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CONTINUOUS SOLUTIONS
OF ITERATIVE EQUATIONS

OF INFINITE ORDER

Abstract. Given a probability space (Ω,A, P ) and a complete separable metric space
X, we consider continuous and bounded solutions ϕ : X → R of the equations ϕ(x) =R
Ω

ϕ(f(x, ω))P (dω) and ϕ(x) = 1 −
R
Ω

ϕ(f(x, ω))P (dω), assuming that the given func-
tion f : X × Ω → X is controlled by a random variable L : Ω → (0,∞) with −∞ <R
Ω

log L(ω)P (dω) < 0. An application to a refinement type equation is also presented.

Keywords: random-valued vector functions, sequences of iterates, iterative equations, con-
tinuous solutions.

Mathematics Subject Classification: Primary 45A05, 39B12; Secondary 39B52, 60B12.

1. INTRODUCTION

Throughout this paper we assume that (Ω,A, P ) is a probability space, (X, d) is a
complete separable metric space and f : X × Ω → X is a random-valued function,
i.e., it is measurable with respect to the product σ-algebra B(X) ⊗ A, where B(X)
denotes the σ-algebra of all Borel subsets of X. We consider the equation

ϕ(x) =
∫

Ω

ϕ
(
f(x, ω)

)
P (dω), (1.1)

which has extensively been studied in various classes of functions (see, e.g., [3,7,13]).
For more details concerning equation (1.1) and its particular cases, we refer the reader
to survey papers [2, part 4] and [1]. Following [11], we also examine the equation of
the form

ϕ(x) = 1−
∫

Ω

ϕ
(
f(x, ω)

)
P (dω). (1.2)
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Numerous papers concern equation (1.1) with f(x, ω) = L(ω)x−M(ω), assuming that
0 <

∫
Ω

logL(ω)P (dω) < ∞. In the present paper we are interested in the opposite
case

−∞ <

∫
Ω

logL(ω)P (dω) < 0. (1.3)

More precisely, we adopt the following hypothesis.

(H) There is a measurable function L : Ω→ (0,∞) such that

d(f(x, ω), f(y, ω)) ≤ L(ω)d(x, y) for x, y ∈ X,ω ∈ Ω (1.4)

and (1.3) holds.

As an application of the results obtained, we get a corollary on L1-solutions of the
equation

Φ(x) =
∫
Ω

|detA(ω)F ′(x)|Φ(A(ω)F (x)− C(ω))P (dω). (1.5)

Equation (1.5) extends both the discrete and the continuous refinement equations
which have extensively been studied in connection with their applications (see, e.g.,
[5, 6, 8, 16]).

The presented results are related to invariance properties of the transfer operator
for Markov chains associated with iterated random functions (see, e.g., [9]). In fact,
the probability distribution of the limit of the sequences of iterates of a random
function satisfies (1.1). Our purpose is to investigate solutions of (1.1), as well as (1.2),
in wider classes of functions; e.g., in the class of bounded and continuous functions.

2. MAIN RESULTS

We begin with the following simple lemma.

Lemma 2.1. If (1.3) holds, then the sequence
(∏N

n=1 L(ωn)
)
converges a.s. to zero.

Proof. By the Kolmogorov strong law of large numbers,

lim
N→∞

( N∏
n=1

L(ωn)
) 1

N

= exp


∫
Ω

logL(ω)P (dω)

 < 1 a.s.

Consequently,

lim
N→∞

N∏
n=1

L(ωn) = 0 a.s.
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In the proofs of our results, we will iterate the random-valued function f . The
iterates of such a function are defined by (see [4, 10])

f1(x, ω1, ω2, . . . ) = f(x, ω1), fn+1(x, ω1, ω2, . . . ) = f(fn(x, ω1, ω2, . . . ), ωn+1).

Note that fn is a random-valued function on the product probability space
(Ω∞,A∞, P∞).

We are now in a position to formulate our results. First note that the unique
constant solution of (1.2) equals 1/2 and we will omit this simple fact in all results of
this section.

Proposition 2.2. Assume (H) and let (σn) be a sequence of measure preserving
transformations of (Ω∞,A∞, P∞) such that

∧
ω∈Ω∞

[( ∧
m∈N

lim
N→∞

N∏
n=1

L((σm(ω))n) = 0
)
⇒ lim

N→∞

N∏
n=1

L((σN (ω))n) = 0
]
. (2.1)

If x0 ∈ X and if (fn(x0, ·) ◦ σn) has a subsequence which converges in measure, then
every continuous and bounded solution ϕ : X → R of (1.1) or (1.2) is constant.

Proof. Put

A =
∞⋂

m=1

σ−1
m

({
ω ∈ Ω∞ : lim

N→∞

N∏
n=1

L(ωn) = 0

})
.

From Lemma 2.1 it follows that P∞(A) = 1. By (2.1),

lim
N→∞

N∏
n=1

L((σN (ω))n) = 0 for ω ∈ A.

Using (1.4) and a simple induction, we obtain

d
(
fN (x, σN (ω)), fN (y, σN (ω))

)
≤ d(x, y)

N∏
n=1

L((σN (ω))n) (2.2)

for x, y ∈ X,ω ∈ Ω∞, N ∈ N.
Assume now that (fnk(x0, ·) ◦ σnk

) converges in measure. Without loss of gener-
ality, we can assume that (nk) contains even (or odd) numbers only. From (2.2) it
follows that for every x ∈ X the sequence (fnk(x, ·) ◦ σnk

) converges in measure and
the limit ξ is independent of x.

Let ϕ : X → R be a continuous and bounded solution of (1.1) or (1.2). In both
cases

ϕ(x) =
∫

Ω∞

ϕ(f2n(x, ω))P∞(dω),
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whence

ϕ(x) =
∫

Ω∞

ϕ(f2n(x, σ2n(ω)))P∞(dω)

for x ∈ X,n ∈ N. Passing to the limit, we get

ϕ(x) =
∫

Ω∞

ϕ(ξ(ω))P∞(dω) for x ∈ X,

which shows that ϕ is constant.

The following result gives some condition on f under which the sequence (fn(x, ·)◦
σn) converges a.s. for a special sequence (σn).

Theorem 2.3. Assume (H) and let x0 ∈ X. If∫
Ω

log max{d(f(x0, ω), x0), 1}P (dω) <∞, (2.3)

then every continuous and bounded solution ϕ : X → R of (1.1) or (1.2) is constant.

Proof. Following [14], define a sequence (σn) by

σn(ω1, ω2, . . . ) = (ωn, . . . , ω1, ωn+1, . . . ).

Clearly, σn preserves the product measure P∞ and (2.1) holds. According to Propo-
sition 2.2, it is enough to show the convergence of (fn(x0, ·) ◦ σn). Since fn(·, ω)
depends exclusively on the first n coordinates of ω ∈ Ω∞, we see that (2.2) implies

d
(
fN+1(x0, σN+1(ω)), fN (x0, σN (ω))

)
≤

N∏
n=1

L(ωn)d(f(x0, ωN+1), x0),

whence

d(fN+N ′
(x0, σN+N ′(ω)), fN (x0, σN (ω))) ≤

N+N ′−1∑
n=N

n∏
k=1

L(ωk)d(f(x0, ωn+1), x0)

for ω ∈ Ω∞, N,N ′ ∈ N. Consequently, in view of [11, Theorem 2] and (2.3), the series

∞∑
N=1

N∏
n=1

L(ωn)d(f(x0, ωN+1), x0)

converges almost surely on Ω∞ and the required convergence follows.
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Theorem 2.4. If (H) holds, then every bounded and uniformly continuous function
ϕ : X → R satisfying

|ϕ(x)− ϕ(y)| ≤
∫
Ω

|ϕ(f(x, ω))− ϕ(f(y, ω))|P (dω) for x, y ∈ X (2.4)

is constant.

Proof. Let ϕ : X → (−M,M) be a uniformly continuous function such that (2.4)
holds.

Fix x, y ∈ X, ε > 0 and let δ be a positive real such that |ϕ(u) − ϕ(v)| ≤ ε
2 ,

provided d(u, v) ≤ δ for u, v ∈ X.
From (1.4) and Lemma 2.1, we infer limN→∞ d(fN (x, ω), fN (y, ω)) = 0. Hence,

for a sufficiently large N ∈ N and for suitably chosen set A ∈ A∞, there holds

P∞(Ω∞ \A) ≤ ε

4M
and d(fN (x, ω), fN (y, ω)) ≤ δ for ω ∈ A.

Finally, by iterating (2.4), we obtain

|ϕ(x)− ϕ(y)| ≤
∫
A

|ϕ(fN (x, ω))− ϕ(fN (y, ω))|P∞(dω) + 2MP∞(Ω∞ \A) ≤ ε,

which completes the proof.

As a consequence of Theorem 2.4, we obtain a result concerning the uniqueness
in the class of uniformly continuous and bounded functions.

Corollary 2.5. If (H) holds, then every bounded and uniformly continuous solution
ϕ : X → R of (1.1) or (1.2) is constant.

The next two examples show that neither boundedness nor continuity may be
omitted in Theorems 2.3, 2.4 and in Corollary 2.5.

Example 2.6. If

f(0, ω) = 0 and f(x, ω) 6= 0 for x 6= 0, ω ∈ Ω,

then (2.3) holds with x0 = 0 and for every α, β ∈ R with α 6= β, the function

ϕ = αχ{0} + βχR\{0} (2.5)

is a bounded and discontinuous solution of (1.1). If α+β = 1, then (2.5) is a solution
of (1.2), provided

f(0, ω) 6= 0 and f(x, ω) = 0 for x 6= 0, ω ∈ Ω.

Example 2.7. Let Ω = {ω1, ω2}, let p1, p2 be positive reals with p1 + p2 = 1 and let
L1 > 0 satisfy

Lp1
1

(
1− p1L1

)p2
< p2

p2 and p1L1 < 1.
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Put
L2 =

1− p1L1

p2
, L(ωi) = Li and f(x, ωi) = L(ωi)x

for x ∈ R, i = 1, 2. Clearly, conditions (1.4) and (1.3) are fulfilled. Equation (1.1)
now takes the form

ϕ(x) = p1ϕ(L1x) + p2ϕ(L2x).

Since p1L1 + p2L2 = 1, the identity function is a solution of the equation above. It is
easy to verify that the function ”x 7→ x+ 1/2” satisfies

ϕ(x) = 1− p1ϕ(−L1x)− p2ϕ(−L2x).

Denote by Rn×m the set of all matrices with n rows and m columns, and by ‖ · ‖
the maximum norm in Rn.

From now on we assume that

f(x, ω) = A(ω)F (x)− C(ω), (2.6)

where A = [Aij ] : Ω → Rn×m, C : Ω → Rn are measurable and F = [Fi] : Rn → Rm

is continuous. It is clear that the function given by (2.6) is random-valued (see [12]).
Equations (1.1) and (1.2) now take the forms

ϕ(x) =
∫
Ω

ϕ(A(ω)F (x)− C(ω))P (dω) (2.7)

and

ϕ(x) = 1−
∫
Ω

ϕ(A(ω)F (x)− C(ω))P (dω), (2.8)

respectively.
The following corollary will be useful in the next section.

Corollary 2.8. Let F (0) = 0,

|Fi(x)− Fi(y)| ≤ ‖x− y‖ for x, y ∈ X, i = 1, . . . ,m

and
−∞ <

∫
Ω

log max
k=1,...,n

{|Ak1(ω)|+ · · ·+ |Akm(ω)|}P (dω) < 0.

Then:
(i) Every bounded and uniformly continuous solution ϕ : Rn → R of (2.7) or (2.8)

is constant.
(ii) If ∫

Ω

log max{‖C(ω)‖, 1}P (dω) <∞, (2.9)

then every continuous and bounded solution ϕ : Rn → R of (2.7) or (2.8) is
constant.
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Proof. Clearly, (H) holds with

L(ω) = max
k=1,...,n

{|Ak1(ω)|+ · · ·+ |Akm(ω)|}

and by (2.9) we obtain (2.3) with x0 = 0. Hence the assertions follow from Corollary
2.5 and Theorem 2.3, respectively.

3. AN APPLICATION TO A REFINEMENT TYPE EQUATION

Let A : Ω → Rn×n and C : Ω → Rn be measurable, detA(ω) 6= 0 for ω ∈ Ω and let
F : Rn → Rn be a diffeomorphism. Then for an f of form (2.6), there holds

ln ⊗ P (f−1(B)) =
∫
Ω

ln

(
F−1

(
A(ω)−1(B + C(ω))

))
P (dω) = 0

for B ∈ B(Rn) of zero Lebesgue measure ln. Consequently, if Φ: Rn → R is Lebesgue
measurable, then Φ ◦ f is measurable with respect to the completion of the product
σ-algebra Ln ⊗A. Moreover, if the measure P is complete, then equation (1.5) with
unknown L1-function Φ: Rn → R makes sense. (We omit details, which may be found
in [15] for n = 1).

Fix measurable functions a1, . . . , an, c1, . . . , cn : Ω → R and diffeomorphisms
F1, . . . , Fn from R onto itself such that

Fi(0) = 0 and |Fi(x)− Fi(y)| ≤ |x− y| for x, y ∈ R, i = 1, . . . , n,

and define functions A = [Aij ] : Ω→ Rn×n, F : Rn → Rn and C : Ω→ Rn putting

F (x) = (F1(x1), . . . , Fn(xn)), C = (c1, . . . , cn)

and
Aij = 0 if i 6= j and Aii = ai for i, j = 1, . . . , n.

The following corollary concerns a refinement type equation of form (1.5) with a
complete measure P and the functions A,F,C defined above.

Corollary 3.1. Assume that a1, . . . , an are positive (resp. negative), F1, . . . , Fn are
increasing (resp. decreasing) and

−∞ <

∫
Ω

log max
k=1,...,n

|ak(ω)|P (dω) < 0.

Then the trivial function is the only L1-solution Φ: Rn → R of (1.5).

Proof. Suppose that Φ: Rn → R is an L1-solution of (1.5). Define ϕ : Rn → R by

ϕ(x) =
∫
Ux

Φ(t)dt,
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where Ux = (−∞, x1)× · · · × (−∞, xn) for x ∈ Rn. Since

Ux = f−1(·, ω)(Uf(x,ω))

and the function “Rn×Ω 3 (x, ω) 7→ |detA(ω)F ′(x)|Φ(A(ω)F (x)−C(ω))” is product
measurable, it follows that

ϕ(x) =
∫

Ω

∫
Ux

|detA(ω)F ′(t)|Φ(A(ω)F (t)− C(ω))dt

P (dω) =

=
∫
Ω

 ∫
Uf(x,ω)

Φ(t)dt

P (dω) =
∫
Ω

ϕ(A(ω)F (x)− C(ω))P (dω).

This means that ϕ is a bounded and uniformly continuous solution of (2.7). Moreover,
all the assumptions of Corollary 2.8(i) are satisfied. Consequently, ϕ is constant and
so Φ equals zero.
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