http://dx.doi.org/10.7494/OpMath.2012.32.4.775

ON THE SOLVABILITY OF DIRICHLET PROBLEM FOR THE WEIGHTED *p*-LAPLACIAN

Ewa Szlachtowska

Abstract. The paper investigates the existence and uniqueness of weak solutions for a non-linear boundary value problem involving the weighted *p*-Laplacian. Our approach is based on variational principles and representation properties of the associated spaces.

Keywords: p-Laplacian, weak solutions, solvability.

Mathematics Subject Classification: 35A15, 35J20, 35J60.

1. INTRODUCTION

In this paper we are concerned with the existence and uniqueness of the weak solution to the boundary value problem

$$D(\Omega): \begin{cases} -\Delta_{a,p}v = f & \text{in } \Omega, \\ v = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

in which $\Delta_{a,p}$, with 1 , denotes the*p* $-Laplacian weighted by a vector-valued function <math>a = (a_1, \ldots, a_N)$, that can be (formally) given by

$$\Delta_{a,p}v = \operatorname{div}(a(x)|\nabla v|^{p-2}\overline{\nabla v}), \qquad (1.2)$$

where ∇v denotes the weak gradient of a function v and, respectively, div means the divergence operator (also understood in the weak sense). We treat the problem under general conditions on the weight function a, namely, we suppose that the components a_j $(j = 1, \ldots, N)$ of a are measurable functions on Ω such that

$$a_j(x) \ge 0$$
 for $x \in \Omega$ a.e., $a_j \in L^1_{loc}(\Omega)$ and $1/a_j \in L_\infty(\Omega)$ $(j = 1, \dots, N)$. (1.3)

 Ω is considered an arbitrary open domain in \mathbb{R}^N . We do not assume any smoothness conditions on its boundary $\partial\Omega$, it is not even assumed that the boundary has Lebesgue measure zero.

Boundary value problem involving the p-Laplacian and in general quasi-linear elliptic differential operators were extensively studied by many authors. We restrict ourselves to cite only the works [7,9,10] and references therein, and also the survey [4] (see also [3]) for more recent results. The methods used were mostly based on the technique of monotone operators developed by Leray-Lions [14] (see also [7], Section I.1.6, Leray-Lions Theorem, p.31). In this context, it should be noted the variational methods proposed in [2, 13, 15].

Our approach is based on a variational method related to that used in Hilbert spaces case. The essence of it is to interpret the problem as a generalized Dirichlet problem by involving a non-linear form defined on a suitable space which we denote by $W_a^{1,p}(\Omega)$. We prove that for any elements f from the dual space $W_a^{-1,p}(\Omega)$ there exists a uniquely weak solution $v \in W_a^{1,p}(\Omega)$ of the boundary problem (1.1). Moreover the set of all weak solutions of the problem is covered by the entire space $W_a^{1,p}(\Omega)$ whence f runs through on $W_a^{-1,p}(\Omega)$. The main results are presented by Theorem 2.2 in Section 2. The proof of the main results is given in Section 3.

2. DIRICHLET PROBLEM FOR THE WEIGHTED P-LAPLACIAN

The problem (1.1) will be considered as the generalized Dirichlet problem written in a variational form, namely, for a given locally sumable function f, we write

$$\int_{\Omega} a(x)\nabla u |\nabla v|^{p-2} \overline{\nabla v} \, dx = \int_{\Omega} u \overline{f} \, dx \quad \text{for all} \quad u \in C_0^{\infty}(\Omega).$$
(2.1)

Further on, we assume that the components a_j (j = 1, ..., N) of the vector-valued function a are measurable functions satisfying conditions (1.3).

Under these conditions we consider the following (non-linear) form

$$a[u,v] = \int_{\Omega} a(x)\nabla u |\nabla v|^{p-2} \overline{\nabla v} \, dx \tag{2.2}$$

defined on functions $u, v \in C_0^{\infty}(\Omega)$.

It will need the following auxiliary results.

Lemma 2.1. Under conditions (1.3) there holds the following inequality

$$\int_{\Omega} |\nabla u|^p \, dx \le c \int_{\Omega} |a(x)\nabla u|^p \, dx \tag{2.3}$$

for all $u \in C_0^{\infty}(\Omega)$.

Proof. By using the Hölder inequality we have

$$\int_{\Omega} |\nabla u|^p dx \le ||a^{-1}||_{L_{\infty}(\Omega)} \int_{\Omega} |a(x)\nabla u| \nabla u|^{p-2} \overline{\nabla u}| dx \le \\ \le ||a^{-1}||_{L_{\infty}(\Omega)} \Big(\int_{\Omega} |a(x)\nabla u|^p dx\Big)^{\frac{1}{p}} \Big(\int_{\Omega} |\nabla u|^{(p-1)q} dx\Big)^{\frac{1}{q}}$$

where q is the conjugate number of p. Hence

$$\left(\int_{\Omega} |\nabla u|^p dx\right)^{\frac{1}{p}} \le ||a^{-1}||_{L_{\infty}(\Omega)} \left(\int_{\Omega} |a(x)\nabla u|^p dx\right)^{\frac{1}{p}}$$

that is the desired inequality.

Next, we consider on $C_0^{\infty}(\Omega)$ the functional

$$||u||_{a} = \left(\int_{\Omega} |a(x)\nabla u|^{p} dx\right)^{\frac{1}{p}} \text{ for } u \in C_{0}^{\infty}(\Omega)$$

which obviously is a norm on $C_0^{\infty}(\Omega)$. We will denote the completion of $C_0^{\infty}(\Omega)$ with respect to the metric of this norm $\|\cdot\|_a$ by $W_a^{1,p}(\Omega)$. We will need some properties of the obtained space $W_a^{1,p}(\Omega)$. In this context, note that it is a uniformly convex space (for the concept of the uniformly convex spaces see, for instance, [12]) and therefore there holds a representation theorem for linear continuous functionals defined on it (see [12, Theorem 8.2, p. 288]). Besides, the space $W_a^{1,p}(\Omega)$ can be realized by elements of the Sobolev space $W_0^{1,p}(\Omega)$, more exactly $W_a^{1,p}(\Omega)$ can be embedded continuously in $W_0^{1,p}(\Omega)$. In fact, for any $u \in W_a^{1,p}(\Omega)$ there exists a sequence of elements $u_n \in C_0^{\infty}(\Omega)$ such that

$$||u_n - u||_a \to 0, \quad n \to \infty.$$

By Lemma 2.1 one also has

$$\int_{\Omega} |\nabla (u_n - u_m)|^p dx \to 0, \quad n, m \to \infty,$$

or, what is the same,

$$\|u_n - u_m\|_{W^{1,p}_0(\Omega)} \to 0, \quad n, m \to \infty.$$

Due to the fact that $W_0^{1,p}(\Omega)$ is a complete space there exists an element $v \in W_0^{1,p}(\Omega)$ such that

$$|u_n - v||_{W_0^{1,p}(\Omega)} \to 0 \quad \text{as} \quad n \to \infty.$$

The element v depends only on u and it does not depend on the chosen sequence (u_n) . So, the elements u, v can be identified provided that the norm $\|\cdot\|_a$ is compatible with the Sobolev norm $\|\cdot\|_{W_{\alpha}^{1,p}(\Omega)}$. The compatibility means that if

$$||u_n||_{W_0^{1,p}(\Omega)} \to 0 \text{ and } ||u_n - u||_a \to 0,$$

then u = 0. To prove this fact, without loss generality, we can assume that $\nabla u_n(x) \to 0$ almost everywhere (otherwise we may pass to a suitable subsequence of (u_n)). For any $\varepsilon > 0$ one has

$$\|u_m - u_n\|_a < \varepsilon$$

for sufficiently large n and m. By applying Fatou's Lemma,

$$\begin{split} \|u_n\|_a^p &= \int_{\Omega} |a(x)\nabla u_n|^p dx = \int_{\Omega} \lim_{m \to \infty} |a(x)\nabla (u_n - u_m)|^p dx \leq \\ &\leq \liminf_{m \to \infty} \int_{\Omega} |a(x)\nabla (u_n - u_m)|^p dx \leq \varepsilon^p, \end{split}$$

we see that $u_n \to 0$ with respect to the topology norm of $W_a^{1,p}(\Omega)$, and thus u = 0.

Next, we denote by $W_a^{-1,p}(\Omega)$ the dual space of $W_a^{1,p}(\Omega)$. Descriptions of dual Sobolev type spaces are found in [1] (see also [11] for related results concerning weighted Sobolev spaces). Besides, we also note the works [5, 6] for some abstract more general results, but for Hilbert spaces case.

Our main result is the following.

Theorem 2.2. Suppose that the conditions (1.3) are fulfilled. For $f \in W_a^{-1,p}(\Omega)$, the Dirichlet problem (2.1) has a unique weak solution $v \in W_a^{1,p}(\Omega)$, i.e.

$$\int\limits_{\Omega} a(x)\nabla u |\nabla v|^{p-2} \overline{\nabla v} \, dx = \langle u, f \rangle$$

for all $u \in C_0^{\infty}(\Omega)$ (or, equivalently, for any $u \in W_a^{1,p}(\Omega)$). Moreover, the set of all weak solutions, where f runs through $f \in W_a^{-1,p}(\Omega)$ is the entire space $W_a^{1,p}(\Omega)$.

Next, for p < N we let $p^* = Np/(N-p)$ for the critical Sobolev exponent, and denote s' for the conjugate number of any $s \in [p, p^*]$. It follows from the Sobolev embedding theorems that any element $f \in L_{s'}(\Omega)$ can be viewed as an element in $W_0^{-1,p}(\Omega)$ (see, for instance, [8, Theorem 3.7, p. 230]. Thus, from the fact that $W_a^{1,p}(\Omega)$ is embedded continuously in $W_0^{1,p}(\Omega)$, f can be treated as an element of the space $W_a^{-1,p}(\Omega)$. Taking into account this fact, we can formulate.

Corollary 2.3. Under conditions (1.3) for every $f \in L_{s'}(\Omega)$ there exists a unique weak solution $v \in W_a^{1,p}(\Omega)$ solving problem (2.1).

3. PROOF OF THEOREM 2.2

Due to the estimate (2.3) in Lemma 2.1 the form a[u, v] defined by (2.2) can be extended on elements of the space $W_a^{1,p}(\Omega)$. To this form we can associate an operator A from $W_a^{1,p}(\Omega)$ into $W_a^{-1,p}(\Omega)$ as follows. For any $v \in W_a^{1,p}(\Omega)$, we consider the functional f defined on $W_a^{1,p}(\Omega)$ by

$$\langle u, f \rangle = \int_{\Omega} a(x) \nabla u |\nabla v|^{p-2} \overline{\nabla v} \, dx, \quad u \in W^{1,p}_a(\Omega).$$

This functional is linear and bounded, hence $f \in W_a^{-1,p}(\Omega)$. Moreover the operator A satisfies the following variational equation

$$\langle u, Av \rangle = a[u, v] \quad \text{for all} \quad u, v \in W_a^{1, p}(\Omega),$$
(3.1)

where $\langle u, v \rangle = \int_{\Omega} u \overline{v} \, dx$.

Next, we change the topology of the space $W_a^{1,p}(\Omega)$ by defining the following metric on this space

$$d_a(u,v) = \sup_{\|w\|_a = 1} |a[w,u] - a[w,v]|,$$
(3.2)

i.e.,

$$d_a(u,v) = \sup_{\|w\|_a = 1} \Big| \int_{\Omega} a(x) \nabla w \Big(|\nabla u|^{p-2} \overline{\nabla u} - |\nabla v|^{p-2} \overline{\nabla v} \Big) \, dx \Big|, \quad u, v \in W_a^{1,p}(\Omega).$$

 $W_a^{1,p}(\Omega)$ equipped with the metric d_a becomes a complete metric space. Moreover, for any $u, v \in W_a^{1,p}(\Omega)$ we have

$$||Au - Av||_{W_a^{-1,p}(\Omega)} = \sup_{\|w\|_a = 1} |\langle w, Au - Av \rangle| = \sup_{\|w\|_a = 1} |a[w, u] - a[w, v]| = d_a(u, v),$$

hence A is an isometry viewed as an operator from the metric space $(W_a^{1,p}(\Omega), d_a)$ into $W_a^{-1,p}(\Omega)$. Due to the fact that the space $W_a^{1,p}(\Omega)$ is a uniformly convex space (that implies it is a strictly convex space) the operator A is injective. Besides, A is surjective from the representation theorem, i.e. to every continuous linear functional $f \in W_a^{-1,p}(\Omega)$ there exists a unique element $v \in W_a^{1,p}(\Omega)$ such that

$$\langle u, f \rangle = a[u, v]$$
 for all $u \in W^{1,p}_a(\Omega)$.

Hence, A is a bijection between the space $W_a^{1,p}(\Omega)$ and $W_a^{-1,p}(\Omega)$ and there exists the inverse operator A^{-1} . Therefore, for $f \in W_a^{-1,p}(\Omega)$ the element $v = A^{-1}f$ is a weak solution of the generalized Dirichlet problem and the set of those solutions covers the entire space $W_a^{1,p}(\Omega)$ whence f runs through the dual space $W_a^{-1,p}(\Omega)$. The proof of Theorem 2.2 is complete.

Acknowledgments

The research was supported by the Polish Ministry of Sciences and Higher Education.

REFERENCES

- [1] R.A. Adams, J.J.F. Fournier, Sobolev Spaces, Academic Press, 2nd. ed., 2003.
- [2] J.F. Bonder, J.D. Rossi, Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl. 263 (2001), 195–223.
- [3] A.C. Cavalheiro, Existence of solutions for Dirichlet problem of some degenerate quasilinear elliptic equations, Complex Variables and Elliptic Equations 53 (2008) 2 February, 185–194.
- [4] A.C. Cavalheiro, Weighted Sobolev spaces and degenerate elliptic equations, Bol. Soc. Paran. Mat. (3s.) 26 (2008) 1–2, 117–132.
- [5] P. Cojuhari, A. Gheondea, Closed embeddings of Hilbert spaces. J. Math. Anal. Appl. 369 (2010), 60–75.
- [6] P. Cojuhari, A. Gheondea, On lifting of operators to Hilbert spaces induced by positive selfadjoint operators, J. Math. Anal. Appl. 304 (2005), 584–598.
- [7] P. Drábek, A. Kufner, F. Nicolosi, *Quasilinear Elliptic Equations with Degenerations and Singularities*, de Gruyter Series in Nonlinear Analysis and Applications 5, Walter de Gruyter, Berlin, 1997.
- [8] D.E. Edmunds, W.D. Evans, Spectral Theory and Differential Operators, Oxford University Press, 1987.
- [9] S. Fučík, Solvability of nonlinear equations and boundary value problems. Society of Czech. Math. Phys., Prague, 1980.
- [10] S. Fučík, A. Kufner, Nonlinear Differential Equations. Elsevier, Amsterdam, 1980.
- [11] A. Kufner, B. Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carol. 25 (1984), 537–554.
- [12] R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265–292.
- [13] A. Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Analysis 64 (2006), 1057–1099.
- [14] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969 (Russian translation: Moscow 1972).
- [15] E. Zeidler, Nonlinear functional analysis and its applications. III: Variational methods and optimization, Springer-Verlag, New York etc., 1985.

Ewa Szlachtowska szlachto@agh.edu.pl

AGH University of Science and Technology Faculty of Applied Mathematics al. A. Mickiewicza 30, 30-059 Krakow, Poland.

Received: May 10, 2011. Revised: March 19, 2012. Accepted: March 20, 2012.