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EXISTENCE AND ASYMPTOTIC BEHAVIOR
OF POSITIVE CONTINUOUS SOLUTIONS
FOR A NONLINEAR ELLIPTIC SYSTEM

IN THE HALF SPACE

Sameh Turki

Abstract. This paper deals with the existence and the asymptotic behavior of positive
continuous solutions of the nonlinear elliptic system ∆u = p(x)uα vr, ∆v = q(x)us vβ in
the half space Rn+ := {x = (x1, . . . , xn) ∈ Rn : xn > 0}, n ≥ 2, where α, β ≥ 1 and r, s ≥ 0.
The functions p and q are required to satisfy some appropriate conditions related to the Kato
class K∞(Rn+). Our approach is based on potential theory tools and the use of Schauder’s
fixed point theorem.
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1. INTRODUCTION

In this paper, we consider the upper half space Rn+ := {x = (x1, . . . , xn) ∈ Rn : xn > 0}
(n ≥ 2) and we are interested in the existence of positive continuous solutions (in the
sense of distributions) to the following nonlinear elliptic system

∆u = p(x)uα vr in Rn+,
∆v = q(x)us vβ in Rn+,

lim
x→(ξ,0)

u(x) = aϕ(ξ), lim
x→(ξ,0)

v(x) = cψ(ξ), ∀ξ ∈ Rn−1,

lim
xn→∞

u(x)

xn
= b, lim

xn→∞

v(x)

xn
= d,

(1.1)

where α, β ≥ 1 and r, s ≥ 0. The constants a, b, c, d are nonnegative satisfying
(a+ b)(c+ d) > 0, ϕ and ψ are non-trivial nonnegative bounded continuous func-
tions on ∂Rn+ := Rn−1 × {0} which we identify with Rn−1. The functions p and q are
nonnegative measurable in Rn+ satisfying some assumptions related to a certain Kato
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class K∞(Rn+) which was introduced by Bachar and Mâagli in [2] for n ≥ 3 and by
Bachar et al. in [3] for n = 2.
For reader convenience, we recall the definition of the class K∞(Rn+).

Definition 1.1. A Borel measurable function q in Rn+ belongs to the Kato class
K∞(Rn+) if q satisfies

lim
α→0

 sup
x∈Rn

+

∫
Rn

+∩B(x,α)

yn
xn
G(x, y) |q(y)| dy

 = 0

and

lim
M→∞

 sup
x∈Rn

+

∫
Rn

+∩(|y|≥M)

yn
xn
G(x, y) |q(y)| dy

 = 0.

Here and throughout this paper,G(x, y) denotes the Green function of (−∆) in Rn+.
The elliptic Kato class K∞(Rn+) is quite rich. In particular, it contains the classical
Kato class K∞n (Rn+), for n ≥ 3, used in the study of elliptic equations (see [18] for
definition and properties).

In the following, we give some subclasses of functions belonging to K∞(Rn+).

Proposition 1.2 ([2] and [3]). (a) Let p > n
2 and n ≥ 3. Then we have

Lp(Rn+) ∩ L1(Rn+) ⊂ K∞(Rn+).

(b) Let λ, µ ∈ R and q(x) =
1

(1 + |x|)µ−λxλn
for x ∈ Rn+. Then the function q is in

K∞(Rn+) if and only if λ < 2 < µ.

Systems of type (1.1) have received considerable attention in the last few years.
So several results have been obtained in both the bounded and unbounded domain
D ⊂ Rn with different boundary conditions (see for example [6-9, 16, 17] and the
references therein).

The motivation of our study of system (1.1) comes from the results proved in [4,
10, 11, 13-15]. In fact, in [4], Bachar et al. discussed the existence and the asymptotic
behavior of solutions of the elliptic equation

∆u− uf(., u) = 0,

in Rn+ subject to some boundary conditions.
As is mentioned above, the main goal of this paper is to prove an existence result

for system (1.1). For this aim, we shall study the existence of positive solutions for
the following nonlinear elliptic problem

∆u = p(x)uα in Rn+,
lim

x→(ξ,0)
u(x) = aϕ(ξ), ∀ξ ∈ Rn−1,

lim
xn→∞

u(x)

xn
= b,

(1.2)
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where α ≥ 1. The constants a, b are nonnegative satisfying a+b > 0, ϕ is a non-trivial
nonnegative bounded continuous function in Rn−1 and p is a nonnegative measurable
function in Rn+.

Throughout this paper, we shall refer to the bounded continuous solution Hg of
the following Dirichlet problem (see [1])∆u = 0 in Rn+,

lim
x→(ξ,0)

u(x) = g(ξ), ∀ξ ∈ Rn−1,

where g is a non-trivial nonnegative bounded continuous function in Rn−1.
Also, we refer to the potential of a nonnegative measurable function f , defined in Rn+
by

V f(x) =

∫
Rn

+

G(x, y)f(y)dy.

We recall that the following assertions are equivalent for each nonnegative mea-
surable function f in Rn+:

(i) V f 6=∞, and consequently V f ∈ L1
loc(Rn+),

(ii)
∫
Rn

+

yn
(1+|y|)n f(y)dy <∞.

Hence for each nonnegative measurable function f in Rn+ such that V f ∈ L1
loc(Rn+),

we have
∆(V f) = −f (in the sense of distributions).

The plan of this paper is organized as follows. In Section 2, we recapitulate some
properties of functions belonging to K∞(Rn+) developed in [2–4] and adopted to our
interests. Section 3 is devoted to undertake a study of problem (1.2) by adopting
similar techniques as in [4] based on potential theory tools. In fact, we consider two
nonnegative real numbers a, b satisfying a + b > 0 and ϕ a non-trivial nonnegative
bounded continuous function in Rn−1. Let ω and h be the harmonic functions defined
in Rn+ by ω(x) = b xn + a and h(x) = b xn + aHϕ(x). The function p is required to
satisfy the following hypothesis

(H0) p is a nonnegative measurable function in Rn+ such that

x→ p(x)ωα−1(x)

is in K∞(Rn+).

Then we shall prove the following theorem.

Theorem 1.3. Assume (H0). Then problem (1.2) has a unique positive continuous
solution u satisfying for each x ∈ Rn+,

ch(x) ≤ u(x) ≤ h(x),

where c ∈ (0, 1).
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In Section 4, we shall apply the result stated in Theorem 1.3 to investigate the
existence and the behavior of positive solutions for system (1.1). By a positive solution
of (1.1) we mean a pair of continuous functions (u, v) such that u > 0 and v > 0 in
Rn+ and (u, v) satisfies (1.1).

To this end, let a, b, c, d be nonnegative constants satisfying (a + b)(c + d) > 0
and we fix ϕ and ψ two non-trivial nonnegative bounded continuous functions in
Rn−1. We set θ, ω, h and k the harmonic functions defined in Rn+ by ω(x) = b xn + a,
θ(x) = d xn + c, h(x) = b xn + aHϕ(x) and k(x) = d xn + cHψ(x).
We need to assume the following hypothesis on functions p and q.

(H) p and q are nonnegative measurable functions in Rn+ such that

x→ p(x) θr(x)ωα−1(x) and x→ q(x)ωs(x)θβ−1(x)

are in K∞(Rn+).

Using the Schauder’s fixed point theorem in a suitable closed convex subset in
(C(Rn+ ∪ {∞}))2, we obtain the following theorem.

Theorem 1.4. Assume (H). Then system (1.1) has a positive continuous solution
(u, v) satisfying for each x ∈ Rn+,

c1 h(x) ≤ u(x) ≤ h(x) and c2 k(x) ≤ v(x) ≤ k(x),

where c1, c2 ∈ (0, 1).

2. NOTATIONS AND PRELIMINARIES

In this Section we discuss different notations and we recall some properties of functions
belonging to the Kato class K∞(Rn+).

As usual, we denote by B+(Rn+) the set of nonnegative measurable functions in Rn+.
We also denote by

C(Rn+) = {w : Rn+ → R : w is continuous},

C0(Rn+) = {w ∈ C(Rn+) : lim
x→(ξ,0)

w(x) = 0 and lim
|x|→∞

w(x) = 0}

and
C0(Rn+) = {w ∈ C(Rn+) : lim

|x|→∞
w(x) = 0}.

Next, we need to recall some potential theory tools. Fore more details, we refer
the reader to [12] and [5]. Let (Xt, t > 0) be the Brownian motion in Rn and P x

be the probability measure on the Brownian continuous paths starting at x. For a
nonnegative measurable function q in Rn+ , we denote by Vq the kernel defined by

Vqf(x) = Ex

( τ∫
0

e−
∫ t
0
q(Xs)ds f(Xt)dt

)
,
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where Ex is the expectation on P x and τ = inf{t > 0 : Xt /∈ Rn+} is the first exit
time of (Xt, t > 0) from Rn+.
Furthermore, if q satisfies V q <∞, then we have the following resolvent equation

V = Vq + Vq(qV ) = Vq + V (qVq). (2.1)

So, for each measurable function u in Rn+ such that V (q|u|) <∞, we have

(I − Vq(q.))(I + V (q.))u = (I + V (q.))(I − Vq(q.))u = u. (2.2)

Now, we collect some preliminary results pertaining to the Kato class K∞(Rn+) which
will be used in the next Section.

Proposition 2.1 ([2] and [3]). Let q be a nonnegative function in K∞(Rn+). Then
we have:

(i) αq := sup
x,y∈Rn

+

∫
Rn

+

G(x, z)G(z, y)

G(x, y)
q(z)dz <∞;

(ii) the function x→ xn
(|x|+ 1)n

q(x) is in L1(Rn+).

Proposition 2.2 ([4]). Let q be a function in K∞(Rn+) and v be a nonnegative
superharmonic function in Rn+. Then for each x ∈ Rn+, we have∫

Rn
+

G(x, y)v(y)|q(y)|dy ≤ αq v(x). (2.3)

For a fixed nonnegative function q in K∞(Rn+), we denote

Mq := {f ∈ K∞(Rn+) : |f | ≤ q}.

Proposition 2.3 ([4]). Let q be a nonnegative function in K∞(Rn+) and β ∈ {0, 1}.
Then the family of functions

∫
Rn

+

(
yn
xn

)β
G(x, y)f(y)dy : f ∈Mq


is relatively compact in C0(Rn+), for β = 0 and which is relatively compact in C0(Rn+),
for β = 1.

The next proposition plays a key role in the proof of Theorem 1.3.

Proposition 2.4 ([4]). Let q be a nonnegative function in K∞(Rn+) and v be a
nonnegative superharmonic function in Rn+. Then for each x ∈ Rn+ such that 0 <
v(x) <∞, we have

exp(−αq)v(x) ≤ (v − Vq(qv))(x) ≤ v(x).
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3. PROOF OF THEOREM 1.3

In this Section, we aim at proving Theorem 1.3. So we need the following lemmas.

Lemma 3.1. Let f and g be two nonnegative measurable functions in Rn+ such that
g ≤ f and V f is continuous in Rn+. Then V g is also continuous in Rn+.

Proof. Let φ be a nonnegative measurable function in Rn+ such that f = g + φ. It is
obvious that V φ and V g are lower semi-continuous in Rn+ and V φ is finite. So, we
deduce that V g is continuous in Rn+.

Next, we recall that ω(x) = b xn+a, x ∈ Rn+, where a, b are nonnegative constants
satisfying a+ b > 0.

Lemma 3.2. Let q be a nonnegative function in K∞(Rn+). Then we have:

(i) The family of functions
∫
Rn

+

ω(y)

ω(x)
G(x, y)|f(y)|dy : f ∈Mq


is relatively compact in C0(Rn+).

(ii) lim
x→(ξ,0)

V (ω q)(x) = 0, ∀ξ ∈ Rn−1.

Proof. Since
ω(y)

ω(x)
=
b yn + a

b xn + a
≤ max

(
1,
yn
xn

)
≤ 1 +

yn
xn
,

then (i) follows from Proposition 2.3.
Next, we shall prove (ii). Using the fact that q is in K∞(Rn+), we obtain from

Proposition 2.3 that the function v(x) =
∫
Rn

+

yn
xn
G(x, y)q(y)dy is in C0(Rn+). Hence v

is bounded in Rn+.
Now, taking into account that

V (ω q)(x) = b

∫
Rn

+

ynG(x, y)q(y)dy + a V q(x) = bxn v(x) + a V q(x),

the assertion (ii) holds immediately from Proposition 2.3.

In the sequel, consider ϕ a non-trivial nonnegative bounded continuous function
in Rn−1. Let h be the harmonic function defined in Rn+ by h(x) = b xn+aHϕ(x) and
p be a nonnegative measurable function in Rn+ satisfying (H0). Put λ = max(1, ‖ϕ‖∞)
and q(x) = αλα−1p(x)ωα−1(x), x ∈ Rn+.

Lemma 3.3. Let u be a continuous function satisfying 0 ≤ u ≤ h in Rn+. Then u is
a solution of problem (1.2) if and only if u satisfies the integral equation

u+ V (p uα) = h. (3.1)
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Proof. Suppose that u is a solution of problem (1.2) satisfying 0 ≤ u ≤ h. Since

h(x) ≤ bλxn + a ‖ϕ‖∞ ≤ λω(x), (3.2)

we deduce that
puα ≤ αphα ≤ λωq. (3.3)

According to Lemma 3.2 (i) and Lemma 3.1, we can see that V (puα) ∈ C(Rn+). So u
satisfies 

∆(u+ V (p uα)) = 0,

lim
x→(ξ,0)

u(x) = aϕ(ξ), ∀ξ ∈ Rn−1,

lim
xn→∞

u(x)

xn
= b.

Thus u satisfies the integral equation (3.1).

Conversely, from (3.3) and by using Lemma 3.2 (i), we have
1

ω
V (puα) ∈ C0(Rn+).

Hence by (3.1), we conclude that u satisfies (in the sense of distributions) the equation

∆u = puα in Rn+.

On the other hand, since
1

ω
V (puα) ∈ C0(Rn+) and Hϕ is continuous and bounded on

Rn+ satisfying lim
x→(ξ,0)

Hϕ(x) = ϕ(ξ), we deduce from (3.1), (3.3) and Lemma 3.2 (ii)

that lim
x→(ξ,0)

u(x) = aϕ(ξ) and lim
xn→∞

u(x)

xn
= b.

Now, we are ready to state the proof of Theorem 1.3.

Proof of Theorem 1.3. We consider the non-empty closed convex set Λ given by

Λ := {u ∈ B+(Rn+) : exp(−αq)h ≤ u ≤ h},

where αq is the constant given in Proposition 2.1.
We define the operator T on Λ by

Tu(x) := h(x)− Vq(qh)(x) + Vq(qu− puα)(x).

We need to check that the operator T has a fixed point u in Λ. To this end, we first
prove that TΛ ⊂ Λ. Indeed, for u ∈ Λ, we have

Tu(x) ≤ h(x) + Vq(qu)(x)− Vq(qh)(x) ≤ h(x).

This implies by (3.2) that for u ∈ Λ,

q − puα−1 = αλα−1pωα−1 − puα−1 ≥ p(hα−1 − uα−1) ≥ 0. (3.4)

Hence Tu ≥ h− Vq(qh) and by Proposition 2.4, we obtain

Tu ≥ exp(−αq)h.
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Next, we claim that the operator T is nondecreasing on Λ. Let u, v ∈ Λ such that
u ≤ v and consider the function L : t→ t(q(x)−tα−1p(x)ωα−1(x)). By differentiation,
it is clear that L is nondecreasing on [0, λ]. Then we deduce that

Tv − Tu = Vq((q − pvα−1)v − (q − puα−1)u) = Vq

(
ω
(
L
( v
ω

)
− L

(u
ω

)))
≥ 0.

Now, we consider the sequence (uk) defined by

u0 = h− Vq(qh) and uk+1 = Tuk for k ∈ N.

Since TΛ ⊂ Λ, then by (3.4) and the monotonicity of T , we obtain

u0 ≤ u1 ≤ ... ≤ uk ≤ uk+1 ≤ h.

Hence by (2.3) and the dominated convergence theorem, the sequence (uk) converges
to a function u ∈ Λ, which satisfies

u = h− Vq(qh) + Vq(qu− puα),

which means that

(I − Vq(q.))u = (I − Vq(q.))h− Vq(puα).

So applying the operator (I + V (q.)) on both sides of the last equality, we deduce by
(2.1) and (2.2) that u satisfies the integral equation

u = h− V (puα).

Now, using (3.3) and Lemma 3.2 (i), we have
1

ω
V (puα) ∈ C0(Rn+). So we deduce from

Lemma 3.3 that u is a positive continuous solution of problem (1.2).
For the remainder of the proof, we aim to show that u is the unique solution of

problem (1.2) satisfying 0 ≤ u ≤ h.
To this end, suppose that problem (1.2) has two positive continuous solutions u

and v such that 0 ≤ u ≤ h and 0 ≤ v ≤ h.
It follows from Lemma 3.3 that

(u− v) + V (p(uα − vα)) = 0.

This yields
(u− v) + V ((u− v)k) = (I + V (k.))(u− v) = 0,

where

k(x) =


uα(x)− vα(x)

u(x)− v(x)
p(x) if u(x) 6= v(x),

0 if u(x) = v(x).

Now, since u and v satisfy (3.1), we have from (3.3) and (2.3) that

V (k|u− v|) ≤ V (p(uα + vα)) ≤ 2λV (ω q) ≤ 2λαq ω.

Then we deduce from (2.2) that u = v. This completes the proof.
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4. PROOF OF THEOREM 1.4

Proof of Theorem 1.4. Let us consider two non-trivial nonnegative bounded contin-
uous functions ϕ and ψ in Rn−1 and assume that hypothesis (H) is satisfied. We
recall that ω(x) = b xn + a, θ(x) = d xn + c, h(x) = b xn + aHϕ(x) and k(x) =
d xn+ cHψ(x), where a, b, c, d are nonnegative constants satisfying (a+ b)(c+d) > 0.
Put m = max(1, ‖ϕ‖∞, ‖ψ‖∞),

p̃(x) = αmr+α−1p(x)ωα−1(x)θr(x) and

q̃(x) = β ms+β−1q(x)ωs(x)θβ−1(x) for x ∈ Rn+.

Let Λ be the non-empty closed convex set given by

Λ =
{

(u, v) ∈ (C(Rn+∪{∞}))2 : 0 ≤ u ≤ (1−exp(−αp̃))
h

ω
, 0 ≤ v ≤ (1−exp(−αq̃))

k

θ

}
.

By applying the result stated in Theorem 1.3, we shall define the operator T on Λ by

T (u, v) =
(h− y

ω
,
k − z
θ

)
,

where (y, z) is the unique solution of the following system
∆y = p(x) yα (k − θ v)r,
∆z = q(x) (h− ω u)s zβ ,

lim
x→(ξ,0)

y(x) = aϕ(ξ), lim
x→(ξ,0)

z(x) = cψ(ξ),

lim
xn→∞

y(x)

xn
= b, lim

xn→∞

z(x)

xn
= d,

satisfying
exp(−αp̃)h ≤ y ≤ h and exp(−αq̃) k ≤ z ≤ k. (4.1)

We intend to prove that T has a fixed point in Λ. Let (u, v) ∈ Λ. Then, we have

p yα (k − θ v)r ≤ phα kr ≤ m

α
ω p̃ (4.2)

and
q zβ (h− ω u)s ≤ qkβ hs ≤ m

β
θ q̃. (4.3)

Now, since y and z satisfy the integral equations

y = h− V (p yα (k − θ v)r) (4.4)

and
z = k − V (q zβ(h− ω u)s),

we deduce by using (4.2), (4.3), (H) and Lemma 3.2 (i) that the family of functions

TΛ :=
{
x→ 1

ω(x)
V (p yα (k − θ v)r)(x), x→ 1

θ(x)
V (q zβ(h− ω u)s)(x) : (u, v) ∈ Λ

}
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is relatively compact in (C0(Rn+))2. Next, for (u, v) ∈ Λ, we have clearly from (4.1)

T (u, v) =
(h− y

ω
,
k − z
θ

)
∈ Λ.

To achieve the proof, we need to prove the continuity of the operator T with respect
to the norm ‖ · ‖ defined by ‖(u, v)‖ = ‖u‖∞ + ‖v‖∞. Let ((uj , vj)) be a sequence in
Λ which converges to (u, v) ∈ Λ with respect to the norm ‖.‖. Let

T (uj , vj) =
(h− yj

ω
,
k − zj
θ

)
and

T (u, v) =
(h− y

ω
,
k − z
θ

)
.

Then, we have ∥∥∥T (uj , vj)− T (u, v)
∥∥∥ =

∥∥∥yj − y
ω
‖∞ + ‖zj − z

θ

∥∥∥
∞
.

According to (4.4), we obtain

yj − y = V (p yα (k − θ v)r)− V (p yαj (k − θ vj)r) =

= V (p[yα((k − θ v)r − (k − θ vj)r) + (k − θ vj)r(yα − yαj )]).

Put

Kj(x) =


yαj (x)− yα(x)

yj(x)− y(x)
(k(x)− θ(x) vj(x))r p(x) if yj(x) 6= y(x),

0 if yj(x) = y(x).

Then, we have

(I + V (Kj .))(yj − y) = V (p yα((k − θ v)r − (k − θ vj)r)). (4.5)

By using the fact that p̃ ∈ K∞(Rn+), (4.2) and (2.3), we get

V (Kj |yj − y|) ≤ V (p yαj (k − θ vj)r) + V (pyα(k − θ vj)r) ≤
2m

α
αp̃ ω.

So applying the operator (I − VKj
(Kj .)) on both sides of (4.5), we deduce by (2.1)

and (2.2) that
yj − y = VKj

(p yα((k − θ v)r − (k − θ vj)r)).

On the other hand, from (4.2), we have

p yα|(k − θ v)r − (k − θ vj)r| ≤ p yα((k − θ v)r + (k − θ vj)r) ≤
2m

α
ωp̃.
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So, from hypothesis (H), (2.3) and by the dominated convergence theorem we deduce
that

lim
j→∞

V (p yα|(k − θ v)r − (k − θ vj)r|) = 0.

Now, since

VKj
(p yα|(k − θ v)r − (k − θ vj)r|) ≤ V (p yα|(k − θ v)r − (k − θ vj)r|),

it follows that for each x ∈ Rn+, (yj(x)) converges to y(x) as j →∞.
A similar argument as above, shows that for each x ∈ Rn+, (zj(x)) converges to

z(x) as j →∞.
Consequently, as T (Λ) is relatively compact in (C0(Rn+))2, we deduce that the

pointwise convergence implies uniform convergence, namely, ‖yj−yω ‖∞+‖ zj−zθ ‖∞ con-
verges to 0 as j →∞.

This shows that T is a continuous mapping from Λ into itself. Then by Schauder’s
fixed point theorem, there exists (u, v) ∈ Λ such that T (u, v) = (u, v).

Now, put ũ = h−ω u and ṽ = k−θ v, we obtain that (ũ, ṽ) is a positive continuous
solution for system (1.1) satisfying for each x ∈ Rn+

exp(−αp̃)h(x) ≤ ũ(x) ≤ h(x) and exp(−αq̃) k(x) ≤ ṽ(x) ≤ k(x).

Example 4.1. Let α ≥ 1, β ≥ 1, r ≥ 0, s ≥ 0 and a, b, c, d be nonnegative real
numbers with (a+b)(c+d) > 0. Let p and q be two nonnegative measurable functions
in Rn+ satisfying

p(x) ≤ 1

(|x|+ 1)µ−γ+r+α−1 xγn

and
q(x) ≤ 1

(|x|+ 1)ν−δ+s+β−1 xδn
,

where γ < 2 < µ and δ < 2 < ν. Put ω(x) = b xn + a and θ(x) = d xn + c for each
x ∈ Rn+. Then, there exists c̃ > 0 such that for each x ∈ Rn+, we have

p(x) θr(x)ωα−1(x) ≤ c̃ (xn + 1)r+α−1

(|x|+ 1)µ−γ+r+α−1 xγn
≤ c̃

(|x|+ 1)µ−γ xγn

and
q(x)ωs(x) θβ−1(x) ≤ c̃

(|x|+ 1)ν−δ xδn
.

Hence, hypothesis (H) is well satisfied. So for ϕ and ψ two non-trivial nonnegative
bounded continuous functions in Rn−1, system (1.1) has a positive continuous solution
(u, v) satisfying for each x ∈ Rn+,

c1(b xn + aHϕ(x)) ≤ u(x) ≤ b xn + aHϕ(x)

and

c2(d xn + cHψ(x)) ≤ v(x) ≤ d xn + cHψ(x),

where c1, c2 ∈ (0, 1).
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