows that it is not enough to assume that the degree sum condition holds only for the vertices from S in a bipartite graph. Even increasing the connectivity will not be sufficient, as we can see in the following example.

For every $k \geq 1$ and $l \geq 2$ we will give an example of an l-connected, balanced bipartite graph $G^{\prime}=(X, Y ; \mathrm{E})$ and a balanced set $S^{\prime} \subset \mathrm{V}\left(G^{\prime}\right)$, satisfying (3.3), such that S^{\prime} is not cyclable in G^{\prime}.

Let $k \geq 1, l \geq 2, p \geq l^{2}-l+k$ and $l \leq r<1+\frac{p-k}{l}$.
First consider bipartite graphs $K_{p r, l r}, K_{l, l}$ and r copies of $K_{l, p}$. In $K_{l, l}$ we have two partite sets say X_{l} and Y_{l}. The graph $G^{\prime}=(X, Y ; \mathrm{E})$ is obtained out of $K_{p r, l r}$, $K_{l, l}$ and the r copies of $K_{l, p}$ by joining every vertex of degree $p r$ from $K_{p r, l r}$ with all vertices from X_{l} and every vertex of degree p from the r copies of $K_{l, p}$ with all vertices from Y_{l}.

Let S_{1}^{\prime} be the set of all vertices from $K_{p r, l r}$ of degree $p r$ in $K_{p r, l r}$.
In each copy of $K_{l, p}$ we take the l vertices of degree p in $K_{l, p}$. In this way we will get $l r$ vertices and we define the set S_{2}^{\prime} as the set containing these $l r$ vertices.

We can define now the set S^{\prime}. Let $S^{\prime}=S_{1}^{\prime} \cup S_{2}^{\prime} \cup \mathrm{V}\left(K_{l, l}\right)$.
For $k \geq 1, l \geq 2, p \geq l^{2}-l+k$ and $l \leq r<1+\frac{p-k}{l}$ we have obtained a balanced, l-connected bipartite graph $G_{p, r, l}^{\prime}=(X, Y ; \mathrm{E})$ of order $2 n$ with $n=p r+l r+l$ and a balanced set S^{\prime} which is not cyclable in G^{\prime}, but satisfies (3.3).

4. PROOF OF THEOREM 3.1

4.1. PRELIMINARY NOTATIONS

Let $G=(X, Y ; \mathrm{E})$ be a bipartite graph and let C be a cycle in G.
In this chapter for a given cycle C and a vertex $x \in \mathrm{~V}(G \backslash C)$, a C-path Q through x will be denoted $Q: u Q_{1} x Q_{2} u^{\prime}$, where Q_{1} and Q_{2} are two vertex disjoint paths. The end vertices of the C-path $Q: u$ and u^{\prime} and the vertex x do not belong to Q_{1} nor Q_{2}.

Note that the path Q_{1} may be empty or in other words $\mathrm{V}\left(Q_{1}\right)=\emptyset$ and in this case $x u \in \mathrm{E}$. Similarly for Q_{2}.

An example of a C-path $P: u P_{1} x P_{2} u^{\prime}$ through a vertex x can be found on Figure 2.

Fig. 2. An example of a cycle C and a C-path P with $x, u^{\prime}, u_{1} \in X$ and $u, u_{2} \in Y$

Remark 4.1. Given a 2-connected graph G, a nonhamiltonian cycle C and a vertex $x \in \mathrm{~V}(G \backslash C), G$ contains necessarily a C-path through x.

In the remaining part of Section 4 we will always consider a 2-connected bipartite graph G and a subset $S \subset \mathrm{~V}(G)$ not cyclable in G. Given a cycle C, a vertex $x \in \mathrm{~V}(G \backslash C) \cap S$ such that C contains $S \backslash\{x\}$ but does not contain S, we will denote by P a C-path through x. We will always assume that the cycle C and the C-path P are chosen such that P is shortest possible among all C-paths through x for all cycles C containing $S \backslash\{x\}$, i.e. for any cycle C^{\prime} containing $S \backslash\{x\}$, and for any C^{\prime}-path P^{\prime} containing the vertex x we have $|\mathrm{V}(P)| \leq\left|\mathrm{V}\left(P^{\prime}\right)\right|$. We will denote this C-path $P: u P_{1} x P_{2} u^{\prime}$ (note that P_{1} and/or P_{2} may be empty).

We will denote by u_{1} the first vertex on the cycle C from S after u (u_{1} exists since S is not cyclable). Similarly u_{2} is the first vertex on the cycle C from S after u^{\prime}.
R is the subgraph induced in G by $\mathrm{V}(G) \backslash \mathrm{V}(C)$.
All the intervals of type $[a, b],[a, b[] a, b$,$] and] a, b[$ are intervals on the cycle C and we sometimes identify the vertex set of an interval with the corresponding interval.

Remark 4.2. The C-path $P: u P_{1} x P_{2} u^{\prime}$ has the following properties:

$$
\begin{align*}
& \text { - If } \mathrm{V}\left(P_{1}\right) \neq \emptyset \text { or } \mathrm{V}\left(P_{2}\right) \neq \emptyset \text { then } \mathrm{d}_{C}(x) \leq 1 \tag{4.1}\\
& \text { - If } \mathrm{V}\left(P_{1}\right) \neq \emptyset \text { and } \mathrm{V}\left(P_{2}\right) \neq \emptyset \text { then } \mathrm{d}_{C}(x)=0 \tag{4.2}
\end{align*}
$$

Remark 4.2 is an immediate consequence of the choice of the cycle C and the C-path P.

4.2. FORMULATION AND PROOF OF LEMMA 4.3

In the proof of Theorem 3.1 we shall use the following lemma. Notations G, S, C, R, x and C-path $P: u P_{1} x P_{2} u^{\prime}, u_{1}$ and u_{2} are defined in Section 4.1 but we recall them for completeness. We denote by C a cycle containing $S \backslash\{x\}$. Let P be a C-path through x. The cycle C and the C-path P are chosen such that P is shortest possible among all C-paths through x for all cycles C containing $S \backslash\{x\}$. Let u_{1} be the first vertex from S after u on the cycle C, and let u_{2} be the first vertex from S after u^{\prime} on the cycle C. The subgraph of G induced by $\mathrm{V}(G) \backslash \mathrm{V}(C)$, will be denoted R.
Lemma 4.3. Let $G=(X, Y ; \mathrm{E})$ be a 2-connected bipartite graph and let C, P, R and S be as above. Then we have:

- For every C - path $Q: a Q_{1} x Q_{2} a^{\prime}$ through x we have:

$$
\begin{equation*}
\mathrm{V}(] a, a^{\prime}[) \cap S \neq \emptyset \text { and } \mathrm{V}(] a^{\prime}, a[) \cap S \neq \emptyset \tag{4.3}
\end{equation*}
$$

- For any $\left.\left.b \in \mathrm{~V}(] u, u_{1}\right]\right)$ and $\left.\left.c \in \mathrm{~V}(] u^{\prime}, u_{2}\right]\right)$ we have:

$$
\begin{align*}
& \mathrm{N}_{P_{1} x P_{2}}(b)=\mathrm{N}_{P_{1} x P_{2}}(c)=\emptyset . \tag{4.4}\\
& \text { - If } \left.\left.\left.\left.z \in \mathrm{~V}(P) \backslash\left\{u, u^{\prime}\right\} \text {, then } \mathrm{N}_{R}(z) \cap\left(\mathrm{N}(] u, u_{1}\right]\right) \cup \mathrm{N}(] u, u_{2}\right]\right)\right)=\emptyset \text {. } \tag{4.5}\\
& \left.\left.\left.\left.-\mathrm{N}_{R}(] u, u_{1}\right]\right) \cap \mathrm{~N}_{R}(\rceil u^{\prime}, u_{2}\right]\right)=\emptyset . \tag{4.6}\\
& \text { - For any } y \in \mathrm{~N}_{R}(x) \text { we have } \mathrm{N}_{] u, u_{1}\right]}(y)=\mathrm{N}_{] u^{\prime}, u_{2}\right]}(y)=\emptyset \text {. } \tag{4.7}
\end{align*}
$$

Proof of Lemma 4.3. Suppose that V(]$a, a^{\prime}[) \cap S=\emptyset$, then the cycle:

$$
\begin{equation*}
C^{\prime}: \quad a Q_{1} x Q_{2} a^{\prime} a^{\prime+} \ldots a \tag{4.8}
\end{equation*}
$$

is a cycle containing S, a contradiction. If V(]$a^{\prime}, a[) \cap S=\emptyset$, then using similar arguments we get a contradiction and hence (4.3) is proved.

In order to prove (4.4) suppose that there is a vertex $\left.\left.b \in \mathrm{~V}(] u, u_{1}\right]\right)$ such that $\mathrm{N}_{P_{1} x P_{2}}(b) \neq \emptyset$. We have a vertex $z \in \mathrm{~N}_{P_{1} x P_{2}}(b)$ and we assume that the vertices on the path $P_{1} x P_{2}$ are labeled as follows: $P_{1} x P_{2}: p_{1}^{1} \ldots p_{1}^{l} x p_{2}^{k} \ldots p_{2}^{1}$.

We shall consider three cases.

1. When $z=x$, then the following cycle:

$$
\begin{equation*}
C^{\prime}: \quad u P_{1} x b b^{+} \ldots u^{\prime} \ldots u_{2} \ldots u \tag{4.9}
\end{equation*}
$$

contains S, a contradiction.
2. If $z \in \mathrm{~V}\left(P_{1}\right)$, then the following cycle:

$$
\begin{equation*}
C^{\prime}: \quad u p_{1}^{1} \ldots p_{1}^{i} z b b^{+} \ldots u_{1} \ldots u^{\prime} \ldots u_{2} \ldots u \tag{4.10}
\end{equation*}
$$

contains $S \backslash\{x\}$ and has a C^{\prime}-path

$$
\begin{equation*}
P^{\prime}: \quad z p_{1}^{i+2} \ldots x P_{2} u^{\prime} \tag{4.11}
\end{equation*}
$$

shorter then P, a contradiction with the choice of C and P.
3. If $z \in \mathrm{~V}\left(P_{2}\right)$, then the following cycle:

$$
\begin{equation*}
C^{\prime}: \quad u P_{1} x p_{2}^{k} \ldots p_{2}^{j} z b b^{+} \ldots u^{\prime} \ldots u_{2} \ldots u \tag{4.12}
\end{equation*}
$$

contains S, a contradiction.
So we have $\mathrm{N}_{P_{1} x P_{2}}(b)=\emptyset$. Using similar arguments we can prove that for any $\left.\left.c \in \mathrm{~V}(] u^{\prime}, u_{2}\right]\right) \mathrm{N}_{P_{1} x P_{2}}(c)=\emptyset$, and hence (4.4) is true.

We will prove now (4.5).
Suppose that $\left.\left.\mathrm{N}_{R}(z) \cap\left(\mathrm{N}(] u, u_{1}\right]\right) \cup \mathrm{N}\left(\left[u^{\prime}, u_{2}\right]\right)\right) \neq \emptyset$.
So we have a vertex $\left.\left.\left.\left.w \in \mathrm{~N}_{R}(z) \cap\left(\mathrm{N}(] u, u_{1}\right]\right) \cup \mathrm{N}(] u^{\prime}, u_{2}\right]\right)\right)$. Without loss of generality we can assume that $\left.\left.w \in \mathrm{~N}_{R}(z) \cap \mathrm{N}(] u, u_{1}\right]\right)$. Let $\left.\left.a \in \mathrm{~V}(] u, u_{1}\right]\right)$, such that $a w \in \mathrm{E}$. From (4.4) we know that $w \notin \mathrm{~V}\left(P_{1} x P_{2}\right)$.

Fig. 3. $u_{2}, w, x \in X$ and $u, u_{1}, u^{\prime}, z \in Y$

As in the proof of (4.4), we shall consider three cases:

1. $z \in \mathrm{~V}\left(P_{1}\right)$.
2. $z \in \mathrm{~V}\left(P_{2}\right)$.
3. $z=x$.

Using similar arguments we get contradiction.
In any case we obtain a contradiction by replacing in (4.10), (4.12) and (4.9), the edge $z a$ by the path $z w u a$. Hence (4.5) is true.

For $a=u_{1}$, you can find the illustrations of Cases 1 and 2 on Figures 3 and 4 respectively.

In order to prove (4.6), suppose that $\left.\left.\left.\left.b \in \mathrm{~V}(] u, u_{1}\right]\right), c \in \mathrm{~V}(] u^{\prime}, u_{2}\right]\right)$ and $z \in$ $\mathrm{N}_{R}(\{b, c\})$.

From (4.4) we know that $\mathrm{N}_{P_{1}} x P_{2}(b)=\mathrm{N}_{c}\left(P_{1} x P_{2}\right)=\emptyset$, and so $z \notin \mathrm{~V}(P)$. In this case the cycle:

$$
C^{\prime}: \quad u P_{1} x P_{2} u^{\prime} u^{\prime-} \ldots u_{1} \ldots b z c \ldots u_{2} u_{2}^{+} \ldots u
$$

contains S, a contradiction.

Fig. 4. $u_{2}, w, x \in X$ and $u, u_{1}, u^{\prime}, z \in Y$

Hence (4.6) is true.
In order to prove (4.7), suppose that there is a vertex $y \in \mathrm{~N}_{R}(x)$ such that $\mathrm{N}_{\left.] u, u_{1}\right]}(y) \neq \emptyset$. From (4.4) we know that $y \notin \mathrm{~V}\left(P_{1} x P_{2}\right)$. We have a vertex $b \in$ V(]$\left.\left.u, u_{1}\right]\right)$ such that $y b \in \mathrm{E}$ and the following cycle:

$$
C^{\prime}: \quad u P_{1} x y b b^{+} \ldots u_{1} \ldots u^{\prime} \ldots u_{2} \ldots u
$$

contains S, a contradiction and so $\left.\mathrm{N}_{]} u, u_{1}\right](y)=\emptyset$.
Using the same arguments we can prove $\mathrm{N}_{\left.] u, u_{2}\right]}(y)=\emptyset$. Hence (4.7) is true and the proof of Lemma 4.3 is finished.

4.3. PROOF OF THEOREM 3.1

We may assume that $S_{Y} \neq \emptyset$ and $\left|S_{Y}\right| \geq\left|S_{X}\right|$. We will proceed by induction over the number of vertices in S_{X}.

If $\left|S_{X}\right|=0$, then $S=S_{Y}$ and from Theorem 1.6 we know that S is cyclable in G. So the first step of the induction is finished.

Suppose now that S satisfies the assumptions of Theorem 3.1 and $\left|S_{X}\right| \geq 1$.
From the induction hypothesis, we assume that for any $x \in S_{X}$ the set $S \backslash\{x\}$ is cyclable in G, while S itself is not cyclable. Let us choose a vertex $x \in S_{X}$.

We have a cycle C containing $S \backslash\{x\}$ such that $x \notin \mathrm{~V}(C)$. We recall that the cycle C and the C-path P are chosen such that P is shortest possible among all C-paths containing x for all cycles C containing $S \backslash\{x\}$. As in Section 4.1, u_{1} is the first vertex from S on the cycle C after u and u_{2} is the first vertex from S on the cycle C after u^{\prime}, R is the subgraph induced in G by $\mathrm{V}(G) \backslash \mathrm{V}(C)$.

It is clear that in this case R is a balanced bipartite graph.
Note that if $c=|\mathrm{V}(C)|, r=|\mathrm{V}(R)|$, then c and r are even and $n=\frac{c+r}{2}$.
From Remark 4.2 and Lemma $4.3 C$ and P satisfy (4.3) - (4.7).

We shall consider four cases:

1. $\mathrm{N}_{R}(x)=\emptyset$.
2. $\mathrm{N}_{R}(x) \neq \emptyset$ and $u_{1}, u_{2} \in S_{Y}$.
3. $\mathrm{N}_{R}(x) \neq \emptyset$ and $u_{1}, u_{2} \in S_{X}$.
4. $\mathrm{N}_{R}(x) \neq \emptyset$ and u_{1} and u_{2} are in different partite sets.

Case 1. $\mathrm{N}_{R}(x)=\emptyset$
In this case P_{1} and P_{2} are empty and $x u, x u^{\prime} \in \mathrm{E}$.
Since R is balanced there is an $y \in Y \cap \mathrm{~V}(R)$. Since $x y \notin \mathrm{E}$ then from (3.1) we have:

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}(y) \geq n+1 \tag{4.13}
\end{equation*}
$$

Since $\mathrm{N}_{R}(x)=\emptyset$ we have:

$$
\begin{equation*}
\mathrm{d}_{R}(x)=0 \quad \text { and } \quad \mathrm{d}_{R}(y) \leq \frac{r}{2}-1 \tag{4.14}
\end{equation*}
$$

Fig. 5. $a^{+}, b^{+}, x \in X$ and $a, b, y \in Y$

Suppose that y has two neighbors a^{+}, b^{+}in $\mathrm{N}_{C}(x)^{+}$, then $x a, x b \in \mathrm{E}$ and the cycle C^{\prime} (see Fig. 5):

$$
C^{\prime}: \quad x b b^{-} \ldots a^{+} y b^{+} b^{++} \ldots a x
$$

contains S, a contradiction with noncyclability of S. So y has at most one neighbor in $\mathrm{N}_{C}(x)^{+}$and thus:

$$
\begin{equation*}
\mathrm{d}_{C}(x)+\mathrm{d}_{C}(y) \leq \frac{c}{2}+1 \tag{4.15}
\end{equation*}
$$

From (4.14) and (4.15) we have:

$$
\mathrm{d}(x)+\mathrm{d}(y) \leq \frac{r}{2}-1+\frac{c}{2}+1 \leq n
$$

a contradiction with (3.1).

Case 2. $\mathrm{N}_{R}(x) \neq \emptyset$ and $u_{1}, u_{2} \in S_{Y}$
Subcase 2.1. There is a vertex $x_{0} \in \mathrm{~V}(] u, u_{1}[) \cap X$ or $x_{0} \in \mathrm{~V}(] u^{\prime}, u_{2}[) \cap X$
We can assume that $x_{0} \in \mathrm{~V}(] u, u_{1}[) \cap X$.
Since $V(] u, u_{1}[) \cap S=\emptyset$, then from Lemma 4.3 (4.4) $x u_{1} \notin \mathrm{E}$.
Note that if $x_{0} u_{2} \in \mathrm{E}$, then the cycle:

$$
C^{\prime}: \quad u P_{1} x P_{2} u^{\prime} u^{\prime-} \ldots u_{1} \ldots x_{0} u_{2} u_{2}^{+} \ldots u
$$

contains S, a contradiction.
Using the same arguments we can show that:

$$
\begin{equation*}
\mathrm{N}_{] u, u_{1}[}\left(u_{2}\right)=\emptyset \text { and } \mathrm{N}_{] u^{\prime}, u_{2}[}\left(x_{0}\right)=\emptyset \tag{4.16}
\end{equation*}
$$

So we have $u_{1}, u_{2} \in Y, x u_{1} \notin \mathrm{E}, x_{0} u_{2} \notin \mathrm{E}$ and from (3.1), (3.2) we have:

$$
\begin{equation*}
\mathrm{d}\left(x_{0}\right)+\mathrm{d}(x)+\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right) \geq 2 n+2 \tag{4.17}
\end{equation*}
$$

Consider the interval $] u_{2}, u_{1}[$.
If $a \in \mathrm{~V}(] u_{2}, u_{1}[)$ and $x_{0} a \in \mathrm{E}$ then $a^{+} u_{2} \notin \mathrm{E}$.
Suppose that there is a vertex $a \in \mathrm{~V}(] u_{2}, u_{1}[)$ such that $x_{0} a, a^{+} u_{2} \in \mathrm{E}$. From (4.16) we have $a \in \mathrm{~V}(] u_{2}, u[)$ and in this case the cycle:

$$
\begin{equation*}
C^{\prime}: \quad x_{0} a a^{-} \ldots u_{2}^{+} u_{2} a^{+} \ldots u P_{1} x P_{2} u^{\prime} u^{\prime-} \ldots u_{1} \ldots x_{0} \tag{4.18}
\end{equation*}
$$

contains S, a contradiction.
Using similar arguments we can show that if $a \in \mathrm{~V}(] u_{1}, u_{2}[)$ and $u_{2} a \in \mathrm{E}$ then $a^{+} x_{0} \notin \mathrm{E}$.

Since also $u_{1} u_{2} \notin \mathrm{E}$ we have:

$$
\begin{equation*}
\mathrm{d}_{C}\left(x_{0}\right)+\mathrm{d}_{C}\left(u_{2}\right) \leq \frac{c}{2} \tag{4.19}
\end{equation*}
$$

If $a \in \mathrm{~V}(C) \backslash\{u\}$ and $x a \in \mathrm{E}$ then $u_{1} a^{+} \notin \mathrm{E}$.
Suppose that there is a vertex $a \in \mathrm{~V}(C) \backslash\{u\}$ such that $x a, u_{1} a^{+} \in$ E. From (4.4) we know that $\left.\left.a \notin \mathrm{~V}(] u, u_{1}\right]\right)$ and thus the cycle:

$$
C^{\prime}: \quad x a a^{-} \ldots u_{1} a^{+} a^{++} \ldots u P_{1} x
$$

contains S, a contradiction.

So we have:

$$
\begin{equation*}
\mathrm{d}_{C}(x)+\mathrm{d}_{C}\left(u_{1}\right) \leq \frac{c}{2}+1 . \tag{4.20}
\end{equation*}
$$

From Lemma 4.3 (4.5) we have:

$$
\begin{equation*}
\mathrm{d}_{R}(x)+\mathrm{d}_{R}\left(x_{0}\right) \leq \frac{r}{2} \tag{4.21}
\end{equation*}
$$

From Lemma 4.3 (4.6) we have:

$$
\begin{equation*}
\mathrm{d}_{R}\left(u_{1}\right)+\mathrm{d}_{R}\left(u_{2}\right) \leq \frac{r}{2} \tag{4.22}
\end{equation*}
$$

From (4.19) - (4.22) we have:

$$
\mathrm{d}\left(x_{0}\right)+\mathrm{d}(x)+\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right) \leq \frac{c}{2}+\frac{c}{2}+1+\frac{r}{2}+\frac{r}{2}=2 n+1
$$

a contradiction with (4.17).
Subcase 2.2. $u^{+}=u_{1}$ and $u^{\prime+}=u_{2}$
If $u^{+}=u_{1}$ and $u^{\prime+}=u_{2}$ then $u, u^{\prime} \in X$ and so $\mathrm{V}\left(P_{1}\right) \neq \emptyset$ and $\mathrm{V}\left(P_{2}\right) \neq \emptyset$ and from Remark 4.2 (4.2) we have $\mathrm{d}_{C}(x)=0$.
Subcase 2.2.1. $\mathrm{N}_{R}\left(u_{1}\right)=\emptyset$ or $\mathrm{N}_{R}\left(u_{2}\right)=\emptyset$
We can assume that $\mathrm{N}_{R}\left(u_{1}\right)=\emptyset$. From Lemma 4.3 (4.4) $x u_{1} \notin \mathrm{E}$ and so from (3.1) we have:

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}\left(u_{1}\right) \geq n+1 \tag{4.23}
\end{equation*}
$$

From Remark 4.2 (4.2) and the assumption that $\mathrm{N}_{R}\left(u_{1}\right)=\emptyset$ we have:

$$
\mathrm{d}(x)+\mathrm{d}\left(u_{1}\right)=\mathrm{d}_{C}(x)+\mathrm{d}_{R}(x)+\mathrm{d}_{C}\left(u_{1}\right)+\mathrm{d}_{R}\left(u_{1}\right) \leq 0+\frac{r}{2}+\frac{c}{2}+0=n
$$

a contradiction with (4.23).
Subcase 2.2.2. $\mathrm{N}_{R}\left(u_{1}\right) \neq \emptyset$ and $\mathrm{N}_{R}\left(u_{2}\right) \neq \emptyset$
Take an $a \in \mathrm{~N}_{R}\left(u_{1}\right)$. From Lemma 4.3 (4.4) $a \notin \mathrm{~V}(P)$ and $u_{1} x \notin \mathrm{E}$. From (4.6) $u_{2} a \notin \mathrm{E}$ and so from (3.1), (3.2) we have:

$$
\begin{equation*}
\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right)+\mathrm{d}(x)+\mathrm{d}(a) \geq 2 n+2 . \tag{4.24}
\end{equation*}
$$

Note that for any $b \in \mathrm{~V}(] u_{2}, u[)$ if $a b \in \mathrm{E}$ then $u_{2} b^{+} \notin \mathrm{E}$. Suppose that $a b$, $u_{2} b^{+} \in \mathrm{E}$, then the cycle:

$$
C: \quad a b b^{-} \ldots u_{2} b^{+} \ldots u P_{1} x P_{2} u^{\prime} u^{\prime-} \ldots u_{1} a
$$

contains S, a contradiction.
Note that for any $b \in \mathrm{~V}(] u_{1}, u^{\prime}[)$ if $a b \in \mathrm{E}$ then $u_{2} b^{-} \notin \mathrm{E}$. Suppose that $a b$, $u_{2} b^{-} \in \mathrm{E}$, then the cycle:

$$
C: \quad a b b^{+} \ldots u^{\prime} P_{2} x P_{1} u u^{-} \ldots u_{2} b^{-} \ldots u_{1} a
$$

contains S, a contradiction.

Since S is not cyclable $\left.\left.\mathrm{N}_{u_{2}}(] u, u_{1}\right]\right)=\emptyset$.
Note that in this case $u_{2}=u^{\prime+}$ and so it is impossible that $a u^{\prime}, u^{\prime+} u_{2} \in \mathrm{E}$.
From the above we have:

$$
\begin{equation*}
\mathrm{d}_{C}\left(u_{2}\right)+\mathrm{d}_{C}(a) \leq \frac{c}{2} \tag{4.25}
\end{equation*}
$$

Since from Remark 4.2 (4.2) we have $\mathrm{d}_{C}(x)=0$ then:

$$
\mathrm{d}_{C}(x)+\mathrm{d}_{C}\left(u_{1}\right) \leq \frac{c}{2}
$$

and

$$
\begin{equation*}
\mathrm{d}_{C}(x)+\mathrm{d}_{C}(a)+\mathrm{d}_{C}\left(u_{1}\right)+\mathrm{d}_{C}\left(u_{2}\right) \leq c . \tag{4.26}
\end{equation*}
$$

Suppose now that we have a vertex $b \in \mathrm{~V}(R)$ such that $a b, x b \in \mathrm{E}$. Then the cycle:

$$
C: \quad u_{1} a b x P_{1} u u^{-} \ldots u_{2} u^{\prime} u^{\prime-} \ldots u_{1}
$$

contains S, a contradiction and so we have:

$$
\begin{equation*}
\mathrm{d}_{R}(x)+\mathrm{d}_{R}(a) \leq \frac{r}{2} \tag{4.27}
\end{equation*}
$$

From Lemma 4.3 (3.1) for any vertex $b \in \mathrm{~V}(R)$ if $u_{1} b \in \mathrm{E}$ then $u_{2} b \notin \mathrm{E}$.
Since also $x \notin \mathrm{~N}\left(u_{1}\right) \cup \mathrm{N}\left(u_{2}\right)$ we have:

$$
\begin{equation*}
\mathrm{d}_{R}\left(u_{1}\right)+\mathrm{d}_{R}\left(u_{2}\right) \leq \frac{r}{2}-1 \tag{4.28}
\end{equation*}
$$

From (4.26) - (4.28) we have

$$
\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right)+\mathrm{d}(x)+\mathrm{d}(a) \leq c+r-1 \leq 2 n-1,
$$

a contradiction with (4.24).
Case 3. $\mathrm{N}_{R}(x) \neq \emptyset$ and $u_{1}, u_{2} \in S_{X}$
Subcase 3.1. V(]$u, u_{1}[) \cap Y \neq \emptyset$ or V(]$u^{\prime}, u_{2}[) \cap Y \neq \emptyset$
Choose a vertex $y \in \mathrm{~V}(] u, u_{1}[) \cap Y$. From Lemma 4.3 (4.3) we have $x y \notin \mathrm{E}$ and so from (3.1) we have:

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}(y) \geq n+1 \tag{4.29}
\end{equation*}
$$

Subcase 3.1.1. x has a neighbor in $R \backslash P_{1}$
Let y^{\prime} be a neighbor of x from $R \backslash P_{1}$. Note that since S is not cyclable $u_{1} y^{\prime} \notin \mathrm{E}$ and from (3.1) we have:

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}\left(y^{\prime}\right)+\mathrm{d}\left(u_{1}\right) \geq 2 n+2 \tag{4.30}
\end{equation*}
$$

Note that y and y^{\prime} cannot have common neighbors in R, because if we have a vertex $b \in \mathrm{~V}(R) \cap X$ such that $y b, y^{\prime} b \in \mathrm{E}$ then the following cycle:

$$
C: \quad u P_{1} x y^{\prime} b y y^{+} \ldots u_{1} \ldots u^{\prime} \ldots u_{2} \ldots u^{-} u
$$

contains S, a contradiction.

Using the same arguments we can show that u_{1} and x don't have common neighbors in R and thus:

$$
\begin{equation*}
\mathrm{d}_{R}(x)+\mathrm{d}_{R}(y)+\mathrm{d}_{R}\left(y^{\prime}\right)+\mathrm{d}_{R}\left(u_{1}\right) \leq \frac{r}{2}+\frac{r}{2}=r . \tag{4.31}
\end{equation*}
$$

Subcase 3.1.1.1. $V\left(P_{1}\right) \neq \emptyset$
Since $\mathrm{V}\left(P_{1}\right) \neq \emptyset$ and P is a shortest C-path containing x, we have $x u \notin \mathrm{E}$ and since from Lemma 4.3 (4.4) $\mathrm{d}_{\left.] u, u_{1}\right]}(x)=0$, we have $\mathrm{d}_{\left[u, u_{1}\right]}(x)=0$.

Note that by the choice of C and P, for any $a \in \mathrm{~V}(] u_{1}, u[)$
$\mathrm{V}\left(P_{1}\right) \neq \emptyset$
$x a \in \mathrm{E}$ then $y a^{+} \notin \mathrm{E}$. Suppose that $x a, y a^{+} \in \mathrm{E}$ then the cycle:

$$
C: \quad x a a^{-} \ldots y a^{+} a^{++} \ldots u P_{1} x
$$

contains S, a contradiction.
From this:

$$
\begin{equation*}
\mathrm{d}_{C}(x)+\mathrm{d}_{C}(y) \leq \frac{c}{2} \tag{4.32}
\end{equation*}
$$

If $a \in \mathrm{~V}(] u_{1}, u[)$ and $y^{\prime} a \in \mathrm{E}$ then $u_{1} a^{+} \notin \mathrm{E}$. Take a vertex $a \in \mathrm{~V}(C) \backslash\{u\}$ and suppose that $y^{\prime} a, u_{1} a^{+} \in \mathrm{E}$, then the cycle:

$$
C: \quad x y^{\prime} a a^{-} \ldots u_{1} a^{+} a^{++} \ldots u P_{1} x
$$

contains S, a contradiction.
From Lemma 4.3 (4.7) $\left.\left.\mathrm{d}_{y^{\prime}}(] u, u_{1}\right]\right)=0$.
Since it is possible that $y^{\prime} u \in \mathrm{E}$, from the above we get:

$$
\begin{equation*}
\mathrm{d}_{C}\left(y^{\prime}\right)+\mathrm{d}_{C}\left(u_{1}\right) \leq \frac{c}{2}+1 \tag{4.33}
\end{equation*}
$$

From (4.32) and (4.33) we have:

$$
\begin{equation*}
\mathrm{d}_{C}(x)+\mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(y^{\prime}\right)+\mathrm{d}_{C}\left(u_{1}\right) \leq c+1 . \tag{4.34}
\end{equation*}
$$

Subcase 3.1.1.2. $\mathrm{V}\left(P_{1}\right)=\emptyset$
For any $a \in \mathrm{~V}(C) \backslash\{u\}$ if $x a \in \mathrm{E}$ then $y a^{+} \notin \mathrm{E}$, except $x u$ and $y u^{+}$. Hence:

$$
\begin{equation*}
\mathrm{d}_{C}(x)+\mathrm{d}_{C}(y) \leq \frac{c}{2}+1 \tag{4.35}
\end{equation*}
$$

As in Subcase 3.1.1.1 for any $a \in \mathrm{~V}(] u_{1}, u[)$ if $y^{\prime} a \in \mathrm{E}$ then $u_{1} a^{+} \notin \mathrm{E}$.
From Lemma 4.3 (4.7) $\mathrm{d}_{\left.] u, u_{1}\right]}\left(y^{\prime}\right)=0$.
Since in this case $x u \in \mathrm{E}$, we know that $u \in Y$ and $y^{\prime} u \notin \mathrm{E}$, thus $\mathrm{d}_{y^{\prime}}\left(\left[u, u_{1}\right]\right)=0$.
From the above:

$$
\begin{equation*}
\mathrm{d}_{C}\left(y^{\prime}\right)+\mathrm{d}_{C}\left(u_{1}\right) \leq \frac{c}{2} \tag{4.36}
\end{equation*}
$$

From (4.35) and (4.36) we have:

$$
\begin{equation*}
\mathrm{d}_{C}(x)+\mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(y^{\prime}\right)+\mathrm{d}_{C}\left(u_{1}\right) \leq c+1 \tag{4.37}
\end{equation*}
$$

Conclusion from Subcases 3.1.1.1 and 3.1.1.2

Independently of the fact if $\mathrm{V}\left(P_{1}\right)$ is empty or not, when x has a neighbor in $R \backslash P_{1}$ from (4.37) and (4.34)we have:

$$
\mathrm{d}_{C}(x)+\mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(y^{\prime}\right)+\mathrm{d}_{C}\left(u_{1}\right) \leq c+1
$$

and from (4.31):

$$
\mathrm{d}_{R}(x)+\mathrm{d}_{R}(y)+\mathrm{d}_{R}\left(y^{\prime}\right)+\mathrm{d}_{R}\left(u_{1}\right) \leq r .
$$

Hence from (4.31) and (4.37) we have:

$$
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}\left(y^{\prime}\right)+\mathrm{d}\left(u_{1}\right) \leq r+c+1=2 n+1
$$

a contradiction with (4.30). This ends the proof of Subcase 3.1.1.
Subcase 3.1.2. $\mathrm{N}_{R}(x) \subset P_{1}$
We recall that $\mathrm{N}_{R}(x) \neq \emptyset$. In this case $\mathrm{N}_{R}(x)=\left\{y^{\prime}\right\}$ and x has no other neighbors in R. We will get a contradiction by calculating the degree sum of the vertices x, y, y^{\prime}, and u_{2}.

We recall that $x y \notin \mathrm{E}$ and we have the inequality (4.29):

$$
\mathrm{d}(x)+\mathrm{d}(y) \geq n+1
$$

Let y^{\prime} be a neighbor of x in $R \cap P_{1}$. From (4.4) we have $u_{2} y^{\prime} \notin \mathrm{E}$ and from (3.1):

$$
\begin{equation*}
\mathrm{d}\left(y^{\prime}\right)+\mathrm{d}\left(u_{2}\right) \geq n+1 \tag{4.38}
\end{equation*}
$$

Hence from (3.1) we have:

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}\left(y^{\prime}\right)+\mathrm{d}\left(u_{2}\right) \geq 2 n+2 \tag{4.39}
\end{equation*}
$$

From Lemma 4.3 (4.4) and (4.7) we have:

$$
\begin{equation*}
\mathrm{d}_{R}(y)+\mathrm{d}_{R}\left(y^{\prime}\right) \leq \frac{r}{2} \tag{4.40}
\end{equation*}
$$

Since S is not cyclable x and u_{2} cannot have common neighbors in R we have:

$$
\begin{equation*}
\mathrm{d}_{R}(x)+\mathrm{d}_{R}\left(u_{2}\right) \leq \frac{r}{2} \tag{4.41}
\end{equation*}
$$

From (4.40) and (4.41) we get:

$$
\begin{equation*}
\mathrm{d}_{R}(x)+\mathrm{d}_{R}(y)+\mathrm{d}_{R}\left(y^{\prime}\right)+\mathrm{d}_{R}\left(u_{2}\right) \leq r . \tag{4.42}
\end{equation*}
$$

Using the same arguments as those used to show (4.32) in Subcase 3.1.1.1 we can show that:

$$
\begin{equation*}
\mathrm{d}_{C}(x)+\mathrm{d}_{C}(y) \leq \frac{c}{2} \tag{4.43}
\end{equation*}
$$

Since $\mathrm{N}_{R}(x) \subset P_{1}$ we have $P_{2}=\emptyset$ and $x u^{\prime} \in E D$. Hence $u^{\prime} \in Y$. Since $y^{\prime}, u^{\prime} \in Y$ we know that $y^{\prime} u^{\prime} \notin \mathrm{E}$ and since also S is not cyclable we have:

- $\mathrm{N}_{\left[u^{\prime}, u_{2}[\right.}\left(y^{\prime}\right)=\emptyset$.
- If $a \in \mathrm{~V}\left(\left[u_{2}, u^{\prime}[)\right.\right.$ and $y^{\prime} a \in \mathrm{E}$ then $a^{+} u_{2} \notin \mathrm{E}$.

From the above we have:

$$
\begin{equation*}
\mathrm{d}_{C}\left(u_{2}\right)+\mathrm{d}_{C}\left(y^{\prime}\right) \leq \frac{c}{2} \tag{4.44}
\end{equation*}
$$

From (4.42) - (4.44) we have:

$$
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}\left(y^{\prime}\right)+\mathrm{d}\left(u_{2}\right) \leq r+c \leq 2 n,
$$

a contradiction with (3.1).
Subcase 3.2. V (]$u, u_{1}[) \cap Y=\mathrm{V}(] u^{\prime}, u_{2}[) \cap Y=\emptyset$
From the main assumption in Case 1 we know that $u_{1}, u_{2} \in X$. Since also V(]$u, u_{1}[) \cap Y=\mathrm{V}(] u^{\prime}, u_{2}[) \cap Y=\emptyset$ we have:

$$
\begin{equation*}
] u, u_{1}[=] u^{\prime}, u_{2}[=\emptyset \tag{4.45}
\end{equation*}
$$

From (4.45): $u_{1}=u^{+}$and $u_{2}=u^{\prime+}$ and thus $u, u^{\prime} \in Y$.
Subcase 3.2.1. $\mathrm{N}_{R}\left(u_{1}\right)=\emptyset$ or $\mathrm{N}_{R}\left(u_{2}\right)=\emptyset$
We may assume that $\mathrm{N}_{R}\left(u_{1}\right)=\emptyset$. In this case $u, u^{\prime} \in Y$ and since $\mathrm{N}_{R}(x) \neq \emptyset, x$ has a neighbor in $R \backslash P_{1}$ or $R \backslash P_{2}$. We can assume that there is a vertex $y \in \mathrm{~V}\left(R \backslash P_{1}\right)$, such that $x y \in$ E. From Lemma 4.3 (4.7) we know that $u_{1} y \notin \mathrm{E}$ and from (3.1) we have:

$$
\begin{equation*}
\mathrm{d}(y)+\mathrm{d}\left(u_{1}\right) \geq n+1 \tag{4.46}
\end{equation*}
$$

Note that for any $a \in \mathrm{~V}(] u_{1}, u^{-}[)$if $y a \in \mathrm{E}$ then $u_{1} a^{+} \notin \mathrm{E}$, because if $y a, u_{1} a^{+} \in \mathrm{E}$ then the cycle:

$$
C: \quad x y a a^{-} \ldots u_{1} a^{+} a^{++} \ldots u^{-} u P_{1} x
$$

contains S, a contradiction.
Note that since S is not cyclable $y u^{-} \notin \mathrm{E}$ and since $u, y \in Y$ we have $y u \notin \mathrm{E}$ and so

$$
\begin{equation*}
\mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(u_{1}\right) \leq \frac{c}{2} \tag{4.47}
\end{equation*}
$$

Since $u_{1} y \notin \mathrm{E}$ and $\mathrm{N}_{R}\left(u_{1}\right)=\emptyset$ we have:

$$
\begin{equation*}
\mathrm{d}_{R}(y)+\mathrm{d}_{R}\left(u_{1}\right) \leq \frac{r}{2}-1 \tag{4.48}
\end{equation*}
$$

and from (4.47), (4.48) we have:

$$
\mathrm{d}(y)+\mathrm{d}\left(u_{1}\right) \leq \frac{c}{2}+\frac{r}{2}-1 \leq n-1
$$

a contradiction with (3.1).
Subcase 3.2.2. $\mathrm{N}_{R}\left(u_{1}\right) \neq \emptyset$ and $\mathrm{N}_{R}\left(u_{2}\right) \neq \emptyset$
From the noncyclability of S we know that u_{1} and x cannot have common neighbors in R. We choose a vertex $y_{1} \in \mathrm{~N}_{R}\left(u_{1}\right)$. Note that $y_{1} \notin \mathrm{~V}(P)$. We chose also a $y \in \mathrm{~N}_{R}(x) \backslash\left\{y_{1}\right\}$.

Since $u_{1} y \notin \mathrm{E}$ and $x y_{1} \notin \mathrm{E}$, from (3.1) we have:

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(y_{1}\right) \geq 2 n+2 . \tag{4.49}
\end{equation*}
$$

From the noncyclability of S we know that y and y_{1} cannot have common neighbors in R and so:

$$
\begin{equation*}
\mathrm{d}_{R}(y)+\mathrm{d}_{R}\left(y_{1}\right) \leq \frac{r}{2} \tag{4.50}
\end{equation*}
$$

For the same reasons x and u_{1} cannot have common neighbors in R and so:

$$
\begin{equation*}
\mathrm{d}_{R}(x)+\mathrm{d}_{R}\left(u_{1}\right) \leq \frac{r}{2} \tag{4.51}
\end{equation*}
$$

We recall that in this case $\mathrm{N}_{R}(x) \subset P_{1}$ and $\mathrm{N}_{R}(x) \neq \emptyset$, hence $x u \notin \mathrm{E}$. Note that for any $a \in \mathrm{~V}(C) \backslash\{u\}$, if $a x \in \mathrm{E}$ then $a^{+} y_{1} \notin \mathrm{E}$. Suppose that $a x, a^{+} y_{1} \in \mathrm{E}$, then the cycle:

$$
C: \quad x a a^{-} \ldots u_{1} y_{1} a^{+} a^{++} \ldots u^{-} u P_{1} x
$$

contains S, a contradiction. From this:

$$
\begin{equation*}
\mathrm{d}_{C}(x)+\mathrm{d}_{C}\left(y_{1}\right) \leq \frac{c}{2} \tag{4.52}
\end{equation*}
$$

Using the same arguments we can show that for any $a \in \mathrm{~V}(C)$, if $a y \in \mathrm{E}$ then $a^{+} u_{1} \notin \mathrm{E}$ and thus:

$$
\begin{equation*}
\mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(u_{1}\right) \leq \frac{c}{2} \tag{4.53}
\end{equation*}
$$

From (4.50) - (4.53) we have

$$
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}\left(y_{1}\right)+\mathrm{d}\left(u_{1}\right) \leq \frac{r}{2}+\frac{r}{2}+\frac{c}{2}+\frac{c}{2}=2 n,
$$

a contradiction with (4.49).

Case 4. $\mathrm{N}_{R}(x) \neq \emptyset$ and u_{1} and u_{2} are in different partite sets

We can assume that $u_{1} \in X$ and $u_{2} \in Y$.
Subcase 4.1. $\mathrm{N}_{R}(x) \cap\left(\mathrm{V}\left(R \backslash P_{1}\right)\right) \neq \emptyset$
We choose a vertex $y \in \mathrm{~N}_{R}(x) \cap\left(\mathrm{V}\left(R \backslash P_{1}\right)\right)$. From Lemma 4.3 (4.4) we know that $x u_{2} \notin \mathrm{E}$ and so from (3.1) we have:

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}\left(u_{2}\right) \geq n+1 \tag{4.54}
\end{equation*}
$$

From Lemma 4.3 (4.7) we know that $y u_{1} \notin \mathrm{E}$ and so from (3.2) we have:

$$
\begin{equation*}
\mathrm{d}\left(u_{1}\right)+\mathrm{d}(y) \geq n+1 . \tag{4.55}
\end{equation*}
$$

Thus from (4.54) and (4.55) we have:

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right) \geq 2 n+2 . \tag{4.56}
\end{equation*}
$$

For any $a \in \mathrm{~V}(] u_{2}, u^{\prime}[)$ if $x a \in \mathrm{E}$ then $u_{2} a^{+} \notin \mathrm{E}$. Suppose that $x a, u_{2} a^{+} \in \mathrm{E}$ then the cycle:

$$
C: \quad x a a^{-} \ldots u_{2}^{+} u_{2} a^{+} a^{++} \ldots u u^{+} \ldots u_{1} \ldots u^{\prime} P_{2} x
$$

contains S, a contradiction.

Note that however from Lemma 4.3 (4.4) we know that $\left.\mathrm{N}_{]} u^{\prime}, u_{2}\right](x)=\emptyset$, but if $a=u^{\prime}$ it may happen that $x a, u_{2} a^{+} \in \mathrm{E}$ and so:

$$
\begin{align*}
& \text { if } x u^{\prime} \notin \mathrm{E} \quad \text { then } \quad \mathrm{d}_{C}(x)+\mathrm{d}_{C}\left(u_{2}\right) \leq \frac{c}{2} \tag{4.57}\\
& \text { if } x u^{\prime} \in \mathrm{E} \quad \text { then } \quad \mathrm{d}_{C}(x)+\mathrm{d}_{C}\left(u_{2}\right) \leq \frac{c}{2}+1 \tag{4.58}
\end{align*}
$$

Using the same arguments we can show that for any $a \in \mathrm{~V}(] u_{1}, u[)$ if $y a \in \mathrm{E}$ then $u_{1} a^{+} \notin \mathrm{E}$. Note that however from Lemma 4.3 (4.7) we know that $\left.\mathrm{N}_{]} u, u_{1}\right](y)=\emptyset$, but if $a=u$ it may happen that $y a, u_{1} a^{+} \in \mathrm{E}$ and so:

$$
\begin{align*}
& \text { if } y u \notin \mathrm{E} \quad \text { then } \quad \mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(u_{1}\right) \leq \frac{c}{2} \tag{4.59}\\
& \text { if } y u \in \mathrm{E} \quad \text { then } \quad \mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(u_{1}\right) \leq \frac{c}{2}+1 \tag{4.60}
\end{align*}
$$

Suppose now that $\mathrm{d}_{C}(x)+\mathrm{d}_{C}\left(u_{2}\right)=\frac{c}{2}+1$ and $\mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(u_{1}\right)=\frac{c}{2}+1$. In this case we have $x u^{\prime}, y u \in \mathrm{E}$. Since $x u^{\prime} \in \mathrm{E}$ we have $y \notin \mathrm{~V}\left(P_{2}\right)$ and since $y u \in \mathrm{E}$ we have $u \in X$. Since $u \in X$ we have $\mathrm{V}\left(P_{1}\right) \neq \emptyset$. Hence from Remark $4.2(4.1) \mathrm{d}_{C}(x)=1$.

From the noncyclability of S we have $u_{1} u_{2} \notin \mathrm{E}$ and so $\mathrm{d}_{C}\left(u_{1}\right) \leq \frac{c}{2}-1$ and $\mathrm{d}_{C}\left(u_{2}\right) \leq \frac{c}{2}-1$.

From the above if $x u^{\prime}, y u \in \mathrm{E}$ then:

$$
\begin{equation*}
\mathrm{d}_{C}(x)+\mathrm{d}_{C}\left(u_{2}\right) \leq \frac{c}{2} \tag{4.61}
\end{equation*}
$$

and this improves upon the inequality (4.58). In fact we cannot have $\mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(u_{1}\right)=$ $\mathrm{d}_{C}(x)+\mathrm{d}_{C}\left(u_{2}\right)=\frac{c}{2}+1$, and so from (4.57) - (4.61) we know that in any case:

$$
\begin{equation*}
\mathrm{d}_{C}(x)+\mathrm{d}_{C}\left(u_{2}\right)+\mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(u_{1}\right) \leq c+1 \tag{4.62}
\end{equation*}
$$

From Lemma 4.3 (4.7) vertices u_{2} and y cannot have common neighbors in R and so:

$$
\begin{equation*}
\mathrm{d}_{R}\left(u_{2}\right)+\mathrm{d}_{R}(y) \leq \frac{r}{2} \tag{4.63}
\end{equation*}
$$

For the same reasons we have:

$$
\begin{equation*}
\mathrm{d}_{R}\left(u_{1}\right)+\mathrm{d}_{R}(x) \leq \frac{r}{2} . \tag{4.64}
\end{equation*}
$$

From (4.62) - (4.64) we have:

$$
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right) \leq c+1+r=2 n+1,
$$

a contradiction with (4.56).
Subcase 4.2. $\mathrm{N}_{R}(x) \subset P_{1}$
Since $\mathrm{N}_{R}(x) \subset P_{1}$ we have: $x u^{\prime} \in \mathrm{E}$ and there is a vertex $y \in \mathrm{~V}\left(P_{1}\right)$ such that $x y \in \mathrm{E}$ and so from Lemma 4.3 we have $\mathrm{d}_{C}(x) \leq 1$.

Note that from noncyclability of $S x u_{2} \notin$ E. From Lemma 4.3 (4.4) we know that $y u_{1} \notin \mathrm{E}$ and from (3.1) we have:

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right) \geq 2 n+2 . \tag{4.65}
\end{equation*}
$$

Using the same arguments as in Subcase 4.1 to show (4.57) and (4.58) we have:

$$
\begin{equation*}
\mathrm{d}_{C}(x)+\mathrm{d}_{C}\left(u_{2}\right) \leq \frac{c}{2}+1 \tag{4.66}
\end{equation*}
$$

From Lemma 4.3 (4.4) we have V(]$\left.\left.u, u_{1}\right]\right) \cap \mathrm{N}(y)=\emptyset$. For any $a \in \mathrm{~V}(] u_{1}, u[)$ if $y a \in \mathrm{E}$ then $u_{1} a^{+} \notin \mathrm{E}$. In this case $x y \in \mathrm{E}, y \in \mathrm{~V}\left(P_{1}\right)$ and the vertices of the path $P=P_{1} x P_{2}$ are labelled in the following way: $p_{1}^{1} \ldots p_{l}^{1} x p_{2}^{k} \ldots p_{2}^{1}$. Since P is the shortest C-path $y=p_{l}^{1}$.

Suppose that $y a, u_{1} a^{+} \in \mathrm{E}$, then the cycle:

$$
C^{\prime}: \quad y a a^{-} \ldots u_{1} a^{+} \ldots u p_{1}^{1} \ldots p_{l-1}^{1} y
$$

contains $S \backslash\{x\}$ and has a C-path $P^{\prime}: y x u^{\prime}$, shorter than P, a contradiction with the choice of C and P. However it is possible that if $a=u$ then $y a, u_{1} a^{+} \in \mathrm{E}$. So we have shown that:

$$
\begin{equation*}
\text { if } y u \notin \mathrm{E} \text { then } \mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(u_{1}\right) \leq \frac{c}{2} \tag{4.67}
\end{equation*}
$$

Suppose now that $y u \in \mathrm{E}$. Since $x u^{\prime} \in \mathrm{E}$ we have $u^{\prime} \in Y$ and $u_{2} \in Y$. From this V(]$u^{\prime}, u_{2}[) \cap X \neq \emptyset$. We choose a vertex $v \in \mathrm{~V}(] u^{\prime}, u_{2}[) \cap X$. From the noncyclability of $S u_{1} v^{+} \notin \mathrm{E}$ and $y v \notin \mathrm{E}$.

Since if $y u \in \mathrm{E}$, then we have a vertex $v \in \mathrm{~V}(C) \cap X$ such that $u_{1} v^{+} \notin \mathrm{E}$ and $y v \notin \mathrm{E}$, so we have:

$$
\begin{equation*}
\mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(u_{1}\right) \leq \frac{c}{2} \tag{4.68}
\end{equation*}
$$

From (4.67) and (4.68) in any case:

$$
\begin{equation*}
\mathrm{d}_{C}(y)+\mathrm{d}_{C}\left(u_{1}\right) \leq \frac{c}{2} \tag{4.69}
\end{equation*}
$$

From Lemma 4.3 (4.7) vertices u_{2} and y cannot have common neighbors in R and so:

$$
\begin{equation*}
\mathrm{d}_{R}\left(u_{2}\right)+\mathrm{d}_{R}(y) \leq \frac{r}{2} \tag{4.70}
\end{equation*}
$$

For the same reasons we have:

$$
\begin{equation*}
\mathrm{d}_{R}\left(u_{1}\right)+\mathrm{d}_{R}(x) \leq \frac{r}{2} . \tag{4.71}
\end{equation*}
$$

From (4.66) and (4.69) - (4.71) we have:

$$
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right) \leq \frac{c}{2}+1+\frac{c}{2}+\frac{r}{2}+\frac{r}{2}=2 n+1
$$

a contradiction with (4.65).
We have shown that in any case we get a contradiction with the hypothesis that S is not cyclable, so the proof of Theorem 3.1 is finished.

Acknowledgments

Research partially supported by the UST-AGH grant 1142004.
This work was carried out in part while GG was visiting LRI UPS, Orsay, France.

REFERENCES

[1] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976), 111-135.
[2] D. Amar, M. El Kadi Abderrezzak, E. Flandrin, Cyclability and pancyclability in bipartite graphs, Discrete Math. 236 (2001), 3-11.
[3] R. Čada, E. Flandrin, H. Li, Z. Ryjáček, Cycles trough given vertices and closures, Discrete Mathematics 276 (2004), 65-70.
[4] E. Flandrin, H. Li, A. Marczyk, M. Woźniak, A note on a generalization of Ore's condition, Rapport de Recherche LRI (2002).
[5] J. Moon, M. Moser, On hamiltonian bipartite graphs, Israel J. Math. 1 (1963), 357-369.
[6] O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
[7] K. Ota, Cycles through prescribed vertices with large degree sum, Discrete Mathematics 145 (1995), 201-210.
[8] Shi Ronghua, 2-neighborhoods and hamiltonian conditions, J. Graph Theory 16 (1992), 267-271.
[9] M.E. Watkins, D.M. Mesner, Cycles and connectivity in graphs, Canad. J. Math. 19 (1967), 1319-1328.

Denise Amar,
amar@labri.u-bordeaux.fr
LaBRI Université de Bordeaux 1,
351 Coursde la Liberation, 33405 Talence, France
Evelyne Flandrin
fe@lri.fr
LRI,UMR8623, Bâtiment 490,
Université Paris-Sud
91405 Orsay Cedex France
Grzegorz Gancarzewicz (corresponding author)
gancarz@agh.edu.pl
AGH University of Science and Technology
Faculty of Applied Mathematics
al. Mickiewicza 30, 30-059 Cracow, Poland
Received: August 31, 2008.
Revised: July 1, 2009.
Accepted: July 23, 2009.

