Aurelian Cernea

ON AN EVOLUTION INCLUSION IN NON-SEPARABLE BANACH SPACES

Abstract. We consider a Cauchy problem for a class of nonconvex evolution inclusions in non-separable Banach spaces under Filippov-type assumptions. We prove the existence of solutions.

Keywords: Lusin measurable multifunctions, selection, mild solution.

Mathematics Subject Classification: 34A60.

1. INTRODUCTION

In this paper we study differential inclusions of the form

$$x'(t) \in A(t)x(t) + \int_{0}^{t} K(t,s)F(s,x(s))ds, \quad x(0) = x_{0},$$
(1.1)

where $F : [0, T] \times X \to \mathcal{P}(X)$ is a set-valued map, Lipschitzean with respect to the second variable, X is a Banach space, A(t) is the infinitesimal generator of a strongly continuous evolution system of a two parameter family $\{G(t, \tau), t \geq 0, \tau \geq 0\}$ of bounded linear operators of X into X, $D = \{(t,s) \in [0,T] \times [0,T]; t \geq s\}, K(.,.) : D \to \mathbf{R}$ is continuous and $x_0 \in X$.

The existence and qualitative properties of mild solutions of problem (1.1) have been obtained in [1,2-7,13] etc.. Most of the existence results mentioned above are obtained using fixed point techniques. In [9] it is shown that Filippov's ideas ([11]) can suitably be adapted in order to prove the existence of solutions to problem (1.1). All these approaches are have proved successful the Banach space X separable.

De Blasi and Pianigiani ([10]) established the existence of mild solutions for semilinear differential inclusions on an arbitrary, not necessarily separable, Banach space X. Even if Filippov's ideas are still present, the approach in [10] is fundamental different: it consists in the construction of the measurable selections of the multifunction. This construction does not use classical selection theorems such as Kuratowski and Ryll-Nardzewski's ([12]) or Bressan and Colombo's ([8]).

The aim of this paper is to obtain an existence result for problem (1.1) similar to the one in [10]. We will prove the existence of solutions for problem (1.1) in an arbitrary space X under Filippov-type assumptions on F.

The paper is organized as follows: in Section 2 we present the notations, definitions and preliminary results to be used in the sequel, and in Section 3 we prove the main result.

2. PRELIMINARIES

Consider X, an arbitrary real Banach space with norm |.| and with the corresponding metric d(.,.). Let $\mathcal{P}(X)$ be the space of all bounded nonempty subsets of X endowed with the Hausdorff pseudometric

$$d_H(A, B) = \max\{d^*(A, B), d^*(B, A)\}, \quad d^*(A, B) = \sup_{a \in A} d(a, B),$$

where $d(x, A) = \inf_{a \in A} |x - a|, A \subset X, x \in X.$

Let \mathcal{L} be the σ -algebra of the (Lebesgue) measurable subsets of R and, for $A \in \mathcal{L}$, let $\mu(A)$ be the Lebesgue measure of A.

Let X be a Banach space and Y be a metric space. An open (resp., closed) ball in Y with center y and radius r is denoted by $B_Y(y,r)$ (resp., $\overline{B}_Y(y,r)$). In what follows, $B = B_X(0,1)$.

A multifunction $F: Y \to \mathcal{P}(X)$ with closed bounded nonempty values is said to be d_H -continuous at $y_0 \in Y$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for any $y \in B_Y(y_0, r)$ there is $d_H(F(y), F(y_0)) \leq \varepsilon$. F is called d_H -continuous if it is so at each point $y_0 \in Y$.

Let $A \in \mathcal{L}$, with $\mu(A) < \infty$. A multifunction $F : Y \to \mathcal{P}(X)$ with closed bounded nonempty values is said to be *Lusin measurable* if for every $\varepsilon > 0$ there exists a compact set $K_{\varepsilon} \subset A$, with $\mu(A \setminus K_{\varepsilon}) < \varepsilon$ such that F restricted to K_{ε} is d_H -continuous.

It is clear that if $F, G : A \to \mathcal{P}(X)$ and $f : A \to X$ are Lusin measurable, then so are F restricted to B ($B \subset A$ measurable), F + G and $t \to d(f(t), F(t))$. Moreover, the uniform limit of a sequence of Lusin measurable multifunctions is Lusin measurable, too.

Let I stand for the interval [0, T], T > 0.

In what follows, $\{A(t); t \in I\}$ is the infinitesimal generator of a strongly continuous evolution system $G(t, s), 0 \le s \le t \le T$.

Recall that a family of bounded linear operators G(t,s) on X, $0 \le s \le t \le T$ depending on two parameters is said to be a strongly continuous evolution system if the following conditions hold: G(s,s) = I, G(t,r)G(r,s) = G(t,s) for $0 \le s \le$ $r \le t \le T$ and $(t,s) \to G(t,s)$ is strongly continuous for $0 \le s \le t \le T$, i.e, $\lim_{t\to s,t>s} G(t,s)x = x$ for all $x \in X$. In what follows, we are concerned with the evolution inclusion

$$x'(t) \in A(t)x(t) + \int_{0}^{t} K(t,s)F(s,x(s))ds, \quad x(0) = x_{0},$$
(2.1)

where $F: I \times X \to \mathcal{P}(X)$ is a set-valued map, X is a Banach space, A(t) is the infinitesimal generator of a strongly continuous evolution system of a two parameter family $\{G(t,\tau), t \ge 0, \tau \ge 0\}$ of bounded linear operators of X into $X, D = \{(t,s) \in I \times I; t \ge s\}, K(.,.): D \to \mathbf{R}$ is continuous and $x_0 \in X$.

A continuous mapping $x(.) \in C(I, X)$ is called a *mild solution* of problem (2.1) if there exists a (Bochner) integrable function $f(.) \in L^1(I, X)$ such that

$$f(t) \in F(t, x(t))$$
 a.e. (I), (2.2)

$$x(t) = G(t,0)x_0 + \int_0^t G(t,\tau) \int_0^\tau K(\tau,s)f(s)dsd\tau, \quad t \in I.$$
 (2.3)

In this case, we shall call (x(.), f(.)) a trajectory-selection pair of (2.1). We note that condition (2.3) can be rewritten as

$$x(t) = G(t,0)x_0 + \int_0^t U(t,s)f(s)ds, \quad t \in I,$$
(2.4)

where $U(t,s) = \int_{s}^{t} G(t,\tau) K(\tau,s) d\tau$.

In what follows, we assume the following hypotheses.

Hypothesis 2.1. (i) $\{A(t); t \in I\}$ is the infinitesimal generator of the strongly continuous evolution system $G(t, s), 0 \le s \le t \le T$.

- (ii) F(.,.): I × X → P(X) has nonempty closed bounded values and, for any x ∈ X, F(.,x) is Lusin measurable on I.
- (iii) There exists $l(.) \in L^1(I, (0, \infty))$ such that for each $t \in I$:

$$d_H(F(t, x_1), F(t, x_2)) \le l(t)|x_1 - x_2|, \quad \forall x_1, x_2 \in X.$$

(iv) There exists $q(.) \in L^1(I, (0, \infty))$ such that for each $t \in I$:

$$F(t,0) \subset q(t)B.$$

(v) $D = \{(t,s) \in I \times I; t \ge s\}, K(.,.) : D \to \mathbf{R} \text{ is continuous.}$

Set $n(t) = \int_0^t l(u) du$, $t \in I$, $M := \sup_{t,s \in I} |G(t,s)|$ and $M_0 := \sup_{(t,s) \in D} |K(t,s)|$ and note that $|U(t,s)| \le MM_0(t-s) \le MM_0T$.

The technical results summarized in the following lemma are essential in the proof of our result. For the proof, we refer the reader to [10].

Lemma 2.2 ([10] i)). Let $F_i: I \to \mathcal{P}(X)$, i=1,2, be two Lusin measurable multifunctions and let $\varepsilon_i > 0$, i=1,2 be such that

$$H(t) := (F_1(t) + \varepsilon_1 B) \cap (F_2(t) + \varepsilon_2 B) \neq \emptyset, \quad \forall t \in I.$$

Then the multifunction $H: I \to \mathcal{P}(X)$ has a Lusin measurable selection $h: I \to X$. ii) Assume that Hypothesis 2.1 is satisfied. Then for any continuous $x(.): I \to X$, $u(.): I \to X$ measurable and any $\varepsilon > 0$ there is:

- a) the multifunction $t \to F(t, x(t))$ is Lusin measurable on I,
- b) the multifunction $G: I \to \mathcal{P}(X)$ defined by

$$G(t) := (F(t, x(t)) + \varepsilon B) \cap B_X(u(t), d(u(t), F(t, x(t))) + \varepsilon)$$

has a Lusin measurable selection $g: I \to X$.

3. THE MAIN RESULT

We are now ready to prove our main result.

Theorem 3.1. We assume that Hypothesis 2.1 is satisfied. Then, for every $x_0 \in X$, Cauchy problem (1.1) has a mild solution $x(.) \in C(I, X)$.

Proof. Let us first note that if $z(.): I \to X$ is continuous, then every Lusin measurable selection $u: I \to X$ of the multifunction $t \to F(t, z(t)) + B$ is Bochner integrable on I. More precisely, for any $t \in I$, there holds

$$|u(t)| \le d_H(F(t, z(t)) + B, 0) \le d_H(F(t, z(t)), F(t, 0)) + d_H(F(t, 0), 0) + 1 \le l(t)|z(t)| + q(t) + 1.$$

Let $0 < \varepsilon < 1$, $\varepsilon_n = \frac{\varepsilon}{2^{n+2}}$. Consider $f_0(.): I \to X$, an arbitrary Lusin measurable, Bochner integrable function, and define

$$x_0(t) = G(t,0)x_0 + \int_0^t U(t,s)f_0(s)ds, \quad t \in I.$$

Since $x_0(.)$ is continuous, by Lemma 2.2 ii) there exists a Lusin measurable function $f_1(.): I \to X$ which, for $t \in I$, satisfies

$$f_1(t) \in (F(t, x_0(t)) + \varepsilon_1 B) \cap B(f_0(t), d(f_0(t), F(t, x_0(t))) + \varepsilon_1).$$

Obviously, $f_1(.)$ is Bochner integrable on *I*. Define $x_1(.): I \to X$ by

$$x_1(t) = G(t,0)x_0 + \int_0^t U(t,s)f_1(s)ds, \quad t \in I.$$

By induction, we construct a sequence $x_n: I \to X, n \ge 2$ given by

$$x_n(t) = G(t,0)x_0 + \int_0^t U(t,s)f_n(s)ds, \quad t \in I,$$
(3.1)

where $f_n(.): I \to X$ is a Lusin measurable function which, for $t \in I$, satisfies:

$$f_n(t) \in (F(t, x_{n-1}(t)) + \varepsilon_n B) \cap B(f_{n-1}(t), d(f_{n-1}(t), F(t, x_{n-1}(t))) + \varepsilon_n).$$
(3.2)

At the same time, as we saw at the beginning of the proof, $f_n(.)$ is also Bochner integrable.

From (3.2), for $n \ge 2$ and $t \in I$, we obtain

$$\begin{aligned} |f_n(t) - f_{n-1}(t)| &\leq d(f_{n-1}(t), F(t, x_{n-1}(t))) + \varepsilon_n \leq d(f_{n-1}(t), F(t, x_{n-2}(t))) + \\ + d_H(F(t, x_{n-2}(t)), F(t, x_{n-1}(t))) + \varepsilon_n \leq \varepsilon_{n-1} + l(t)|x_{n-1}(t) - x_{n-2}(t)| + \varepsilon_n. \end{aligned}$$

Since $\varepsilon_{n-1} + \varepsilon_n < \varepsilon_{n-2}$, for $n \ge 2$, we deduce that

$$f_n(t) - f_{n-1}(t)| \le \varepsilon_{n-2} + l(t)|x_{n-1}(t) - x_{n-2}(t)|.$$
(3.3)

Denote $p_0(t) := d(f_0(t), F(t, x_0(t))), t \in I$. We next prove by recurrence, that for $n \ge 2$ and $t \in I$:

$$|x_n(t) - x_{n-1}(t)| \le \sum_{k=0}^{n-2} \int_0^t \varepsilon_{n-2-k} \frac{(MM_0T)^{k+1} (n(t) - n(u))^k}{k!} du + \varepsilon_0 \int_0^t \frac{(MM_0T)^n (n(t) - n(u))^{n-1}}{(n-1)!} du + \int_0^t \frac{(MM_0T)^n (n(t) - n(u))^{n-1}}{(n-1)!} p_0(u) du.$$
(3.4)

We start with n = 2. In view of (3.1), (3.2) and (3.3), for $t \in I$, there is

$$\begin{aligned} |x_{2}(t) - x_{1}(t)| &\leq \int_{0}^{t} |U(t,s)| \cdot |f_{2}(s) - f_{1}(s)| ds \leq \int_{0}^{t} MM_{0}T[\varepsilon_{0} + l(s)|x_{1}(s) - x_{0}(s)|] ds \leq \\ &\leq \varepsilon_{0}MM_{0}Tt + \int_{0}^{t} [MM_{0}Tl(s)\int_{0}^{s} |U(s,r)| \cdot |f_{1}(r) - f_{0}(r)| dr] ds \leq \\ &\leq \varepsilon_{0}MM_{0}Tt + \int_{0}^{t} [(MM_{0}T)^{2}l(s)\int_{0}^{s} (p_{0}(u) + \varepsilon_{1}) du] ds \leq \\ &\leq \varepsilon_{0}MM_{0}Tt + \int_{0}^{t} [(MM_{0}T)^{2}(p_{0}(u) + \varepsilon_{1})\int_{u}^{t} l(s) ds] du = \\ &= \varepsilon_{0}MM_{0}Tt + \int_{0}^{t} (MM_{0}T)^{2}(n(t) - n(s))[p_{0}(s) + \varepsilon_{0}] ds, \end{aligned}$$

i.e, (3.4) is verified for n = 2.

Using again (3.3) and (3.4), we conclude:

$$\begin{split} |x_{n+1}(t) - x_n(t)| &\leq \int_0^t |U(t,s)| \cdot |f_{n+1}(s) - f_n(s)| ds \leq \\ &\leq \int_0^t MM_0 T[\varepsilon_{n-1} + l(s)|x_n(s) - x_{n-1}(s)]] ds \leq \leq \varepsilon_{n-1} MM_0 Tt + \\ &+ \int_0^t l(s)[\sum_{k=0}^{n-2} \int_0^s \varepsilon_{n-2-k} \frac{(MM_0 T)^{k+2}(n(s) - n(u))^k}{k!} du + \\ &+ \int_0^s \frac{(MM_0 T)^{n+1}(n(s) - n(u))^{n-1}}{(n-1)!} (p_0(u) + \varepsilon_0) du] ds = \\ &= \varepsilon_{n-1} MM_0 Tt + \sum_{k=0}^{n-2} \varepsilon_{n-2-k} \int_0^t [\int_0^s \frac{(MM_0 T)^{k+2}(n(s) - n(u))^k}{k!} l(s) du] ds + \\ &+ \int_0^t l(s)(\int_0^s \frac{(MM_0 T)^{n+1}(n(s) - n(u))^{n-1}}{(n-1)!} l(s)[p_0(u) + \varepsilon_0] du) ds = \\ &= \varepsilon_{n-1} MM_0 Tt + \sum_{k=0}^{n-2} \varepsilon_{n-2-k} \int_0^t (\int_u^t \frac{(MM_0 T)^{k+2}(n(s) - n(u))^k}{k!} l(s) ds) du + \\ &+ \int_0^t (\int_u^t \frac{(MM_0 T)^{n+1}(n(s) - n(u))^{n-1}}{(n-1)!} l(s) ds)[p_0(u) + \varepsilon_0] du = \\ &= \varepsilon_{n-1} MM_0 Tt + \sum_{k=0}^{n-2} \varepsilon_{n-2-k} \int_0^t \frac{(MM_0 T)^{k+2}(n(s) - n(u))^{k+1}}{(k+1)!} du + \\ &+ \int_0^t \frac{(MM_0 T)^{n+1}(n(s) - n(u))^n}{n!} [p_0(u) + \varepsilon_0] du = \\ &= \varepsilon_{n-1-k} \int_0^t \frac{(MM_0 T)^{n+1}(n(s) - n(u))^n}{k!} [p_0(u) + \varepsilon_0] du = \\ &= \sum_{k=0}^{n-1-k} \varepsilon_{n-1-k} \int_0^t \frac{(MM_0 T)^{k+1}(n(s) - n(u))^k}{k!} du + \\ &+ \int_0^t \frac{(MM_0 T)^{n+1}(n(s) - n(u))^n}{n!} [p_0(u) + \varepsilon_0] du, \end{split}$$

and statement (3.4) it is true for n + 1.

From (3.4) it follows that for $n \ge 2$ and $t \in I$:

$$|x_n(t) - x_{n-1}(t)| \le a_n, \tag{3.5}$$

where

$$a_n = \sum_{k=0}^{n-2} \varepsilon_{n-2-k} \frac{(MM_0T)^{k+1}n(T)^k}{k!} + \frac{(MM_0T)^n n(T)^{n-1}}{(n-1)!} [\int_0^1 p_0(u) du + \varepsilon_0],$$

Obviously, the series whose *n*-th term is a_n converges. So, from (3.5) we infer that $x_n(.)$ converges to a continuous function, $x(.): I \to X$, uniformly on I.

On the other hand, in view of (3.3) there is

$$|f_n(t) - f_{n-1}(t)| \le \varepsilon_{n-2} + l(t)a_{n-1}, \quad t \in I, n \ge 3$$

which implies that the sequence $f_n(.)$ converges to a Lusin measurable function f(.): $I \to X$.

Since $x_n(.)$ is bounded and

$$|f_n(t)| \le l(t)|x_{n-1}(t)| + q(t) + 1$$

we infer that f(.) is also Bochner integrable.

Passing with $n \to \infty$ in (3.1) and using the Lebesgue dominated convergence theorem, we obtain

$$x(t) = G(t,0)x_0 + \int_0^t U(t,s)f(s)ds, \quad t \in I.$$

On the other hand, from (3.2) we get

$$f_n(t) \in F(t, x_n(t)) + \varepsilon_n B, \quad t \in I, n \ge 1$$

and letting $n \to \infty$ we obtain

$$f(t) \in F(t, x(t)), \quad t \in I,$$

which completes the proof.

Remark 3.2. If $A(t) \equiv A$ and A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators $\{G(t); t \ge 0\}$ from X to X, then problem (1.1) reduces to the problem

$$x'(t) \in Ax(t) + \int_{0}^{t} K(t,s)F(s,x(s))ds, \quad x(0) = x_{0},$$
(3.6)

well known ([1,2-7,13] etc.) as an integrodifferential inclusion.

Obviously, a result similar to that of Theorem 3.1 may be obtained for problem (3.6).

REFERENCES

- A. Anguraj, C. Murugesan, Continuous selections of set of mild solutions of evolution inclusions, Electronic J. Diff. Equations 2005 (2005) 21, 1–7.
- [2] K. Balachandran, P. Balasubramanian, J.P. Dauer, Controllability of nonlinear integrodifferential systems in Banach spaces, J. Optim. Theory Appl. 74 (1995), 83–91.
- [3] M. Benchohra, S.K. Ntouyas, Existence results for neutral functional differential and integrodifferential inclusions in Banach spaces, Electronic J. Diff. Equations 2000 (2000) 20, 1–15.
- [4] M. Benchohra, S.K. Ntouyas, Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces, J. Math. Anal. Appl. 258 (2001), 573–590.
- [5] M. Benchohra, S.K. Ntouyas, Controllability of infinite time horizon for functional differential and integrodifferential inclusions in Banach spaces, Commun. Applied Nonlin. Anal. 8 (2001), 63–78.
- [6] M. Benchohra, S.K. Ntouyas, Existence results for functional differential and integrodifferential inclusions in Banach spaces, Indian J. Pure Applied Math. 32 (2001), 665–675.
- [7] M. Benchohra, S.K. Ntouyas, Controllability for functional and integrodifferential inclusions in Banach spaces, J. Optim. Theory Appl. 113 (2002), 449–472.
- [8] A. Bressan, G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69–86.
- [9] A. Cernea, On the mild solutions of a class of evolution inclusions, Int. J. Evolution Equations 3 (2008), 157–167.
- [10] F.S. De Blasi, G. Pianigiani, Evolution inclusions in non separable Banach spaces, Comment. Math. Univ. Carolinae 40 (1999), 227–250.
- [11] A.F. Filippov, Classical solutions of differential equations with multivalued right-hand side, SIAM J. Control Optim. 5 (1967), 609–621.
- [12] K. Kuratowski, C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Pol. Sci. Math. Astron. Phys. 13 (1965), 397–403.
- [13] B. Liu, Controllability of neutral functional differential and integrodifferential inclusions with infinite delay, J. Optim. Theory Appl. 123 (2004), 573–593.

Aurelian Cernea acernea@fmi.unibuc.ro

University of Bucharest Faculty of Mathematics and Computer Science Academiei 14, 010014 Buharest, Romania

Received: October 1, 2008. Accepted: April 8, 2009.