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ON AN EVOLUTION INCLUSION
IN NON-SEPARABLE BANACH SPACES

Abstract. We consider a Cauchy problem for a class of nonconvex evolution inclusions
in non-separable Banach spaces under Filippov-type assumptions.We prove the existence of
solutions.
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1. INTRODUCTION

In this paper we study differential inclusions of the form

2/ (t) € A(t)x(t) + /K(t,s)F(s,x(s))ds, z(0) = =y, (1.1)

where F': [0,T] x X — P(X) is a set-valued map, Lipschitzean with respect to the
second variable, X is a Banach space, A(¢) is the infinitesimal generator of a strongly
continuous evolution system of a two parameter family {G(¢,7),t > 0,7 > 0} of
bounded linear operators of X into X, D = {(¢,s) € [0,T] x [0,T);t > s}, K(.,.) :
D — R is continuous and zy € X.

The existence and qualitative properties of mild solutions of problem (1.1) have
been obtained in [1,2-7,13] etc.. Most of the existence results mentioned above are
obtained using fixed point techniques. In [9] it is shown that Filippov’s ideas ([11])
can suitably be adapted in order to prove the existence of solutions to problem (1.1).
All these approaches are have proved successful the Banach space X separable.

De Blasi and Pianigiani ([10]) established the existence of mild solutions for semi-
linear differential inclusions on an arbitrary, not necessarily separable, Banach space
X. Even if Filippov’s ideas are still present, the approach in [10] is fundamental differ-
ent: it consists in the construction of the measurable selections of the multifunction.
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This construction does not use classical selection theorems such as Kuratowski and
Ryll-Nardzewski’s ([12]) or Bressan and Colombo’s ([8]).

The aim of this paper is to obtain an existence result for problem (1.1) similar
to the one in [10]. We will prove the existence of solutions for problem (1.1) in an
arbitrary space X under Filippov-type assumptions on F.

The paper is organized as follows: in Section 2 we present the notations, definitions
and preliminary results to be used in the sequel, and in Section 3 we prove the main
result.

2. PRELIMINARIES

Consider X, an arbitrary real Banach space with norm |.| and with the corresponding
metric d(.,.). Let P(X) be the space of all bounded nonempty subsets of X endowed
with the Hausdorff pseudometric

du (4, B) = max{d*(4, B),d" (B, A)}, d"(A, B)=supd(a, B),
acA

where d(z, A) = infyca |z —a|, AC X,z € X.

Let £ be the o-algebra of the (Lebesgue) measurable subsets of R and, for A € L,
let 1(A) be the Lebesgue measure of A.

Let X be a Banach space and Y be a metric space. An open (resp., closed) ball in
Y with center 3 and radius 7 is denoted by By (y,7) (resp., By (y,r). In what follows,
B = Bx(0,1).

A multifunction F' : Y — P(X) with closed bounded nonempty values is said to
be dg-continuous at yy € Y if for every € > 0 there exists 6 > 0 such that for any
y € By (yo,r) there is dg(F(y), F(yo)) < e. F is called dpy-continuous if it is so at
each point yg € Y.

Let A € £, with p(A) < co. A multifunction F : Y — P(X) with closed bounded
nonempty values is said to be Lusin measurable if for every ¢ > 0 there exists a
compact set K. C A, with p(A\K.) < e such that F restricted to K is d y-continuous.

It is clear that if ;G : A — P(X) and f : A — X are Lusin measurable,
then so are F restricted to B (B C A measurable), F + G and t — d(f(t), F(t)).
Moreover, the uniform limit of a sequence of Lusin measurable multifunctions is Lusin
measurable, too.

Let I stand for the interval [0,T], T > 0.

In what follows, {A(¢); ¢ € I'} is the infinitesimal generator of a strongly continuous
evolution system G(t,s), 0 < s <t <T.

Recall that a family of bounded linear operators G(¢,s) on X, 0 < s <t < T
depending on two parameters is said to be a strongly continuous evolution system
if the following conditions hold: G(s,s) = I, G(t,r)G(r,s) = G(t,s) for 0 < s <
r <t < T and (t,s) — G(t,s) is strongly continuous for 0 < s < t < T, ie,
lim; s >s G(t,8)z =z for all z € X.
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In what follows, we are concerned with the evolution inclusion
t
2(8) € AW)z(t) + / K(t, s)F(s,2(s))ds, (0) = a, (2.1)
0

where F' : I x X — P(X) is a set-valued map, X is a Banach space, A(t) is the
infinitesimal generator of a strongly continuous evolution system of a two parameter
family {G(¢,7),t > 0,7 > 0} of bounded linear operators of X into X, D = {(¢,s) €
IxI;t>s}, K(.,.): D— R is continuous and zg € X.

A continuous mapping z(.) € C(I, X) is called a mild solution of problem (2.1) if
there exists a (Bochner) integrable function f(.) € L*(I, X) such that

F(t) € F(t,z(t) ae. (D), (2.2)
2(t) = G(t,0)z0 + [ G(t,7) | K(r,5)f(s)dsdr, tel. (2.3)
[oen]

In this case, we shall call (z(.), f(.)) a trajectory-selection pair of (2.1).
We note that condition (2.3) can be rewritten as

2(t) = G(t,0)zo + / U(t,s)f(s)ds, tel, (2.4)
0

where U(t,s) = fst G(t,7)K(T,s)dr.
In what follows, we assume the following hypotheses.

Hypothesis 2.1. (i) {A(¢t);t € I} is the infinitesimal generator of the strongly con-
tinuous evolution system G(t,s), 0 <s<t<T.

(ii) F(.,.): IxX — P(X) has nonempty closed bounded values and, for any x € X,
F(.,x) is Lusin measurable on I.

(iii) There exists I(.) € L*(I,(0,00)) such that for eacht € I:

dg(F(t,z1), F(t,22)) <I(t)|z1 — z2], V1,22 € X.
(iv) There exists q(.) € L*(I,(0,00)) such that for each t € I:
F(t,0) C q(t)B.
(v) D=A(t,s) e I x I;t > s}, K(.,.): D — R is continuous.
Set n(t) = fot l(u)du, t € I, M = sup,; ¢/ |G(t,s)| and My := SUP(¢,s)eD |K(t,s)]
and note that |U(t, s)| < MMy(t — s) < MMyT.

The technical results summarized in the following lemma are essential in the proof
of our result. For the proof, we refer the reader to [10].
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Lemma 2.2 ([10] i)). Let F; : I — P(X), i=1,2, be two Lusin measurable multifunc-
tions and let €; > 0, 1=1,2 be such that

H(t) :== (Fi(t) + e1B) N (Fa(t) + e2B) # 0, Vtel.

Then the multifunction H : I — P(X) has a Lusin measurable selectionh : I — X.
i1) Assume that Hypothesis 2.1 is satisfied. Then for any continuous xz(.) : I — X,
u(.) : I — X measurable and any € > 0 there is:

a) the multifunction t — F(t,x(t)) is Lusin measurable on I,
b) the multifunction G : I — P(X) defined by

G(t) := (F(t,x(t)) + eB) N Bx (u(t), d(u(t), F(t,z(t))) + €)

has a Lusin measurable selection g : I — X.

3. THE MAIN RESULT
We are now ready to prove our main result.

Theorem 3.1. We assume that Hypothesis 2.1 is satisfied. Then, for every zo € X,
Cauchy problem (1.1) has a mild solution x(.) € C(I,X).

Proof. Let us first note that if z(.) : I — X is continuous, then every Lusin measurable
selection u : I — X of the multifunction ¢ — F(t, 2(t)) + B is Bochner integrable on
I. More precisely, for any ¢t € I, there holds

lu(®)| < du(F(t 2(t)) + B,0) < du(F(t, 2(t)), F(t,0))+
+dy(F(t,0),0) + 1 < I(t)|z(t)| + q(t) + 1.
Let 0<e<1, &y = 5upz-

Consider fo(.) : I — X, an arbitrary Lusin measurable, Bochner integrable func-
tion, and define

2o(t) = G(t, 0)o + / Ut 5) fo(s)ds, teT.
0

Since z¢(.) is continuous, by Lemma 2.2 ii) there exists a Lusin measurable function
f1(.) : I — X which, for t € I, satisfies
fi(t) € (F(t,2o(t) +e1B) N B(fo(t), d(fo(t), F (¢, zo(1))) + €1)-

Obviously, f1(.) is Bochner integrable on I. Define z1(.) : I — X by

z1(t) = G(t,0)x0 —l—/U(t,s)fl(s)ds, tel
0
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By induction, we construct a sequence x,, : I — X, n > 2 given by
t
xn(t) = G(¢,0)x0 +/U(t,s)fn(s)ds, tel, (3.1)
0

where f,(.) : I — X is a Lusin measurable function which, for ¢ € I, satisfies:

fu(t) € (F(t,xn-1(t)) +€nB) N B(fn-1(t),d(fn—1(t), F(t,xn-1(t))) +€n). (3.2)

At the same time, as we saw at the begining of the proof, f,(.) is also Bochner
integrable.
From (3.2), for n > 2 and ¢ € I, we obtain

[fa (@) = fa—1(B)] < d(fr-1(t), F(t,2n-1(t)) + € < d(fa-1(1), F(t, zn—2(t)))+
+dg (F(t, xn—2(1)), F(t, 2n-1(t))) + en < €n—1 +1{t)|2n-1(t) — Tn—2(t)| + &
Since €,_1 + €, < €n_2, for n > 2, we deduce that
|fa(t) = fam1 ()] < enma + UD)|2n—1() — zn—2(1)]- (3.3)

Denote po(t) := d(fo(t), F(t,x0(t))),t € I. We next prove by recurrence, that for
n>2andtel:

70 (t) — Z gz/gn L QO () —n(u))*
0

k!
e (3.4)
n(n(t) — n(u))* ! "(n(t) — n(u)) !
e [TV A, OO 000,

0
We start with n = 2. In view of (3.1), (3.2) and (3.3), for ¢ € I, there is

a(t) — o1 () < / Ut 9)] - [fals) — fi(s)|ds < /MMOT[EO + 1)l () — zo(s)]Jds <
0 0

t

< 50MM0Tt+/[MMOTl(s)/|U(s,r)|.|f1(r) — fo(r)|dr]ds <
0

0
< egM M,yTt + /[(MMOT)21(3) /(po(u) + &1)du]ds <
0 0

t
t

S E()MM(]Tt + /[(MMQT)2(]?0(U) + 51)/ Z(S)dS}du =
0

— oMM, Tt + / (MMyT2(n(t) - n(s))[po(s) + colds,

e, (3.4) is verified for n = 2.
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Using again (3.3) and (3.4), we conclude:

|[Znt1(t) — 2 (t)] < /lU(t78)| N fnga(s) = fu(s)lds <
0
< /MMOT[z-:n,l +1(s)|xn(s) — xp_1(s)|]ds << g1 MMTt+

/ Z/sn M2 n(s) —n(w)*

0 k=0 0 k'
( )n+1(n( ) ( ))n 1 -
/ (n—1)! (po(u) + €o0)dulds =
0
t s MMO k+2 n(u))k
m 1MM0T’5+Z€“ - ’“// I(s)dulds+
k=0 0 0
: n+1 n(s
“ [ / (RLTY() ZC 4) a) + cldds =
Py (M MoT) +2(n(s) — n(u))*
m 1MM0Tt+Z€n 2-k I(s)ds)du+
e
; n+1 n(u
+// e n—1 ) ()dS){po( ) + eoldu =
0 u
=En— 1MMoTt+nz:€n . k/ (MMyT k+z+1 n(u))k+1du+
k=0 0
t MMO n+1 n(u))
i [pou) + =oldu =
!
n—1 N t (MM,T k+1 n(“))kdu+
+/ MMO n+1 n(u))n[po( )+8O]d
0

and statement (3.4) it is true for n + 1.
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From (3.4) it follows that for n > 2 and t € I:

‘xn(t) - xnfl(t)‘ S Gp, (35)
where
n—2 1
(MMoT)**'n(T)*  (MMoT)"n(T)" 1
anszogn 2—k k! + ’I'L—l pO du+€0
0

Obviously, the series whose n-th term is a,, converges. So, from (3.5) we infer that
x,(.) converges to a continuous function, z(.) : I — X, uniformly on I.
On the other hand, in view of (3.3) there is

[fn(t) = fa1(®)] <en—2+l(t)an—1, t€l,n>3

which implies that the sequence f,(.) converges to a Lusin measurable function f(.) :
I—X.
Since z,(.) is bounded and

[fn )] < UB)en—1 ()] +q(t) +1,

we infer that f(.) is also Bochner integrable.
Passing with n — oo in (3.1) and using the Lebesgue dominated convergence
theorem, we obtain

z(t) = G(t,0)xo + / U(t,s)f(s)ds, tel.

On the other hand, from (3.2) we get
fn(t) € F(t,zn(t)) +enB, teln>1
and letting n — oo we obtain
f(t) € F(t,z(t), tel,
which completes the proof.

Remark 3.2. If A(t) = A and A is the infinitesimal generator of a strongly continuous
semigroup of bounded linear operators {G(t);t > 0} from X to X, then problem (1.1)
reduces to the problem

) € Ax(t /K (t,8)F(s,xz(s))ds, x(0)= xo, (3.6)

well known ([1,2-7,13] etc.) as an integrodifferential inclusion.

Obviously, a result similar to that of Theorem 3.1 may be obtained for problem
(3.6).
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