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ON THE SOLVABILITY OF DIRICHLET PROBLEM
FOR THE WEIGHTED p-LAPLACIAN
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Abstract. The paper investigates the existence and uniqueness of weak solutions for
a non-linear boundary value problem involving the weighted p-Laplacian. Our approach
is based on variational principles and representation properties of the associated spaces.
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1. INTRODUCTION

In this paper we are concerned with the existence and uniqueness of the weak solution
to the boundary value problem

D(Ω) :

{
−∆a,pv = f in Ω,

v = 0 on ∂Ω,
(1.1)

in which ∆a,p, with 1 < p <∞, denotes the p-Laplacian weighted by a vector-valued
function a = (a1, . . . , aN ), that can be (formally) given by

∆a,pv = div(a(x)|∇v|p−2∇v), (1.2)

where ∇v denotes the weak gradient of a function v and, respectively, div means the
divergence operator (also understood in the weak sense). We treat the problem under
general conditions on the weight function a, namely, we suppose that the components
aj (j = 1, . . . , N) of a are measurable functions on Ω such that

aj(x) ≥ 0 for x ∈ Ω a.e., aj ∈ L1
loc(Ω) and 1/aj ∈ L∞(Ω) (j = 1, . . . , N). (1.3)

Ω is considered an arbitrary open domain in RN . We do not assume any smoothness
conditions on its boundary ∂Ω, it is not even assumed that the boundary has Lebesgue
measure zero.
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Boundary value problem involving the p-Laplacian and in general quasi-linear
elliptic differential operators were extensively studied by many authors. We restrict
ourselves to cite only the works [7, 9, 10] and references therein, and also the survey
[4] (see also [3]) for more recent results. The methods used were mostly based on the
technique of monotone operators developed by Leray-Lions [14] (see also [7], Section
I.1.6, Leray-Lions Theorem, p.31). In this context, it should be noted the variational
methods proposed in [2, 13,15].

Our approach is based on a variational method related to that used in Hilbert
spaces case. The essence of it is to interpret the problem as a generalized Dirichlet
problem by involving a non-linear form defined on a suitable space which we denote
by W 1,p

a (Ω). We prove that for any elements f from the dual space W−1,p
a (Ω) there

exists a uniquely weak solution v ∈W 1,p
a (Ω) of the boundary problem (1.1). Moreover

the set of all weak solutions of the problem is covered by the entire space W 1,p
a (Ω)

whence f runs through on W−1,p
a (Ω). The main results are presented by Theorem 2.2

in Section 2. The proof of the main results is given in Section 3.

2. DIRICHLET PROBLEM FOR THE WEIGHTED P -LAPLACIAN

The problem (1.1) will be considered as the generelized Dirichlet problem written in
a variational form, namely, for a given locally sumable function f , we write∫

Ω

a(x)∇u|∇v|p−2∇v dx =

∫
Ω

uf dx for all u ∈ C∞0 (Ω). (2.1)

Further on, we assume that the components aj (j = 1, . . . , N) of the vector-valued
function a are measurable functions satisfying conditions (1.3).

Under these conditions we consider the following (non-linear) form

a[u, v] =

∫
Ω

a(x)∇u|∇v|p−2∇v dx (2.2)

defined on functions u, v ∈ C∞0 (Ω).
It will need the following auxiliary results.

Lemma 2.1. Under conditions (1.3) there holds the following inequality∫
Ω

|∇u|p dx ≤ c

∫
Ω

|a(x)∇u|p dx (2.3)

for all u ∈ C∞0 (Ω).
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Proof. By using the Hölder inequality we have∫
Ω

|∇u|pdx ≤ ‖a−1‖L∞(Ω)

∫
Ω

|a(x)∇u|∇u|p−2∇u|dx ≤

≤ ‖a−1‖L∞(Ω)

(∫
Ω

|a(x)∇u|pdx
) 1

p
(∫

Ω

|∇u|(p−1)qdx
) 1

q

,

where q is the conjugate number of p. Hence(∫
Ω

|∇u|pdx
) 1

p ≤ ‖a−1‖L∞(Ω)

(∫
Ω

|a(x)∇u|pdx
) 1

p

,

that is the desired inequality.

Next, we consider on C∞0 (Ω) the functional

‖u‖a =
(∫

Ω

|a(x)∇u|pdx
) 1

p

for u ∈ C∞0 (Ω)

which obviously is a norm on C∞0 (Ω). We will denote the completion of C∞0 (Ω) with
respect to the metric of this norm ‖ · ‖a by W 1,p

a (Ω). We will need some properties of
the obtained space W 1,p

a (Ω). In this context, note that it is a uniformly convex space
(for the concept of the uniformly convex spaces see, for instance, [12]) and therefore
there holds a representation theorem for linear continuous functionals defined on it
(see [12, Theorem 8.2, p. 288]). Besides, the spaceW 1,p

a (Ω) can be realized by elements
of the Sobolev spaceW 1,p

0 (Ω), more exactlyW 1,p
a (Ω) can be embedded continuously in

W 1,p
0 (Ω). In fact, for any u ∈W 1,p

a (Ω) there exists a sequence of elements un ∈ C∞0 (Ω)
such that

‖un − u‖a → 0, n→∞.

By Lemma 2.1 one also has∫
Ω

|∇(un − um)|pdx→ 0, n,m→∞,

or, what is the same,

‖un − um‖W 1,p
0 (Ω) → 0, n,m→∞.

Due to the fact that W 1,p
0 (Ω) is a complete space there exists an element v ∈W 1,p

0 (Ω)
such that

‖un − v‖W 1,p
0 (Ω) → 0 as n→∞.

The element v depends only on u and it does not depend on the chosen sequence (un).
So, the elements u, v can be identified provided that the norm ‖ · ‖a is compatible
with the Sobolev norm ‖ · ‖W 1,p

0 (Ω). The compatibility means that if

‖un‖W 1,p
0 (Ω) → 0 and ‖un − u‖a → 0,
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then u = 0. To prove this fact, without loss generality, we can assume that∇un(x)→ 0
almost everywhere (otherwise we may pass to a suitable subsequence of (un)). For
any ε > 0 one has

‖um − un‖a < ε

for sufficiently large n and m. By applying Fatou’s Lemma,

‖un‖pa =

∫
Ω

|a(x)∇un|pdx =

∫
Ω

lim
m→∞

|a(x)∇(un − um)|pdx ≤

≤ lim inf
m→∞

∫
Ω

|a(x)∇(un − um)|pdx ≤ εp,

we see that un → 0 with respect to the topology norm of W 1,p
a (Ω), and thus u = 0.

Next, we denote by W−1,p
a (Ω) the dual space of W 1,p

a (Ω). Descriptions of dual
Sobolev type spaces are found in [1] (see also [11] for related results concerning
weighted Sobolev spaces). Besides, we also note the works [5, 6] for some abstract
more general results, but for Hilbert spaces case.

Our main result is the following.

Theorem 2.2. Suppose that the conditions (1.3) are fulfilled. For f ∈W−1,p
a (Ω), the

Dirichlet problem (2.1) has a unique weak solution v ∈W 1,p
a (Ω), i.e.

∫
Ω

a(x)∇u|∇v|p−2∇v dx = 〈u, f〉

for all u ∈ C∞0 (Ω) (or, equivalently, for any u ∈W 1,p
a (Ω)). Moreover, the set of all

weak solutions, where f runs through f ∈W−1,p
a (Ω) is the entire space W 1,p

a (Ω).

Next, for p < N we let p∗ = Np/(N − p) for the critical Sobolev exponent, and
denote s′ for the conjugate number of any s ∈ [p, p∗]. It follows from the Sobolev
embedding theorems that any element f ∈ Ls′(Ω) can be viewed as an element in
W−1,p

0 (Ω) (see, for instance, [8, Theorem 3.7, p. 230]. Thus, from the fact thatW 1,p
a (Ω)

is embedded continuously in W 1,p
0 (Ω), f can be treated as an element of the space

W−1,p
a (Ω). Taking into account this fact, we can formulate.

Corollary 2.3. Under conditions (1.3) for every f ∈ Ls′(Ω) there exists a unique
weak solution v ∈W 1,p

a (Ω) solving problem (2.1).
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3. PROOF OF THEOREM 2.2

Due to the estimate (2.3) in Lemma 2.1 the form a[u, v] defined by (2.2) can be
extended on elements of the space W 1,p

a (Ω). To this form we can associate an operator
A from W 1,p

a (Ω) into W−1,p
a (Ω) as follows. For any v ∈ W 1,p

a (Ω), we consider the
functional f defined on W 1,p

a (Ω) by

〈u, f〉 =

∫
Ω

a(x)∇u|∇v|p−2∇v dx, u ∈W 1,p
a (Ω).

This functional is linear and bounded, hence f ∈ W−1,p
a (Ω). Moreover the operator

A satisfies the following variational equation

〈u,Av〉 = a[u, v] for all u, v ∈W 1,p
a (Ω), (3.1)

where 〈u, v〉 =
∫

Ω
uv dx.

Next, we change the topology of the spaceW 1,p
a (Ω) by defining the following metric

on this space
da(u, v) = sup

‖w‖a=1

|a[w, u]− a[w, v]|, (3.2)

i.e.,

da(u, v) = sup
‖w‖a=1

∣∣∣ ∫
Ω

a(x)∇w
(
|∇u|p−2∇u− |∇v|p−2∇v

)
dx
∣∣∣, u, v ∈W 1,p

a (Ω).

W 1,p
a (Ω) equipped with the metric da becomes a complete metric space. Moreover,

for any u, v ∈W 1,p
a (Ω) we have

‖Au−Av‖W−1,p
a (Ω) = sup

‖w‖a=1

| 〈w,Au−Av〉 | = sup
‖w‖a=1

|a[w, u]− a[w, v]| = da(u, v),

hence A is an isometry viewed as an operator from the metric space (W 1,p
a (Ω), da)

into W−1,p
a (Ω). Due to the fact that the space W 1,p

a (Ω) is a uniformly convex space
(that implies it is a strictly convex space) the operator A is injective. Besides, A is
surjective from the representation theorem, i.e. to every continuous linear functional
f ∈W−1,p

a (Ω) there exists a unique element v ∈W 1,p
a (Ω) such that

〈u, f〉 = a[u, v] for all u ∈W 1,p
a (Ω).

Hence, A is a bijection between the space W 1,p
a (Ω) and W−1,p

a (Ω) and there exists the
inverse operator A−1. Therefore, for f ∈ W−1,p

a (Ω) the element v = A−1f is a weak
solution of the generalized Dirichlet problem and the set of those solutions covers the
entire space W 1,p

a (Ω) whence f runs through the dual space W−1,p
a (Ω). The proof of

Theorem 2.2 is complete. �
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