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CONTINUOUS SOLUTIONS
OF ITERATIVE EQUATIONS
OF INFINITE ORDER

Abstract. Given a probability space (2,.4, P) and a complete separable metric space
X, we consider continuous and bounded solutions ¢: X — R of the equations ¢(z) =
Joe(f(z,w))P(dw) and @(x) = 1 — [, o(f(x,w))P(dw), assuming that the given func-
tion f: X x Q — X is controlled by a random variable L: Q@ — (0,00) with —o0 <
fg log L(w)P(dw) < 0. An application to a refinement type equation is also presented.
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1. INTRODUCTION

Throughout this paper we assume that (Q, .4, P) is a probability space, (X,d) is a
complete separable metric space and f: X x  — X is a random-valued function,
i.e., it is measurable with respect to the product c-algebra B(X) ® A, where B(X)
denotes the o-algebra of all Borel subsets of X. We consider the equation

o) = /Q o () P(dw), (1.1)

which has extensively been studied in various classes of functions (see, e.g., [3,7,13]).
For more details concerning equation (1.1) and its particular cases, we refer the reader
to survey papers |2, part 4] and [1]. Following [11], we also examine the equation of
the form

o) =1= [ o(f(z.0)) Pldo). (12
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Numerous papers concern equation (1.1) with f(z,w) = L(w)z— M (w), assuming that
0 < fQ log L(w)P(dw) < oo. In the present paper we are interested in the opposite
case

—o0 < [ log L(w)P(dw) < 0. (1.3)
/

More precisely, we adopt the following hypothesis.

(H) There is a measurable function L: 2 — (0, 00) such that
d(f(z,w), f(y,w)) < L(w)d(z,y) forz,y € X,w e (1.4)

and (1.3) holds.

As an application of the results obtained, we get a corollary on L!-solutions of the
equation
O(x) = / | det A(w)F'(2)|®(A(w)F(x) — C(w))P(dw). (1.5)
Q
Equation (1.5) extends both the discrete and the continuous refinement equations
which have extensively been studied in connection with their applications (see, e.g.,
[5,6,8,16]).

The presented results are related to invariance properties of the transfer operator
for Markov chains associated with iterated random functions (see, e.g., [9]). In fact,
the probability distribution of the limit of the sequences of iterates of a random
function satisfies (1.1). Our purpose is to investigate solutions of (1.1), as well as (1.2),
in wider classes of functions; e.g., in the class of bounded and continuous functions.

2. MAIN RESULTS

We begin with the following simple lemma.
Lemma 2.1. If (1.3) holds, then the sequence (ngl L(wy)) converges a.s. to zero.

Proof. By the Kolmogorov strong law of large numbers,

1

N

li ( L n) - log L(w)P 1 as.
Jim H (wn) exp /og (W)P(dw) p <1 as
n=1 Q
Consequently,
N
lim L(w,) =0 as.
N—>oon:1
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In the proofs of our results, we will iterate the random-valued function f. The
iterates of such a function are defined by (see [4,10])

fl(x,wl,wg,...) = f(x,w1), f"+1(x,w1,w2,...) = f(f"(r,wi,wa,...),wnt1).

Note that f™ is a random-valued function on the product probability space
(Q2o°, A% P>).
We are now in a position to formulate our results. First note that the unique

constant solution of (1.2) equals 1/2 and we will omit this simple fact in all results of
this section.

Proposition 2.2. Assume (H) and let (0,) be a sequence of measure preserving
transformations of (Q°°, A, P>) such that

N

A (A Jim L (@m(@))a) =0) = lim TT Li(ow(@))n) =0]. 2.1)

N~>oo N—o0
weN> meN n=1
If xo € X and if (f™(xo,) o 0p) has a subsequence which converges in measure, then
every continuous and bounded solution p: X — R of (1.1) or (1.2) is constant.

Proof. Put

) N
A= on ({wEQO": A}iillooHL(wn)O}>.

m=1 n=1

From Lemma 2.1 it follows that P> (A4) = 1. By (2.1),

N
lim L((on(w))n) =0  forw e A.

N—o0
n=1

Using (1.4) and a simple induction, we obtain

d(fN (@, on (W), [N (y,on (W) < d(a,y) [T L( (2.2)

forz,y e X,we Q> NeN.

Assume now that (f™ (xg,-) o 0y, ) converges in measure. Without loss of gener-
ality, we can assume that (ng) contains even (or odd) numbers only. From (2.2) it
follows that for every x € X the sequence (f"*(z,-) o o, ) converges in measure and
the limit £ is independent of z.

Let ¢: X — R be a continuous and bounded solution of (1.1) or (1.2). In both
cases

o) = / (2" (1, 0)) P (dw),

Qo
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whence
o) = [ D" @02 ()) P (o)
Qoo
for x € X,n € N. Passing to the limit, we get
o) = [ ple@IP=(ds) foroeX,
QOO
which shows that ¢ is constant. O

The following result gives some condition on f under which the sequence (f"(z,-)o
o) converges a.s. for a special sequence (o0y,).

Theorem 2.3. Assume (H) and let xo € X. If
/logmax{d(f(a:o,w),xo), 1} P(dw) < o0, (2.3)
Q
then every continuous and bounded solution p: X — R of (1.1) or (1.2) is constant.
Proof. Following [14], define a sequence (o) by
On(Wi,wa,...) = (Wny oo oy W1, Wty - - - )

Clearly, o,, preserves the product measure P> and (2.1) holds. According to Propo-
sition 2.2, it is enough to show the convergence of (f"(zg,) o ). Since f™(-,w)
depends exclusively on the first n coordinates of w € Q°°, we see that (2.2) implies

N
d(fN T (2o, on1(W)), fN (20,08 (W))) < H L(wyn)d(f(zo,wn+1), o),

n=1
whence
/ N+N'—1 n
AN (o, o4 (@), N @0, on (@) < D ] L@w)d(f (@0, wat1), w0)
n=N k=1

for w € O, N, N’ € N. Consequently, in view of [11, Theorem 2] and (2.3), the series

[eS)
N=1

converges almost surely on 2°° and the required convergence follows. O

N
L(wy)d(f(wo,wn+1),T0)

n=1
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Theorem 2.4. If (H) holds, then every bounded and uniformly continuous function
p: X — R satisfying

o(z) — e(y)| < / o(f(z,w)) —(f(y,w))|P(dw)  foraz,ye X (2.4)
Q

1s constant.

Proof. Let ¢: X — (=M, M) be a uniformly continuous function such that (2.4)
holds.

Fix 2,y € X,e > 0 and let § be a positive real such that [p(u) — ¢(v)| < 3,
provided d(u,v) < § for u,v € X.

From (1.4) and Lemma 2.1, we infer limy_ . d(f" (z,w), f¥(y,w)) = 0. Hence,
for a sufficiently large N € N and for suitably chosen set A € A, there holds

P=(Q%\ A) < ﬁ and  d(f¥(z,w), N (y,w) <6 forwe A

Finally, by iterating (2.4), we obtain
lp(z) —o(y)| < / lo(fY (2,w)) = o(fN (y,w)) [P (dw) + 2M P> (@ \ A) <,
A

which completes the proof. O

As a consequence of Theorem 2.4, we obtain a result concerning the uniqueness
in the class of uniformly continuous and bounded functions.

Corollary 2.5. If (H) holds, then every bounded and uniformly continuous solution
v: X > R of (1.1) or (1.2) is constant.

The next two examples show that neither boundedness nor continuity may be
omitted in Theorems 2.3, 2.4 and in Corollary 2.5.

Example 2.6. If
fO,w)=0 and f(z,w)#0 forz+#0,weEQ,
then (2.3) holds with 2o = 0 and for every «, 8 € R with « # 3, the function
¢ = axqo} + Bxr\{0} (2.5)

is a bounded and discontinuous solution of (1.1). If «+ 3 = 1, then (2.5) is a solution
of (1.2), provided

fO,w)#0 and f(z,w)=0 forz #0,w € Q.

Example 2.7. Let Q = {w1,ws}, let p1, pa be positive reals with p; + p2 = 1 and let
Ly > 0 satisfy
e (1 — gr)lLl)p2 <p”* and piL;<l1.
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Put
_1- p1l1

D2

for z € R,i = 1,2. Clearly, conditions (1.4) and (1.3) are fulfilled. Equation (1.1)
now takes the form

Ly L(w;)=L; and f(z,w;) = L(wi)z

o(r) = pr(L1w) + p2ip(Law).

Since p1 L1 + pa Lo = 1, the identity function is a solution of the equation above. It is
easy to verify that the function 7z — x 4 1/2” satisfies

o(x) =1 = prp(—L1z) — pap(—Laz).

Denote by R™*™ the set of all matrices with n rows and m columns, and by || - ||
the maximum norm in R”.
From now on we assume that

f(z,w) = A(w)F(z) — C(w), (2.6)

where A = [4;;]: @ — R"*™, C: Q — R"™ are measurable and F = [F;]: R" — R™
is continuous. It is clear that the function given by (2.6) is random-valued (see [12]).
Equations (1.1) and (1.2) now take the forms

p(x) :/so(A(w)F(x)*C(w))P(dw) (2.7)

Q

and

p(r) =1 —/w(A(w)F(w) = C(w))P(dw), (2.8)
Q

respectively.
The following corollary will be useful in the next section.

Corollary 2.8. Let F(0) =0,
[Fi(x) = Fi()| < lle =yl forz,ye X,i=1,...,m

and
—00 < /log | Juax {|Ap1(W)| + - -+ + |[Akm (w) |} P(dw) < 0.
Then:

(i) Ewvery bounded and uniformly continuous solution ¢: R™ — R of (2.7) or (2.8)
18 constant.

(i) If
/log max{||C(w)]|, 1} P(dw) < oo, (2.9)
Q

then every continuous and bounded solution ¢: R™ — R of (2.7) or (2.8) is
constant.
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Proof. Clearly, (H) holds with

L(w) = max {4 ()] + -+ A ()]}

=1,...,

and by (2.9) we obtain (2.3) with xog = 0. Hence the assertions follow from Corollary
2.5 and Theorem 2.3, respectively. [

3. AN APPLICATION TO A REFINEMENT TYPE EQUATION

Let A: Q@ — R™"™ and C: 2 — R"™ be measurable, det A(w) # 0 for w €  and let
F: R"™ — R"™ be a diffeomorphism. Then for an f of form (2.6), there holds

I ® P(f~L(B)) = /zn (F(A) (B + C())) ) Pldw) = 0

Q

for B € B(R™) of zero Lebesgue measure [,,. Consequently, if &: R” — R is Lebesgue
measurable, then ® o f is measurable with respect to the completion of the product
o-algebra £, ® A. Moreover, if the measure P is complete, then equation (1.5) with
unknown L'-function ®: R” — R makes sense. (We omit details, which may be found
in [15] for n = 1).

Fix measurable functions aq,...,a,,¢1,...,¢,: € — R and diffeomorphisms
Fy, ..., F, from R onto itself such that

Fz(o):O and |FZ(Z‘)_Fl(y)|S‘m_y| forx,yER,izl,...,n,
and define functions A = [4;;]: @ — R™*", F: R — R™ and C': Q@ — R” putting
F(z) = (Fi(x1),...,Fo(zy)), C=(c1,...,¢n)

and
Aij=0 ifi#j and Ay=a; fori,j=1,...,n

The following corollary concerns a refinement type equation of form (1.5) with a
complete measure P and the functions A, F, C' defined above.

Corollary 3.1. Assume that ay,...,a, are positive (resp. negative), Fy,..., F, are
increasing (resp. decreasing) and

—00 < /1og | max |ag (w)|P(dw) < 0.

Q

Then the trivial function is the only L*-solution ®: R™ — R of (1.5).
Proof. Suppose that ®: R™ — R is an L!-solution of (1.5). Define p: R® — R by

o) = [ oo,

Uz
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where U, = (—00,x1) X -+ X (—00,z,) for z € R™. Since

U, = fﬁl("w)(Uf(w,w))

and the function “R" xQ 3 (z,w) — | det A(w)F'(z)|P(A(w)F(z) — C(w))” is product
measurable, it follows that

o(x) = /Q C |det A(w)F'(t)|P(A(w)F(t) — C(w))dt | P(dw) =

- / / B(t)dt | Pldw) = / H(A(w)F(z) — C(w)) Pldw).
Q

QUi (z,w)

This means that ¢ is a bounded and uniformly continuous solution of (2.7). Moreover,
all the assumptions of Corollary 2.8(i) are satisfied. Consequently, ¢ is constant and
so ® equals zero. O

Acknowledgments

This research was supported by Silesian University Mathematics Department (Discrete
Dynamical Systems and Iteration Theory program — the first author, and Functional
Equations program — the second author).

REFERENCES

[1] K. Baron, Recent results in the theory of functional equations in a single variable, Sem.
LV, http://www.mathematik.uni-karlsruhe.de/“semlv, No. 15 (2003), 16 pp.

[2] K. Baron, W. Jarczyk, Recent results on functional equations in a single variable, per-
spectives and open problems, Aequationes Math. 61 (2001), 1-48.

[3] K. Baron, W. Jarczyk, Random-valued functions and iterative functional equations,
Aequationes Math. 67 (2004), 140-153.

[4] K. Baron, M. Kuczma, Iteration of random-valued functions on the unit interval,
Colloq. Math. 37 (1977), 263-269.

[5] D. Dahmen, C.A. Micchelli, Continuous refinement equations and subdivision, Adv.
Comput. Math. 1 (1993), 1-37.

[6] I. Daubechies, Orthonormal bases of wavelets with compact support, Comm. Pure Appl.
Math. 41 (1988), 909-996.

[7] G. Derfel, A probabilistic method for studying a class of functional-differential equations
[in Russian|, Ukrain. Mat. Zh. 41 (1989), 1322-1327; English transl.: Ukrainian Math.
J. 41 (1989), 1137-1141.

[8] G. Derfel, N. Dyn, D. Levin, Generalized refinement equations and subdivision pro-
cesses, J. Aprox. Theory 80 (1995), 272-297.



Continuous solutions of iterative equations of infinite order 155

[9] P. Diaconis, D. Freedman, Iterated random functions, SIAM Rev. 41 (1999), 45-76.
[10] Ph. Diamond, A stochastic functional equation, Aequationes Math. 15 (1977), 225-23.

[11] A.K. Grincevicjus, On the continuity of the distribution of a sum of dependent variables
connected with independent walks on lines [in Russian|, Teor. Verojatnost. i Primenen
19 (1974), 163-168; English translation: Teor. Probability Appl. 19 (1974), 163-168.

[12] C.J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72.

[13] W. Jarczyk, Convexity properties of nonnegative solutions of a convolution equation,
Selected topics in functional equations and iteration theory, Grazer Math. Ber. 316
(1992), 71-92.

[14] R. Kapica, Sequences of iterates of random-valued vector functions and continuous
solutions of a linear functional equation of infinite order, Bull. Polish Acad. Sci. Math.
50 (2002), 447-455.

[15] R. Kapica, J. Morawiec, On a refinement type equation, J. Appl. Anal. 14 (2008),
251-257.

[16] L.L. Schumaker, Spline functions: Basic theory, John Wiley, New York, 1981.

Janusz Morawiec
morawiec@math.us.edu.pl

Silesian University
Institute of Mathematics
Bankowa 14, 40-007 Katowice, Poland

Rafal Kapica
rkapica@math.us.edu.pl

Silesian University
Institute of Mathematics
Bankowa 14, 40-007 Katowice, Poland

Received: April 22, 2008.
Revised: November 3, 2008.
Accepted: March 9, 2009.



