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CYCLABILITY IN BIPARTITE GRAPHS

Abstract. Let G = (X, Y ; E) be a balanced 2-connected bipartite graph and S ⊂ V(G).
We will say that S is cyclable in G if all vertices of S belong to a common cycle in G. We
give sufficient degree conditions in a balanced bipartite graph G and a subset S ⊂ V(G) for
the cyclability of the set S.
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1. INTRODUCTION

We shall consider only finite graphs without loops and multiple edges.
Several authors have given results about cycles containing specific subsets of ver-

tices, see for example [7] or [9].
The set S of vertices is called cyclable in G if all vertices of S belong to a common

cycle in G. We also speak about cyclability or noncyclability of the vertex set S.

In a bipartite graph G = (X, Y ; E) we will call the independent sets of vertices X

and Y the partite sets.

Let G = (X, Y ; E) be a bipartite graph and let S ⊂ V(G), then SX = S ∩ X and
SY = S ∩ Y. We will say that S is balanced iff |SX | = |SY |.

In 1992 Shi Ronghua [8] obtained the following result:

Theorem 1.1. Let G be a 2-connected graph of order n and S a subset of V (G) with

|S| ≥ 3. If for every pair of nonadjacent vertices x and y in S we have

d(x) + d(y) ≥ n,

then S is cyclable in G.

Note that the assumption of 2-connectivity may be omitted in Theorem 1.1. It is
an easy corollary of a result of K. Ota [7].

Recently R. Čada, E. Flandrin and Z. Ryjáček [3] proved the following generali-
zation of Theorem 1.1:
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Theorem 1.2. Let G be a 2-connected graph of order n and S a subset of V (G). If

for every pair of nonadjacent vertices x and y in S we have

d(x) + d(y) ≥ n − 1,

then either S is cyclable in G, or n is odd and G contains an independent set S1 ⊆ S

such that |S1| = n
2 and every vertex of S1 is adjacent to all vertices in G \ S1.

In 2002 E. Flandrin, H. Li, A. Marczyk and M. Woźniak [4] obtained the following
generalization of Theorem 1.1:

Theorem 1.3. Let G be a k-connected graph, k ≥ 2 of order n. Denote S1, . . . Sk

subsets of the vertex set V(G) and let S = S1 ∪ S2 ∪ · · · ∪ Sk. If for any x, y ∈ Si,

xy 6∈ E we have

d(x) + d(y) ≥ n,

then S is cyclable in G.

The notion of cyclability is a generalization of the term of hamiltonicity. If we
consider S = V(G) then S is cyclable iff G is hamiltonian. In fact Theorem 1.1 is a
generalization of the following result of O. Ore [6]:

Theorem 1.4. Let G be a graph on n ≥ 3 vertices. If for all nonadjacent vertices

x, y ∈ V(G) we have

d(x) + d(y) ≥ n,

then G is hamiltonian.

A similar result for bipartite graphs was proved by J. Moon and M. Moser [5]
in 1963:

Theorem 1.5. Let G = (X, Y ; E) be a balanced bipartite graph of order 2n. If for all

nonadjacent vertices x ∈ X and y ∈ Y we have

d(x) + d(y) ≥ n + 1,

then G is hamiltonian.

Given a balanced bipartite graph and a selected subset of vertices, we are interested
in properties that imply cyclability.

In 2000 D. Amar, M. El Kadi Abderrezzak, E. Flandrin [2] proved the following
generalization of Theorem 1.1 for bipartite graphs:

Theorem 1.6. Let G = (X, Y ; E) be a balanced 2-connected bipartite graph of order

2n, S ⊂ X. If for every x ∈ S, y ∈ Y , xy 6∈ E we have

d(x) + d(y) ≥ n + 1,

then S is cyclable in G.

Note that in this case S = SX and Theorem 1.6 is also a generalization of
Theorem 1.5.

The main result of the present paper, given in Section 3, is Theorem 3.1, which
improves upon Theorem 1.6.
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2. DEFINITIONS

Let G be a graph and H a subgraph of G.

Definition 2.1. NG(H) denotes the set of all vertices of the graph G which are
adjacent to a vertex of the subgraph H , i.e. NG(H) = {u ∈ V(G) : ∃v ∈ V(H) such
that uv ∈ E(G)}.

Consider an arbitrary vertex x ∈ V(G). N(x) denotes the set of all neighbors of
the vertex x in G, i.e. N(x) = {u ∈ V(G) : xu ∈ E(G)}. NH (x) denotes the set of all
neighbors of the vertex x in the subgraph H , i.e. NH (x) = {u ∈ V(H) : xu ∈ E(G)}.

dH(x) denotes the number of neighbors of x in the subgraph H i.e.
dH(x) = |NH (x)|, and dH(x) denotes the degree of the vertex x in the subgraph H.

In the proof we will only use cycles and paths with a given orientation. For a cycle
C : c1 . . . ck or a path P : p1 . . . pl we will use implicit orientation.

Thus it makes sense to speak of a successor ci+1 and a predecessor ci−1 of a
vertex ci (addition modulo l + 1). Denote the successor of a vertex x by x+ and its
predecessor by x−. This notation can be extended to A+ = {x+ : x ∈ A}, and
similarly, to A− when A ⊆ V(G).

Let P be a path p1 . . . pk and u, v ∈ V(G) such that up1, vpk ∈ E(G), then: uPv

is the path up1 . . . pkv and vPu is the path vpk . . . p1u.

Definition 2.2. We shall call a path P : p1 . . . pl a C-path of the cycle C iff V(P ) ∩
V(C) = {p1, pl}. Note that a C-path is a generalized chord of the cycle.

Definition 2.3. Let C : c1 . . . cl be a cycle in G with the orientation, the indices
1, . . . , l are considered modulo l. For any pair of vertices ci, cj ∈ V(C) (i 6= j) we
define four intervals:

– ]ci, cj [ is the path ci+1 . . . cj−1.
– [ci, cj [ is the path ci . . . cj−1.
– ]ci, cj ] is the path ci+1 . . . cj .
– [ci, cj ] is the path ci . . . cj .

Note that these four intervals are subsets of the cycle C.

For notation and terminology not defined above a good reference is [1].

3. THEOREM

Theorem 3.1. If G = (X, Y ; E) is a balanced 2-connected bipartite graph of order

2n and S ⊂ V(G) satisfying conditions:

For every x ∈ SX , y ∈ Y, xy 6∈ E we have d(x) + d(y) ≥ n + 1 (3.1)

For every x ∈ X, y ∈ SY , xy 6∈ E we have d(x) + d(y) ≥ n + 1 (3.2)

then S is cyclable in G.
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K3p,6

K2,2

K2,p

K2,p

K2,p

S vertices from X vertices from Y

Fig. 1. Gp,3

Theorem 3.1 is obviously a generalization of Theorem 1.6.
We first tried to find a generalization satisfying two conditions:

– The vertices of S are in both partite sets X and Y .
– The degree sum condition holds only for vertices from S.

However, even if we assume that S is balanced (i.e. |SX | = |SY |), such a result is
not true.

For every k ≥ 1 we will give an example of a 2-connected, balanced bipartite graph
G = (X, Y ; E) and a balanced set S ⊂ V(G), satisfying the following condition:

For every x ∈ SX , y ∈ SY if xy 6∈ E then d(x) + d(y) ≥ n + k, (3.3)

such that S is not cyclable in G.

Let k ≥ 1, p ≥ k + 2 and 2 ≤ r ≤ 1 +
p − k

2
.
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First consider bipartite graphs Kpr,2r, K2,2 and r copies of K2,p. In K2,2 we have
two partite sets say X2 and Y2. The graph G = (X, Y ; E) is obtained out of Kpr,2r,
K2,2 and the r copies of K2,p by joining every vertex of degree pr from Kpr,2r with
all vertices from X2 and every vertex of degree p from the r copies of K2,p with all
vertices from Y2.

Let S1 be the set of all vertices from Kpr,2r of degree pr in Kpr,2r.
In each copy of K2,p we take the two vertices of degree p in K2,p. In this way we

will get 2r vertices and we define the set S2 as the set containing these 2r vertices.
We can define now the set S. Let S = S1 ∪ S2 ∪ V(K2,2).

For k ≥ 1, p ≥ k + 2 and 2 ≤ r ≤ 1 +
p − k

2
we have obtained a balanced,

2-connected bipartite graph Gp,r = (X, Y ; E) of order 2n with n = pr + 2r + 2 and a
balanced set S which is not cyclable, but satisfies (3.3).

We can find an example of the graph Gp,3 on the Figure 1.
This example shows that it is not enough to assume that the degree sum con-

dition holds only for the vertices from S in a bipartite graph. Even increasing the
connectivity will not be sufficient, as we can see in the following example.

For every k ≥ 1 and l ≥ 2 we will give an example of an l-connected, balanced
bipartite graph G′ = (X, Y ; E) and a balanced set S′ ⊂ V(G′), satisfying (3.3), such
that S′ is not cyclable in G′.

Let k ≥ 1, l ≥ 2, p ≥ l2 − l + k and l ≤ r < 1 +
p − k

l
.

First consider bipartite graphs Kpr,lr, Kl,l and r copies of Kl,p. In Kl,l we have
two partite sets say Xl and Yl. The graph G′ = (X, Y ; E) is obtained out of Kpr,lr,
Kl,l and the r copies of Kl,p by joining every vertex of degree pr from Kpr,lr with
all vertices from Xl and every vertex of degree p from the r copies of Kl,p with all
vertices from Yl.

Let S′

1 be the set of all vertices from Kpr,lr of degree pr in Kpr,lr.
In each copy of Kl,p we take the l vertices of degree p in Kl,p. In this way we will

get lr vertices and we define the set S′

2 as the set containing these lr vertices.
We can define now the set S′. Let S′ = S′

1 ∪ S′

2 ∪ V(Kl,l).

For k ≥ 1, l ≥ 2, p ≥ l2− l+k and l ≤ r < 1 +
p − k

l
we have obtained a balanced,

l-connected bipartite graph G′

p,r,l = (X, Y ; E) of order 2n with n = pr + lr + l and a
balanced set S′ which is not cyclable in G′, but satisfies (3.3).

4. PROOF OF THEOREM 3.1

4.1. PRELIMINARY NOTATIONS

Let G = (X, Y ; E) be a bipartite graph and let C be a cycle in G.
In this chapter for a given cycle C and a vertex x ∈ V(G\C), a C-path Q through

x will be denoted Q : uQ1xQ2u
′, where Q1 and Q2 are two vertex disjoint paths. The

end vertices of the C-path Q : u and u′ and the vertex x do not belong to Q1 nor Q2.
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Note that the path Q1 may be empty or in other words V(Q1) = ∅ and in this
case xu ∈ E. Similarly for Q2.

An example of a C-path P : uP1xP2u
′ through a vertex x can be found on Figure 2.

x

u u′
u1

u2

P2P1

C

Fig. 2. An example of a cycle C and a C-path P with x, u′, u1 ∈ X and u, u2 ∈ Y

Remark 4.1. Given a 2-connected graph G, a nonhamiltonian cycle C and a vertex
x ∈ V(G \ C), G contains necessarily a C-path through x.

In the remaining part of Section 4 we will always consider a 2-connected bipartite
graph G and a subset S ⊂ V(G) not cyclable in G. Given a cycle C, a vertex
x ∈ V(G \C)∩S such that C contains S \ {x} but does not contain S, we will denote
by P a C-path through x. We will always assume that the cycle C and the C-path P

are chosen such that P is shortest possible among all C-paths through x for all cycles
C containing S \ {x}, i.e. for any cycle C′ containing S \ {x}, and for any C′-path
P ′ containing the vertex x we have |V(P )| ≤ |V(P ′)|. We will denote this C-path
P : uP1xP2u

′ (note that P1 and/or P2 may be empty).
We will denote by u1 the first vertex on the cycle C from S after u (u1 exists since

S is not cyclable). Similarly u2 is the first vertex on the cycle C from S after u′.
R is the subgraph induced in G by V(G) \ V(C).
All the intervals of type [a, b], [a, b[, ]a, b] and ]a, b[ are intervals on the cycle C and

we sometimes identify the vertex set of an interval with the corresponding interval.

Remark 4.2. The C-path P : uP1xP2u
′ has the following properties:

– If V(P1) 6= ∅ or V(P2) 6= ∅ then dC(x) ≤ 1 . (4.1)

– If V(P1) 6= ∅ and V(P2) 6= ∅ then dC(x) = 0. (4.2)

Remark 4.2 is an immediate consequence of the choice of the cycle C and the
C-path P .
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4.2. FORMULATION AND PROOF OF LEMMA 4.3

In the proof of Theorem 3.1 we shall use the following lemma. Notations G, S, C, R,
x and C-path P : uP1xP2u

′, u1 and u2 are defined in Section 4.1 but we recall them
for completeness. We denote by C a cycle containing S \ {x}. Let P be a C-path
through x. The cycle C and the C-path P are chosen such that P is shortest possible
among all C-paths through x for all cycles C containing S \ {x}. Let u1 be the first
vertex from S after u on the cycle C, and let u2 be the first vertex from S after u′ on
the cycle C. The subgraph of G induced by V(G) \ V(C), will be denoted R.

Lemma 4.3. Let G = (X, Y ; E) be a 2-connected bipartite graph and let C, P , R and

S be as above. Then we have:

– For every C − path Q : aQ1xQ2a
′ through x we have:

V(]a, a′[) ∩ S 6= ∅ and V(]a′, a[) ∩ S 6= ∅. (4.3)

– For any b ∈ V(]u, u1]) and c ∈ V(]u′, u2]) we have:

NP1xP2
(b) = NP1xP2

(c) = ∅. (4.4)

– If z ∈ V(P ) \ {u, u′}, then NR(z) ∩ (N(]u, u1]) ∪ N(]u, u2])) = ∅. (4.5)

– NR(]u, u1]) ∩ NR(]u′, u2]) = ∅. (4.6)

– For any y ∈ NR(x) we have N]u, u1]
(y) = N]u′, u2]

(y) = ∅. (4.7)

Proof of Lemma 4.3. Suppose that V(]a, a′[) ∩ S = ∅, then the cycle:

C′ : aQ1xQ2a
′a′+ . . . a, (4.8)

is a cycle containing S, a contradiction. If V(]a′, a[) ∩ S = ∅, then using similar
arguments we get a contradiction and hence (4.3) is proved.

In order to prove (4.4) suppose that there is a vertex b ∈ V(]u, u1]) such that
NP1xP2

(b) 6= ∅. We have a vertex z ∈ NP1xP2
(b) and we assume that the vertices

on the path P1xP2 are labeled as follows: P1xP2 : p1
1 . . . pl

1xpk
2 . . . p1

2.
We shall consider three cases.

1. When z = x, then the following cycle:

C′ : uP1xbb+ . . . u′ . . . u2 . . . u, (4.9)

contains S, a contradiction.
2. If z ∈ V(P1), then the following cycle:

C′ : up1
1 . . . pi

1zbb+ . . . u1 . . . u′ . . . u2 . . . u, (4.10)

contains S \ {x} and has a C′-path

P ′ : zpi+2
1 . . . xP2u

′, (4.11)

shorter then P , a contradiction with the choice of C and P .



352 Denise Amar, Evelyne Flandrin, Grzegorz Gancarzewicz

3. If z ∈ V(P2), then the following cycle:

C′ : uP1xpk
2 . . . p

j
2zbb+ . . . u′ . . . u2 . . . u, (4.12)

contains S, a contradiction.

So we have NP1xP2
(b) = ∅. Using similar arguments we can prove that for any

c ∈ V(]u′, u2]) NP1xP2
(c) = ∅, and hence (4.4) is true.

We will prove now (4.5).
Suppose that NR(z) ∩ (N(]u, u1]) ∪ N(]u′, u2])) 6= ∅.
So we have a vertex w ∈ NR(z) ∩ (N(]u, u1]) ∪ N(]u′, u2])). Without loss of

generality we can assume that w ∈ NR(z) ∩ N(]u, u1]). Let a ∈ V(]u, u1]), such that
aw ∈ E. From (4.4) we know that w 6∈ V(P1xP2).

x

z
w

u u′

u1

u2

P2P1

C

Fig. 3. u2, w, x ∈ X and u, u1, u′, z ∈ Y

As in the proof of (4.4), we shall consider three cases:

1. z ∈ V(P1).
2. z ∈ V(P2).
3. z = x.

Using similar arguments we get contradiction.
In any case we obtain a contradiction by replacing in (4.10), (4.12) and (4.9), the

edge za by the path zwua. Hence (4.5) is true.
For a = u1, you can find the illustrations of Cases 1 and 2 on Figures 3 and 4

respectively.
In order to prove (4.6), suppose that b ∈ V(]u, u1]), c ∈ V(]u′, u2]) and z ∈

NR({b, c}).
From (4.4) we know that NP1xP2

(b) = Nc(P1xP2) = ∅, and so z 6∈ V(P ). In this
case the cycle:

C′ : uP1xP2u
′u′− . . . u1 . . . bzc . . . u2u

+
2 . . . u

contains S, a contradiction.
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z

x

u u′

u1

w

u2

P2P1

C

Fig. 4. u2, w, x ∈ X and u, u1, u′, z ∈ Y

Hence (4.6) is true.
In order to prove (4.7), suppose that there is a vertex y ∈ NR(x) such that

N]u, u1]
(y) 6= ∅. From (4.4) we know that y 6∈ V(P1xP2). We have a vertex b ∈

V(]u, u1]) such that yb ∈ E and the following cycle:

C′ : uP1xybb+ . . . u1 . . . u′ . . . u2 . . . u

contains S, a contradiction and so N]u, u1]
(y) = ∅.

Using the same arguments we can prove N]u, u2]
(y) = ∅. Hence (4.7) is true and

the proof of Lemma 4.3 is finished.
�

4.3. PROOF OF THEOREM 3.1

We may assume that SY 6= ∅ and |SY | ≥ |SX |. We will proceed by induction over the
number of vertices in SX .

If |SX | = 0, then S = SY and from Theorem 1.6 we know that S is cyclable in G.
So the first step of the induction is finished.

Suppose now that S satisfies the assumptions of Theorem 3.1 and |SX | ≥ 1.
From the induction hypothesis, we assume that for any x ∈ SX the set S \ {x} is

cyclable in G, while S itself is not cyclable. Let us choose a vertex x ∈ SX .
We have a cycle C containing S \{x} such that x 6∈ V(C). We recall that the cycle

C and the C-path P are chosen such that P is shortest possible among all C-paths
containing x for all cycles C containing S \ {x}. As in Section 4.1, u1 is the first
vertex from S on the cycle C after u and u2 is the first vertex from S on the cycle C

after u′, R is the subgraph induced in G by V(G) \ V(C).
It is clear that in this case R is a balanced bipartite graph.

Note that if c = |V(C)|, r = |V(R)|, then c and r are even and n =
c + r

2
.

From Remark 4.2 and Lemma 4.3 C and P satisfy (4.3) — (4.7).
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We shall consider four cases:

1. NR(x) = ∅.
2. NR(x) 6= ∅ and u1, u2 ∈ SY .
3. NR(x) 6= ∅ and u1, u2 ∈ SX .
4. NR(x) 6= ∅ and u1 and u2 are in different partite sets.

Case 1. NR(x) = ∅
In this case P1 and P2 are empty and xu, xu′ ∈ E.
Since R is balanced there is an y ∈ Y ∩ V(R). Since xy 6∈ E then from (3.1) we

have:

d(x) + d(y) ≥ n + 1. (4.13)

Since NR(x) = ∅ we have:

dR(x) = 0 and dR(y) ≤
r

2
− 1 . (4.14)

x y

a b+a+ b

C

Fig. 5. a+, b+, x ∈ X and a, b, y ∈ Y

Suppose that y has two neighbors a+, b+ in NC (x)+, then xa, xb ∈ E and the
cycle C′ (see Fig. 5):

C′ : xbb− . . . a+yb+b++ . . . ax

contains S, a contradiction with noncyclability of S. So y has at most one neighbor
in NC(x)+ and thus:

dC(x) + dC(y) ≤
c

2
+ 1. (4.15)

From (4.14) and (4.15) we have:

d(x) + d(y) ≤
r

2
− 1 +

c

2
+ 1 ≤ n,

a contradiction with (3.1).
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Case 2. NR(x) 6= ∅ and u1, u2 ∈ SY

Subcase 2.1. There is a vertex x0 ∈ V(]u, u1[) ∩ X or x0 ∈ V(]u′, u2[) ∩ X

We can assume that x0 ∈ V(]u, u1[) ∩ X .
Since V (]u, u1[) ∩ S = ∅, then from Lemma 4.3 (4.4) xu1 6∈ E.
Note that if x0u2 ∈ E, then the cycle:

C′ : uP1xP2u
′u′− . . . u1 . . . x0u2u

+
2 . . . u

contains S, a contradiction.
Using the same arguments we can show that:

N]u, u1[
(u2) = ∅ and N]u′, u2[

(x0) = ∅. (4.16)

So we have u1, u2 ∈ Y , xu1 6∈ E, x0u2 6∈ E and from (3.1), (3.2) we have:

d(x0) + d(x) + d(u1) + d(u2) ≥ 2n + 2. (4.17)

Consider the interval ]u2, u1[.
If a ∈ V(]u2, u1[) and x0a ∈ E then a+u2 6∈ E.
Suppose that there is a vertex a ∈ V(]u2, u1[) such that x0a, a+u2 ∈ E. From

(4.16) we have a ∈ V(]u2, u[) and in this case the cycle:

C′ : x0aa− . . . u+
2 u2a

+ . . . uP1xP2u
′u′− . . . u1 . . . x0 (4.18)

contains S, a contradiction.
Using similar arguments we can show that if a ∈ V(]u1, u2[) and u2a ∈ E then

a+x0 6∈ E.
Since also u1u2 6∈ E we have:

dC(x0) + dC(u2) ≤
c

2
. (4.19)

If a ∈ V(C) \ {u} and xa ∈ E then u1a
+ 6∈ E.

Suppose that there is a vertex a ∈ V(C)\ {u} such that xa, u1a
+ ∈ E. From (4.4)

we know that a 6∈ V(]u, u1]) and thus the cycle:

C′ : xaa− . . . u1a
+a++ . . . uP1x

contains S, a contradiction.
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So we have:
dC(x) + dC(u1) ≤

c

2
+ 1. (4.20)

From Lemma 4.3 (4.5) we have:

dR(x) + dR(x0) ≤
r

2
. (4.21)

From Lemma 4.3 (4.6) we have:

dR(u1) + dR(u2) ≤
r

2
. (4.22)

From (4.19) — (4.22) we have:

d(x0) + d(x) + d(u1) + d(u2) ≤
c

2
+

c

2
+ 1 +

r

2
+

r

2
= 2n + 1,

a contradiction with (4.17).
Subcase 2.2. u+ = u1 and u′+ = u2

If u+ = u1 and u′+ = u2 then u, u′ ∈ X and so V(P1) 6= ∅ and V(P2) 6= ∅ and
from Remark 4.2 (4.2) we have dC(x) = 0.
Subcase 2.2.1. NR(u1) = ∅ or NR(u2) = ∅

We can assume that NR(u1) = ∅. From Lemma 4.3 (4.4) xu1 6∈ E and so from
(3.1) we have:

d(x) + d(u1) ≥ n + 1. (4.23)

From Remark 4.2 (4.2) and the assumption that NR(u1) = ∅ we have:

d(x) + d(u1) = dC(x) + dR(x) + dC(u1) + dR(u1) ≤ 0 +
r

2
+

c

2
+ 0 = n,

a contradiction with (4.23).
Subcase 2.2.2. NR(u1) 6= ∅ and NR(u2) 6= ∅

Take an a ∈ NR(u1). From Lemma 4.3 (4.4) a 6∈ V(P ) and u1x 6∈ E. From (4.6)
u2a 6∈ E and so from (3.1), (3.2) we have:

d(u1) + d(u2) + d(x) + d(a) ≥ 2n + 2. (4.24)

Note that for any b ∈ V(]u2, u[) if ab ∈ E then u2b
+ 6∈ E. Suppose that ab,

u2b
+ ∈ E, then the cycle:

C : abb− . . . u2b
+ . . . uP1xP2u

′u′− . . . u1a

contains S, a contradiction.
Note that for any b ∈ V(]u1, u

′[) if ab ∈ E then u2b
− 6∈ E. Suppose that ab,

u2b
− ∈ E, then the cycle:

C : abb+ . . . u′P2xP1uu− . . . u2b
− . . . u1a

contains S, a contradiction.
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Since S is not cyclable Nu2(]u, u1]) = ∅.
Note that in this case u2 = u′+ and so it is impossible that au′, u′+u2 ∈ E.
From the above we have:

dC(u2) + dC(a) ≤
c

2
. (4.25)

Since from Remark 4.2 (4.2) we have dC(x) = 0 then:

dC(x) + dC(u1) ≤
c

2

and
dC(x) + dC(a) + dC(u1) + dC(u2) ≤ c. (4.26)

Suppose now that we have a vertex b ∈ V(R) such that ab, xb ∈ E. Then the
cycle:

C : u1abxP1uu− . . . u2u
′u′− . . . u1

contains S, a contradiction and so we have:

dR(x) + dR(a) ≤
r

2
. (4.27)

From Lemma 4.3 (3.1) for any vertex b ∈ V(R) if u1b ∈ E then u2b 6∈ E.
Since also x 6∈ N(u1) ∪ N(u2) we have:

dR(u1) + dR(u2) ≤
r

2
− 1. (4.28)

From (4.26) — (4.28) we have

d(u1) + d(u2) + d(x) + d(a) ≤ c + r − 1 ≤ 2n − 1,

a contradiction with (4.24).
Case 3. NR(x) 6= ∅ and u1, u2 ∈ SX

Subcase 3.1. V(]u, u1[) ∩ Y 6= ∅ or V(]u′, u2[) ∩ Y 6= ∅
Choose a vertex y ∈ V(]u, u1[) ∩ Y . From Lemma 4.3 (4.3) we have xy 6∈ E and

so from (3.1) we have:
d(x) + d(y) ≥ n + 1. (4.29)

Subcase 3.1.1. x has a neighbor in R \ P1

Let y′ be a neighbor of x from R \ P1. Note that since S is not cyclable u1y
′ 6∈ E

and from (3.1) we have:

d(x) + d(y) + d(y′) + d(u1) ≥ 2n + 2. (4.30)

Note that y and y′ cannot have common neighbors in R, because if we have a
vertex b ∈ V(R) ∩ X such that yb, y′b ∈ E then the following cycle:

C : uP1xy′byy+ . . . u1 . . . u′ . . . u2 . . . u−u

contains S, a contradiction.
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Using the same arguments we can show that u1 and x don’t have common neigh-
bors in R and thus:

dR(x) + dR(y) + dR(y′) + dR(u1) ≤
r

2
+

r

2
= r. (4.31)

Subcase 3.1.1.1. V(P1) 6= ∅
Since V(P1) 6= ∅ and P is a shortest C-path containing x, we have xu 6∈ E and

since from Lemma 4.3 (4.4) d]u,u1](x) = 0, we have d[u,u1](x) = 0.
Note that by the choice of C and P , for any a ∈ V(]u1, u[)
V(P1) 6= ∅
xa ∈ E then ya+ 6∈ E. Suppose that xa, ya+ ∈ E then the cycle:

C : xaa− . . . ya+a++ . . . uP1x

contains S, a contradiction.
From this:

dC(x) + dC(y) ≤
c

2
. (4.32)

If a ∈ V(]u1, u[) and y′a ∈ E then u1a
+ 6∈ E. Take a vertex a ∈ V(C) \ {u} and

suppose that y′a, u1a
+ ∈ E, then the cycle:

C : xy′aa− . . . u1a
+a++ . . . uP1x

contains S, a contradiction.
From Lemma 4.3 (4.7) dy′(]u, u1]) = 0.
Since it is possible that y′u ∈ E, from the above we get:

dC(y′) + dC(u1) ≤
c

2
+ 1. (4.33)

From (4.32) and (4.33) we have:

dC(x) + dC(y) + dC(y′) + dC(u1) ≤ c + 1. (4.34)

Subcase 3.1.1.2. V(P1) = ∅
For any a ∈ V(C) \ {u} if xa ∈ E then ya+ 6∈ E, except xu and yu+. Hence:

dC(x) + dC(y) ≤
c

2
+ 1. (4.35)

As in Subcase 3.1.1.1 for any a ∈ V(]u1, u[) if y′a ∈ E then u1a
+ 6∈ E.

From Lemma 4.3 (4.7) d]u,u1](y
′) = 0.

Since in this case xu ∈ E, we know that u ∈ Y and y′u 6∈ E, thus dy′([u, u1]) = 0.
From the above:

dC(y′) + dC(u1) ≤
c

2
. (4.36)

From (4.35) and (4.36) we have:

dC(x) + dC(y) + dC(y′) + dC(u1) ≤ c + 1 (4.37)
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Conclusion from Subcases 3.1.1.1 and 3.1.1.2

Independently of the fact if V(P1) is empty or not, when x has a neighbor in R\P1

from (4.37) and (4.34)we have:

dC(x) + dC(y) + dC(y′) + dC(u1) ≤ c + 1

and from (4.31):
dR(x) + dR(y) + dR(y′) + dR(u1) ≤ r.

Hence from (4.31) and (4.37) we have:

d(x) + d(y) + d(y′) + d(u1) ≤ r + c + 1 = 2n + 1,

a contradiction with (4.30). This ends the proof of Subcase 3.1.1.
Subcase 3.1.2. NR(x) ⊂ P1

We recall that NR(x) 6= ∅. In this case NR(x) = {y′} and x has no other
neighbors in R. We will get a contradiction by calculating the degree sum of the
vertices x, y, y′, and u2.

We recall that xy 6∈ E and we have the inequality (4.29):

d(x) + d(y) ≥ n + 1.

Let y′ be a neighbor of x in R ∩ P1. From (4.4) we have u2y
′ 6∈ E and from (3.1):

d(y′) + d(u2) ≥ n + 1. (4.38)

Hence from (3.1) we have:

d(x) + d(y) + d(y′) + d(u2) ≥ 2n + 2. (4.39)

From Lemma 4.3 (4.4) and (4.7) we have:

dR(y) + dR(y′) ≤
r

2
. (4.40)

Since S is not cyclable x and u2 cannot have common neighbors in R we have:

dR(x) + dR(u2) ≤
r

2
. (4.41)

From (4.40) and (4.41) we get:

dR(x) + dR(y) + dR(y′) + dR(u2) ≤ r. (4.42)

Using the same arguments as those used to show (4.32) in Subcase 3.1.1.1 we can
show that:

dC(x) + dC(y) ≤
c

2
. (4.43)

Since NR(x) ⊂ P1 we have P2 = ∅ and xu′ ∈ ED. Hence u′ ∈ Y . Since y′, u′ ∈ Y

we know that y′u′ 6∈ E and since also S is not cyclable we have:

— N[u′, u2[
(y′) = ∅.

— If a ∈ V([u2, u
′[) and y′a ∈ E then a+u2 6∈ E.

From the above we have:

dC(u2) + dC(y′) ≤
c

2
. (4.44)
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From (4.42) — (4.44) we have:

d(x) + d(y) + d(y′) + d(u2) ≤ r + c ≤ 2n,

a contradiction with (3.1).
Subcase 3.2. V(]u, u1[) ∩ Y = V(]u′, u2[) ∩ Y = ∅

From the main assumption in Case 1 we know that u1, u2 ∈ X . Since also
V(]u, u1[) ∩ Y = V(]u′, u2[) ∩ Y = ∅ we have:

]u, u1[=]u′, u2[= ∅. (4.45)

From (4.45): u1 = u+ and u2 = u′+ and thus u, u′ ∈ Y .
Subcase 3.2.1. NR(u1) = ∅ or NR(u2) = ∅

We may assume that NR(u1) = ∅. In this case u, u′ ∈ Y and since NR(x) 6= ∅, x

has a neighbor in R\P1 or R\P2. We can assume that there is a vertex y ∈ V(R\P1),
such that xy ∈ E. From Lemma 4.3 (4.7) we know that u1y 6∈ E and from (3.1) we
have:

d(y) + d(u1) ≥ n + 1. (4.46)

Note that for any a ∈ V(]u1, u
−[) if ya ∈ E then u1a

+ 6∈ E, because if ya, u1a
+ ∈ E

then the cycle:

C : xyaa− . . . u1a
+a++ . . . u−uP1x

contains S, a contradiction.
Note that since S is not cyclable yu− 6∈ E and since u, y ∈ Y we have yu 6∈ E and

so

dC(y) + dC(u1) ≤
c

2
(4.47)

Since u1y 6∈ E and NR(u1) = ∅ we have:

dR(y) + dR(u1) ≤
r

2
− 1 (4.48)

and from (4.47), (4.48) we have:

d(y) + d(u1) ≤
c

2
+

r

2
− 1 ≤ n − 1,

a contradiction with (3.1).
Subcase 3.2.2. NR(u1) 6= ∅ and NR(u2) 6= ∅

From the noncyclability of S we know that u1 and x cannot have common neigh-
bors in R. We choose a vertex y1 ∈ NR(u1). Note that y1 6∈ V(P ). We chose also a
y ∈ NR(x) \ {y1}.
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Since u1y 6∈ E and xy1 6∈ E, from (3.1) we have:

d(x) + d(y) + d(u1) + d(y1) ≥ 2n + 2. (4.49)

From the noncyclability of S we know that y and y1 cannot have common neighbors
in R and so:

dR(y) + dR(y1) ≤
r

2
. (4.50)

For the same reasons x and u1 cannot have common neighbors in R and so:

dR(x) + dR(u1) ≤
r

2
. (4.51)

We recall that in this case NR(x) ⊂ P1 and NR(x) 6= ∅, hence xu 6∈ E. Note that
for any a ∈ V(C) \ {u}, if ax ∈ E then a+y1 6∈ E. Suppose that ax, a+y1 ∈ E, then
the cycle:

C : xaa− . . . u1y1a
+a++ . . . u−uP1x

contains S, a contradiction. From this:

dC(x) + dC(y1) ≤
c

2
. (4.52)

Using the same arguments we can show that for any a ∈ V(C), if ay ∈ E then
a+u1 6∈ E and thus:

dC(y) + dC(u1) ≤
c

2
. (4.53)

From (4.50) — (4.53) we have

d(x) + d(y) + d(y1) + d(u1) ≤
r

2
+

r

2
+

c

2
+

c

2
= 2n,

a contradiction with (4.49).
Case 4. NR(x) 6= ∅ and u1 and u2 are in different partite sets

We can assume that u1 ∈ X and u2 ∈ Y .
Subcase 4.1. NR(x) ∩

(

V(R \ P1)
)

6= ∅

We choose a vertex y ∈ NR(x) ∩
(

V(R \ P1)
)

. From Lemma 4.3 (4.4) we know
that xu2 6∈ E and so from (3.1) we have:

d(x) + d(u2) ≥ n + 1. (4.54)

From Lemma 4.3 (4.7) we know that yu1 6∈ E and so from (3.2) we have:

d(u1) + d(y) ≥ n + 1. (4.55)

Thus from (4.54) and (4.55) we have:

d(x) + d(y) + d(u1) + d(u2) ≥ 2n + 2. (4.56)

For any a ∈ V(]u2, u
′[) if xa ∈ E then u2a

+ 6∈ E. Suppose that xa, u2a
+ ∈ E then

the cycle:
C : xaa− . . . u+

2 u2a
+a++ . . . uu+ . . . u1 . . . u′P2x

contains S, a contradiction.



362 Denise Amar, Evelyne Flandrin, Grzegorz Gancarzewicz

Note that however from Lemma 4.3 (4.4) we know that N]u′, u2]
(x) = ∅, but if

a = u′ it may happen that xa, u2a
+ ∈ E and so:

if xu′ 6∈ E then dC(x) + dC(u2) ≤
c

2
, (4.57)

if xu′ ∈ E then dC(x) + dC(u2) ≤
c

2
+ 1. (4.58)

Using the same arguments we can show that for any a ∈ V(]u1, u[) if ya ∈ E then
u1a

+ 6∈ E. Note that however from Lemma 4.3 (4.7) we know that N]u, u1]
(y) = ∅,

but if a = u it may happen that ya, u1a
+ ∈ E and so:

if yu 6∈ E then dC(y) + dC(u1) ≤
c

2
, (4.59)

if yu ∈ E then dC(y) + dC(u1) ≤
c

2
+ 1. (4.60)

Suppose now that dC(x) + dC(u2) = c
2 + 1 and dC(y) + dC(u1) = c

2 + 1. In this
case we have xu′, yu ∈ E. Since xu′ ∈ E we have y 6∈ V(P2) and since yu ∈ E we have
u ∈ X . Since u ∈ X we have V(P1) 6= ∅. Hence from Remark 4.2 (4.1) dC(x) = 1.

From the noncyclability of S we have u1u2 6∈ E and so dC(u1) ≤ c
2 − 1 and

dC(u2) ≤
c
2 − 1.

From the above if xu′, yu ∈ E then:

dC(x) + dC(u2) ≤
c

2
(4.61)

and this improves upon the inequality (4.58). In fact we cannot have dC(y)+dC(u1) =
dC(x) + dC(u2) = c

2 + 1, and so from (4.57) — (4.61) we know that in any case:

dC(x) + dC(u2) + dC(y) + dC(u1) ≤ c + 1. (4.62)

From Lemma 4.3 (4.7) vertices u2 and y cannot have common neighbors in R and
so:

dR(u2) + dR(y) ≤
r

2
. (4.63)

For the same reasons we have:

dR(u1) + dR(x) ≤
r

2
. (4.64)

From (4.62) — (4.64) we have:

d(x) + d(y) + d(u1) + d(u2) ≤ c + 1 + r = 2n + 1,

a contradiction with (4.56).
Subcase 4.2. NR(x) ⊂ P1

Since NR(x) ⊂ P1 we have: xu′ ∈ E and there is a vertex y ∈ V(P1) such that
xy ∈ E and so from Lemma 4.3 we have dC(x) ≤ 1.
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Note that from noncyclability of S xu2 6∈ E. From Lemma 4.3 (4.4) we know that
yu1 6∈ E and from (3.1) we have:

d(x) + d(y) + d(u1) + d(u2) ≥ 2n + 2. (4.65)

Using the same arguments as in Subcase 4.1 to show (4.57) and (4.58) we have:

dC(x) + dC(u2) ≤
c

2
+ 1. (4.66)

From Lemma 4.3 (4.4) we have V(]u, u1]) ∩ N(y) = ∅. For any a ∈ V(]u1, u[) if
ya ∈ E then u1a

+ 6∈ E. In this case xy ∈ E, y ∈ V(P1) and the vertices of the
path P = P1xP2 are labelled in the following way: p1

1 . . . p1
l xpk

2 . . . p1
2. Since P is the

shortest C-path y = p1
l .

Suppose that ya, u1a
+ ∈ E, then the cycle:

C′ : yaa− . . . u1a
+ . . . up1

1 . . . p1
l−1y

contains S \ {x} and has a C-path P ′ : yxu′, shorter than P , a contradiction with
the choice of C and P . However it is possible that if a = u then ya, u1a

+ ∈ E. So we
have shown that:

if yu 6∈ E then dC(y) + dC(u1) ≤
c

2
. (4.67)

Suppose now that yu ∈ E. Since xu′ ∈ E we have u′ ∈ Y and u2 ∈ Y . From this
V(]u′, u2[) ∩ X 6= ∅. We choose a vertex v ∈ V(]u′, u2[) ∩ X . From the noncyclability
of S u1v

+ 6∈ E and yv 6∈ E.
Since if yu ∈ E, then we have a vertex v ∈ V(C) ∩ X such that u1v

+ 6∈ E and
yv 6∈ E, so we have:

dC(y) + dC(u1) ≤
c

2
. (4.68)

From (4.67) and (4.68) in any case:

dC(y) + dC(u1) ≤
c

2
. (4.69)

From Lemma 4.3 (4.7) vertices u2 and y cannot have common neighbors in R and
so:

dR(u2) + dR(y) ≤
r

2
. (4.70)

For the same reasons we have:

dR(u1) + dR(x) ≤
r

2
. (4.71)

From (4.66) and (4.69) — (4.71) we have:

d(x) + d(y) + d(u1) + d(u2) ≤
c

2
+ 1 +

c

2
+

r

2
+

r

2
= 2n + 1,

a contradiction with (4.65).
We have shown that in any case we get a contradiction with the hypothesis that

S is not cyclable, so the proof of Theorem 3.1 is finished.
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