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ON AN EVOLUTION INCLUSION
IN NON-SEPARABLE BANACH SPACES

Abstract. We consider a Cauchy problem for a class of nonconvex evolution inclusions
in non-separable Banach spaces under Filippov-type assumptions.We prove the existence of
solutions.
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1. INTRODUCTION

In this paper we study differential inclusions of the form

x′(t) ∈ A(t)x(t) +

t∫
0

K(t, s)F (s, x(s))ds, x(0) = x0, (1.1)

where F : [0, T ] ×X → P(X) is a set-valued map, Lipschitzean with respect to the
second variable, X is a Banach space, A(t) is the infinitesimal generator of a strongly
continuous evolution system of a two parameter family {G(t, τ), t ≥ 0, τ ≥ 0} of
bounded linear operators of X into X, D = {(t, s) ∈ [0, T ] × [0, T ]; t ≥ s}, K(., .) :
D → R is continuous and x0 ∈ X.

The existence and qualitative properties of mild solutions of problem (1.1) have
been obtained in [1,2–7,13] etc.. Most of the existence results mentioned above are
obtained using fixed point techniques. In [9] it is shown that Filippov’s ideas ([11])
can suitably be adapted in order to prove the existence of solutions to problem (1.1).
All these approaches are have proved successful the Banach space X separable.

De Blasi and Pianigiani ([10]) established the existence of mild solutions for semi-
linear differential inclusions on an arbitrary, not necessarily separable, Banach space
X. Even if Filippov’s ideas are still present, the approach in [10] is fundamental differ-
ent: it consists in the construction of the measurable selections of the multifunction.
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This construction does not use classical selection theorems such as Kuratowski and
Ryll-Nardzewski’s ([12]) or Bressan and Colombo’s ([8]).

The aim of this paper is to obtain an existence result for problem (1.1) similar
to the one in [10]. We will prove the existence of solutions for problem (1.1) in an
arbitrary space X under Filippov-type assumptions on F .

The paper is organized as follows: in Section 2 we present the notations, definitions
and preliminary results to be used in the sequel, and in Section 3 we prove the main
result.

2. PRELIMINARIES

Consider X, an arbitrary real Banach space with norm |.| and with the corresponding
metric d(., .). Let P(X) be the space of all bounded nonempty subsets of X endowed
with the Hausdorff pseudometric

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup
a∈A

d(a,B),

where d(x,A) = infa∈A |x− a|, A ⊂ X,x ∈ X.
Let L be the σ-algebra of the (Lebesgue) measurable subsets of R and, for A ∈ L,

let µ(A) be the Lebesgue measure of A.
Let X be a Banach space and Y be a metric space. An open (resp., closed) ball in

Y with center y and radius r is denoted by BY (y, r) (resp., BY (y, r). In what follows,
B = BX(0, 1).

A multifunction F : Y → P(X) with closed bounded nonempty values is said to
be dH -continuous at y0 ∈ Y if for every ε > 0 there exists δ > 0 such that for any
y ∈ BY (y0, r) there is dH(F (y), F (y0)) ≤ ε. F is called dH -continuous if it is so at
each point y0 ∈ Y .

Let A ∈ L, with µ(A) <∞. A multifunction F : Y → P(X) with closed bounded
nonempty values is said to be Lusin measurable if for every ε > 0 there exists a
compact setKε ⊂ A, with µ(A\Kε) < ε such that F restricted toKε is dH -continuous.

It is clear that if F,G : A → P(X) and f : A → X are Lusin measurable,
then so are F restricted to B (B ⊂ A measurable), F + G and t → d(f(t), F (t)).
Moreover, the uniform limit of a sequence of Lusin measurable multifunctions is Lusin
measurable, too.

Let I stand for the interval [0, T ], T > 0.
In what follows, {A(t); t ∈ I} is the infinitesimal generator of a strongly continuous

evolution system G(t, s), 0 ≤ s ≤ t ≤ T .
Recall that a family of bounded linear operators G(t, s) on X, 0 ≤ s ≤ t ≤ T

depending on two parameters is said to be a strongly continuous evolution system
if the following conditions hold: G(s, s) = I, G(t, r)G(r, s) = G(t, s) for 0 ≤ s ≤
r ≤ t ≤ T and (t, s) → G(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T , i.e,
limt→s,t>sG(t, s)x = x for all x ∈ X.
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In what follows, we are concerned with the evolution inclusion

x′(t) ∈ A(t)x(t) +

t∫
0

K(t, s)F (s, x(s))ds, x(0) = x0, (2.1)

where F : I × X → P(X) is a set-valued map, X is a Banach space, A(t) is the
infinitesimal generator of a strongly continuous evolution system of a two parameter
family {G(t, τ), t ≥ 0, τ ≥ 0} of bounded linear operators of X into X, D = {(t, s) ∈
I × I; t ≥ s}, K(., .) : D → R is continuous and x0 ∈ X.

A continuous mapping x(.) ∈ C(I,X) is called a mild solution of problem (2.1) if
there exists a (Bochner) integrable function f(.) ∈ L1(I,X) such that

f(t) ∈ F (t, x(t)) a.e. (I), (2.2)

x(t) = G(t, 0)x0 +

t∫
0

G(t, τ)

τ∫
0

K(τ, s)f(s)dsdτ, t ∈ I. (2.3)

In this case, we shall call (x(.), f(.)) a trajectory-selection pair of (2.1).
We note that condition (2.3) can be rewritten as

x(t) = G(t, 0)x0 +

t∫
0

U(t, s)f(s)ds, t ∈ I, (2.4)

where U(t, s) =
∫ t
s
G(t, τ)K(τ, s)dτ .

In what follows, we assume the following hypotheses.

Hypothesis 2.1. (i) {A(t); t ∈ I} is the infinitesimal generator of the strongly con-
tinuous evolution system G(t, s), 0 ≤ s ≤ t ≤ T .

(ii) F (., .) : I ×X → P(X) has nonempty closed bounded values and, for any x ∈ X,
F (., x) is Lusin measurable on I.

(iii) There exists l(.) ∈ L1(I, (0,∞)) such that for each t ∈ I:

dH(F (t, x1), F (t, x2)) ≤ l(t)|x1 − x2|, ∀ x1, x2 ∈ X.

(iv) There exists q(.) ∈ L1(I, (0,∞)) such that for each t ∈ I:

F (t, 0) ⊂ q(t)B.

(v) D = {(t, s) ∈ I × I; t ≥ s}, K(., .) : D → R is continuous.

Set n(t) =
∫ t
0
l(u)du, t ∈ I, M := supt,s∈I |G(t, s)| and M0 := sup(t,s)∈D |K(t, s)|

and note that |U(t, s)| ≤MM0(t− s) ≤MM0T .
The technical results summarized in the following lemma are essential in the proof

of our result. For the proof, we refer the reader to [10].
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Lemma 2.2 ([10] i)). Let Fi : I → P(X), i=1,2, be two Lusin measurable multifunc-
tions and let εi > 0, i=1,2 be such that

H(t) := (F1(t) + ε1B) ∩ (F2(t) + ε2B) 6= ∅, ∀t ∈ I.

Then the multifunction H : I → P(X) has a Lusin measurable selection h : I → X.
ii) Assume that Hypothesis 2.1 is satisfied. Then for any continuous x(.) : I → X,

u(.) : I → X measurable and any ε > 0 there is:

a) the multifunction t→ F (t, x(t)) is Lusin measurable on I,
b) the multifunction G : I → P(X) defined by

G(t) := (F (t, x(t)) + εB) ∩BX(u(t), d(u(t), F (t, x(t))) + ε)

has a Lusin measurable selection g : I → X.

3. THE MAIN RESULT

We are now ready to prove our main result.

Theorem 3.1. We assume that Hypothesis 2.1 is satisfied. Then, for every x0 ∈ X,
Cauchy problem (1.1) has a mild solution x(.) ∈ C(I,X).

Proof. Let us first note that if z(.) : I → X is continuous, then every Lusin measurable
selection u : I → X of the multifunction t→ F (t, z(t)) + B is Bochner integrable on
I. More precisely, for any t ∈ I, there holds

|u(t)| ≤ dH(F (t, z(t)) +B, 0) ≤ dH(F (t, z(t)), F (t, 0))+
+ dH(F (t, 0), 0) + 1 ≤ l(t)|z(t)|+ q(t) + 1.

Let 0 < ε < 1, εn = ε
2n+2 .

Consider f0(.) : I → X, an arbitrary Lusin measurable, Bochner integrable func-
tion, and define

x0(t) = G(t, 0)x0 +

t∫
0

U(t, s)f0(s)ds, t ∈ I.

Since x0(.) is continuous, by Lemma 2.2 ii) there exists a Lusin measurable function
f1(.) : I → X which, for t ∈ I, satisfies

f1(t) ∈ (F (t, x0(t)) + ε1B) ∩B(f0(t), d(f0(t), F (t, x0(t))) + ε1).

Obviously, f1(.) is Bochner integrable on I. Define x1(.) : I → X by

x1(t) = G(t, 0)x0 +

t∫
0

U(t, s)f1(s)ds, t ∈ I.
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By induction, we construct a sequence xn : I → X, n ≥ 2 given by

xn(t) = G(t, 0)x0 +

t∫
0

U(t, s)fn(s)ds, t ∈ I, (3.1)

where fn(.) : I → X is a Lusin measurable function which, for t ∈ I, satisfies:

fn(t) ∈ (F (t, xn−1(t)) + εnB) ∩B(fn−1(t), d(fn−1(t), F (t, xn−1(t))) + εn). (3.2)

At the same time, as we saw at the begining of the proof, fn(.) is also Bochner
integrable.

From (3.2), for n ≥ 2 and t ∈ I, we obtain

|fn(t)− fn−1(t)| ≤ d(fn−1(t), F (t, xn−1(t))) + εn ≤ d(fn−1(t), F (t, xn−2(t)))+
+dH(F (t, xn−2(t)), F (t, xn−1(t))) + εn ≤ εn−1 + l(t)|xn−1(t)− xn−2(t)|+ εn.

Since εn−1 + εn < εn−2, for n ≥ 2, we deduce that

|fn(t)− fn−1(t)| ≤ εn−2 + l(t)|xn−1(t)− xn−2(t)|. (3.3)

Denote p0(t) := d(f0(t), F (t, x0(t))), t ∈ I. We next prove by recurrence, that for
n ≥ 2 and t ∈ I:

|xn(t)− xn−1(t)| ≤
n−2∑
k=0

t∫
0

εn−2−k
(MM0T )k+1(n(t)− n(u))k

k!
du+

+ ε0

t∫
0

(MM0T )n(n(t)− n(u))n−1

(n− 1)!
du+

t∫
0

(MM0T )n(n(t)− n(u))n−1

(n− 1)!
p0(u)du.

(3.4)

We start with n = 2. In view of (3.1), (3.2) and (3.3), for t ∈ I, there is

|x2(t)− x1(t)|≤
t∫

0

|U(t, s)| · |f2(s)− f1(s)|ds ≤
t∫

0

MM0T [ε0 + l(s)|x1(s)− x0(s)|]ds≤

≤ ε0MM0Tt+

t∫
0

[MM0T l(s)

s∫
0

|U(s, r)|.|f1(r)− f0(r)|dr]ds ≤

≤ ε0MM0Tt+

t∫
0

[(MM0T )2l(s)

s∫
0

(p0(u) + ε1)du]ds ≤

≤ ε0MM0Tt+

t∫
0

[(MM0T )2(p0(u) + ε1)
∫ t

u

l(s)ds]du =

= ε0MM0Tt+
∫ t

0

(MM0T )2(n(t)− n(s))[p0(s) + ε0]ds,

i.e, (3.4) is verified for n = 2.
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Using again (3.3) and (3.4), we conclude:

|xn+1(t)− xn(t)| ≤
t∫

0

|U(t, s)| · |fn+1(s)− fn(s)|ds ≤

≤
t∫

0

MM0T [εn−1 + l(s)|xn(s)− xn−1(s)|]ds ≤≤ εn−1MM0Tt+

+

t∫
0

l(s)[
n−2∑
k=0

s∫
0

εn−2−k
(MM0T )k+2(n(s)− n(u))k

k!
du+

+

s∫
0

(MM0T )n+1(n(s)− n(u))n−1

(n− 1)!
(p0(u) + ε0)du]ds =

= εn−1MM0Tt+
n−2∑
k=0

εn−2−k

t∫
0

[

s∫
0

(MM0T )k+2(n(s)− n(u))k

k!
l(s)du]ds+

+

t∫
0

l(s)(

s∫
0

(MM0T )n+1(n(s)− n(u))n−1

(n− 1)!
l(s)[p0(u) + ε0]du)ds =

= εn−1MM0Tt+
n−2∑
k=0

εn−2−k

t∫
0

(

t∫
u

(MM0T )k+2(n(s)− n(u))k

k!
l(s)ds)du+

+

t∫
0

(

t∫
u

(MM0T )n+1(n(s)− n(u))n−1

(n− 1)!
l(s)ds)[p0(u) + ε0]du =

= εn−1MM0Tt+
n−2∑
k=0

εn−2−k

t∫
0

(MM0T )k+2(n(s)− n(u))k+1

(k + 1)!
du+

+

t∫
0

(MM0T )n+1(n(s)− n(u))n

n!
[p0(u) + ε0]du =

=
n−1∑
k=0

εn−1−k

t∫
0

(MM0T )k+1(n(s)− n(u))k

k!
du+

+

t∫
0

(MM0T )n+1(n(s)− n(u))n

n!
[p0(u) + ε0]du,

and statement (3.4) it is true for n+ 1.
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From (3.4) it follows that for n ≥ 2 and t ∈ I:

|xn(t)− xn−1(t)| ≤ an, (3.5)

where

an =
n−2∑
k=0

εn−2−k
(MM0T )k+1n(T )k

k!
+

(MM0T )nn(T )n−1

(n− 1)!
[

1∫
0

p0(u)du+ ε0],

Obviously, the series whose n-th term is an converges. So, from (3.5) we infer that
xn(.) converges to a continuous function, x(.) : I → X, uniformly on I.

On the other hand, in view of (3.3) there is

|fn(t)− fn−1(t)| ≤ εn−2 + l(t)an−1, t ∈ I, n ≥ 3

which implies that the sequence fn(.) converges to a Lusin measurable function f(.) :
I → X.

Since xn(.) is bounded and

|fn(t)| ≤ l(t)|xn−1(t)|+ q(t) + 1,

we infer that f(.) is also Bochner integrable.
Passing with n → ∞ in (3.1) and using the Lebesgue dominated convergence

theorem, we obtain

x(t) = G(t, 0)x0 +

t∫
0

U(t, s)f(s)ds, t ∈ I.

On the other hand, from (3.2) we get

fn(t) ∈ F (t, xn(t)) + εnB, t ∈ I, n ≥ 1

and letting n→∞ we obtain

f(t) ∈ F (t, x(t)), t ∈ I,

which completes the proof.

Remark 3.2. If A(t) ≡ A and A is the infinitesimal generator of a strongly continuous
semigroup of bounded linear operators {G(t); t ≥ 0} from X to X, then problem (1.1)
reduces to the problem

x′(t) ∈ Ax(t) +

t∫
0

K(t, s)F (s, x(s))ds, x(0) = x0, (3.6)

well known ([1,2–7,13] etc.) as an integrodifferential inclusion.

Obviously, a result similar to that of Theorem 3.1 may be obtained for problem
(3.6).



138 Aurelian Cernea

REFERENCES

[1] A. Anguraj, C. Murugesan, Continuous selections of set of mild solutions of evolution
inclusions, Electronic J. Diff. Equations 2005 (2005) 21, 1–7.

[2] K. Balachandran, P. Balasubramanian, J.P. Dauer, Controllability of nonlinear inte-
grodifferential systems in Banach spaces, J. Optim. Theory Appl. 74 (1995), 83–91.

[3] M. Benchohra, S.K. Ntouyas, Existence results for neutral functional differential and in-
tegrodifferential inclusions in Banach spaces, Electronic J. Diff. Equations 2000 (2000)
20, 1–15.

[4] M. Benchohra, S.K. Ntouyas, Nonlocal Cauchy problems for neutral functional differ-
ential and integrodifferential inclusions in Banach spaces, J. Math. Anal. Appl. 258
(2001), 573–590.

[5] M. Benchohra, S.K. Ntouyas, Controllability of infinite time horizon for functional dif-
ferential and integrodifferential inclusions in Banach spaces, Commun. Applied Nonlin.
Anal. 8 (2001), 63–78.

[6] M. Benchohra, S.K. Ntouyas, Existence results for functional differential and integrodif-
ferential inclusions in Banach spaces, Indian J. Pure Applied Math. 32 (2001), 665–675.

[7] M. Benchohra, S.K. Ntouyas, Controllability for functional and integrodifferential in-
clusions in Banach spaces, J. Optim. Theory Appl. 113 (2002), 449–472.

[8] A. Bressan, G. Colombo, Extensions and selections of maps with decomposable values,
Studia Math. 90 (1988), 69–86.

[9] A. Cernea, On the mild solutions of a class of evolution inclusions, Int. J. Evolution
Equations 3 (2008), 157–167.

[10] F.S. De Blasi, G. Pianigiani, Evolution inclusions in non separable Banach spaces,
Comment. Math. Univ. Carolinae 40 (1999), 227–250.

[11] A.F. Filippov, Classical solutions of differential equations with multivalued right-hand
side, SIAM J. Control Optim. 5 (1967), 609–621.

[12] K. Kuratowski, C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Pol.
Sci. Math. Astron. Phys. 13 (1965), 397–403.

[13] B. Liu, Controllability of neutral functional differential and integrodifferential inclusions
with infinite delay, J. Optim. Theory Appl. 123 (2004), 573–593.

Aurelian Cernea
acernea@fmi.unibuc.ro

University of Bucharest
Faculty of Mathematics and Computer Science
Academiei 14, 010014 Buharest, Romania

Received: October 1, 2008.
Accepted: April 8, 2009.


