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FALSE ALARMS
IN FAULT-TOLERANT DOMINATING SETS

IN GRAPHS

Mateusz Nikodem

Abstract. We develop the problem of fault-tolerant dominating sets (liar’s dominating sets)
in graphs. Namely, we consider a new kind of fault – a false alarm. Characterization of such
fault-tolerant dominating sets in three different cases (dependent on the classification of the
types of the faults) are presented.
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1. INTRODUCTION

Let G = (V,E) be a simple graph. A set D ⊂ V is said to be a dominating set in G if
N [v] ∩D 6= ∅ for every v ∈ V , where N [v] denotes the closed neighbourhood of v i.e.

N [v] := {v} ∪ {u ∈ V |uv ∈ E}.

Fault-tolerant dominating sets (named by the author as a liar’s dominating set)
were introduced by P.J. Slater in [7] as follows. Consider a structure that could be
represented by a graph (a computer, electrical, or sensor network, a floor-plan of a
museum, a road network, etc.), where each vertex indicates some network location.
In each network location there might appear some undesired event, and its location
has to be determined. In some locations there are detectors (monitors, sensors) which
are responsible for reporting on the presence and location of this undesired events in
its closed neighbourhood.

We assume that in any point of time at most one undesired event can occur.
Let D ⊂ V be a set of detectors. Each detector x ∈ D reports the location

of an undesired event in its closed neighbourhood (if such is detected) or reports no
location (if no undesired event is detected). All reports are collected in, say, the centre
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of information. The final conclusion on the existence and, eventually, location of an
undesired event is based on the reports of all detectors.

We consider the case that under some circumstances detectors may fail in their
reporting. In the basic, introduced in [7], model we assume that at most one detector
x ∈ D makes a fault of type A or B, defined as follows.

Definition 1.1. We distinguish the following types of detector’s x ∈ D faults:

— Fault of type A (false negative): failing to report the existence of an undesired
event in N [x];

— Fault of type B (false identification): reporting a wrong location (i.e. reporting u,
while an undesired event is at v 6= u, where u, v ∈ N [x]).

It is important to underline the difference between this model and the problem of
fault-tolerant locating-dominating sets considered i.e. by Slater [6], where detectors
are not indicating the precise location of an undesired event but just reporting that
they occur in their neighbourhood. The latter one is related to locating-dominating
sets [4, 5] and metric bases in graphs, considered by Harary and Melter [2].

The following definition and theorem are adapted from [3] and [7] with use of the
above notation.

Definition 1.2. A set D ⊂ V is called a (A ∨ B)-fault-tolerant dominating set if
the presence and location of an undesired event at any given vertex v ∈ V can be
correctly inferred from the set of reports sent from all vertices in D, given that at
most one vertex in D sends a faulty report of type A or type B.

Theorem 1.3 ([3]). Set D is a (A ∨ B)-fault-tolerant dominating set if and only if
the following conditions (1.1) and (1.2) are simultaneously satisfied:

for every v ∈ V |N [v] ∩D| ≥ 2, (1.1)
for every distinct u, v ∈ V |(N [u] ∪N [v]) ∩D| ≥ 3. (1.2)

Let us introduce necessary terminology of reporting vectors, to be used in further
sections. Let D = {x1, . . . , xm} ⊂ V be a set of detectors. Then we define a reporting
vector a = a(D) = (a1, . . . , am), where ai is indicating the xi’s reporting; ai ∈ V ∪ ∅,
i = 1, . . . ,m. The notation ai = ∅ is used if xi is reporting no location of an undesired
event (see Figure 1).

Definition 1.4. An m-dimensional vector au is called a u-faultless reporting vector
if each of m detectors reports correctly, assuming that there is an undesired event at
the vertex u.

Now let us recall the Hamming distance.

Definition 1.5 ([1]). Consider two vectors a,b ∈ Wm where W is a given set. The
function d : Wm ×Wm → N such that

d (a,b) := |{i : ai 6= bi}|

is called the Hamming distance. In our considerations W = V ∪ {∅}.
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Fig. 1. The presented reporting vector is a = (v, u, ∅, x3, ∅), while au = (u, u, u, ∅, ∅) and
av = (v, v, ∅, v, ∅)

2. FALSE ALARMS

Let us consider a third type of fault that may occur in the report sent by a vertex in
a fault-tolerant dominating set, namely a false alarm, or false positive.

Definition 2.1. False alarm is a fault that occurs when a vertex x ∈ D reports the
existence of an undesired event at a vertex v ∈ N [x] when, in fact, this condition does
not exist at any vertex v ∈ N [x]. A false alarm is called a fault of type C.

Definition 2.2. Set of detectors D ⊂ V is called a k(A ∨ B ∨ C)-fault-tolerant
dominating set if the presence and location of an undesired event at any given vertex
v ∈ V can be correctly inferred from the set of reports sent from all vertices in D,
given that at most k vertices in D sends a faulty report of type A, type B or type C.

Theorem 2.3. Set D is a k(A ∨ B ∨ C)-fault-tolerant dominating set if and only if
for every u ∈ V

|N [u] ∩D| ≥ 2k + 1. (2.1)

Proof. Assume that (2.1) is satisfied. Observe that an undesired event is at u if and
only if there are at least k + 1 detectors reporting u. This criterion guarantees that
any location of an undesired event can be correctly identified, hence D is an k(A ∨
B ∨ C)-fault-tolerant dominating set.

Conversely, if (2.1) is not satisfied, then there exists u ∈ V such that |N [u]∩D| =
t ≤ 2k. Consequently, there exist t1, t2 ∈ {0, 1, . . . , k} such that t = t1 + t2. Then if
t1 detectors of N [u] report u and t2 these detectors report ∅, we cannot distinguish
if there is an undesired event at u (with t2 faults of type A) or there is no such event
(with t1 faults of type C).

3. ON SENSITIVITY AND SPECIFICITY OF DETECTORS

The faults of the detectors may be caused by too low sensitivity or too low specificity.
It seems natural to assume that a vertex in D has at most one of these two drawbacks.
We can interpret that having too low sensitivity means the possibility of a wrong
reaction if there is an undesired event in the detector’s closed neighbourhood. On
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the other hand having too low specificity can cause a wrong reaction if there is no
undesired event.

Assuming that the producer of detectors guarantees that at most k detectors have
too low sensitivity and at most l have too low specificity, we formally define:

Definition 3.1. Set of detectors D ⊂ V is called a (k(A ∨ B) + lC)-fault-tolerant
dominating set if the presence and location of an undesired event at any given vertex
v ∈ V can be correctly inferred from the set of reports sent from all vertices in D,
given that at most k vertices in D send a faulty report of type A or type B and at
most l vertices in D sends a faulty report of type C.

Theorem 3.2. Set D is a (k(A ∨B) + lC)-fault-tolerant dominating set if and only
if conditions (3.1) and (3.2) are simultaneously satisfied:

for every v ∈ V |N [v] ∩D| ≥ k + l + 1, (3.1)
for every distinct u, v ∈ V, at least one of (3.2a) – (3.2d) is satisfied: (3.2)

(3.2a) |(N [u] ∪N [v]) ∩D| ≥ 2k + 2l + 1,
(3.2b) |N [u] ∩N [v] ∩D| ≥ 2k + 1,
(3.2c) |N [u] ∩D| ≥ 2k + l + 1,
(3.2d) |N [v] ∩D| ≥ 2k + l + 1.

Proof. Let D be a set satisfying conditions (3.1) and (3.2). Then the procedure of
identifying the undesired events location is the following:

(i) If there is no vertex reported at least l + 1 times, we conclude that there is no
undesired event in G.

(ii) If there is only one vertex v reported at least l+ 1 times then v is the undesired
event’s location.

(iii) If there are exactly two vertices u, v reported at least l + 1 times then one of
them is the true location. The criterion of identification is following:
• Vertices u, v satisfying (3.2a).

If d (au,a) ≤ k + l then u is the undesired event’s location, otherwise it is v.
To show that, it is enough to notice that

d (au,av) ≥ 2k + 2l + 1,

and (because at most k + l detectors can report incorrectly)

d (au,a) ≤ k + l⇔ d (av,a) ≥ k + l + 1.

• Vertices u, v satisfying (3.2b).
In this case we consider the reporting vector restricted to the set

Y := N [u] ∩N [v] ∩D. (3.3)

If d (au|Y ,a|Y ) ≤ k, then an undesired event is at u, otherwise it is at v. It is
a consequence of the fact that only k detectors of Y can make a fault. Since

d (au|Y ,av|Y ) ≥ 2k + 1,
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we get
d (au|Y ,a|Y ) ≤ k ⇔ d (av|Y ,a|Y ) ≥ k + 1.

• Vertices u, v satisfying (3.2c).
Here we consider the reporting vector restricted to the set

T = (N [u] ∪N [v]) ∩D.

Moreover, let us define

Xvu := (N [v] ∩D) \N [u], svu := |Xvu|. (3.4)

If svu ≥ l then, in fact, the condition (3.2a) is satisfied, therefore we only
consider the case svu < l. The criterion is as follows: if d (au|T ,a|T ) ≤ k+svu
then an undesired event is at u, otherwise it is at v.
Let us show correctness of this criterion. Observe that

d (au|T ,av|T ) ≥ 2k + l + 1 + svu.

If there is an undesired event at u, then at most k detectors from N [u] ∩D
can make a fault of type A or B, and at most svu detectors from Xvu can
cause a fault of type C. Then,

d (au|T ,a|T ) ≤ k + svu.

If v is an undesired event’s location then

d (av|T ,a|T ) ≤ k + l

and, consequently

d (au|T ,a|T ) ≥ (2k + l + 1 + svu)− (k + l) = k + svu + 1.

• Vertices u, v satisfying (3.2d).
This case is obviously symmetric to the case (3.2c), hence the criterion of
identifying the location is analogous. Namely, if d (av|T ,a|T ) ≤ k + suv then
the undesired event is at v, otherwise it is at u.

(iv) If at least three vertices are reported more than l+ 1 times, then one of them is
the undesired event’s location. In this case the criterion of identifying the true
location is as follows:
The location is the vertex w satisfying

d (aw,a) ≤ k + l.

We only have to show that there is exactly one vertex w with this property.
Clearly, there is one vertex w such that d(aw,a) ≤ k + l because not more than
k + l detectors can report incorrectly. We have to show that there is no other
vertex v such that d(av,a) ≤ k + l. Let w be the true location of an undesired
event and v 6= w be some other vertex reported at least l + 1 times. We show
that d(av,a) ≥ k + l + 1.
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• If v, w are satisfying condition (3.2a) then, due to previous arguments,
d(av,a) ≥ k + l + 1.
• If v, w satisfy (3.2b), then at least k+1 detectors report w (only k may report

incorrectly) and at least l+1 other detectors report some vertex different than
v and w. Hence d(av,a) ≥ (k + 1) + (l + 1) > k + l + 1.
• If v, w satisfy (3.2c), i.e. |N [v] ∩ D| ≥ 2k + l + 1, then at least (2k + l +
1)− (k + l) = k + 1 detectors of N [v] report the same as in aw (i.e. ∅ or w).
That means that these k + 1 or more detectors report differently than in av.
Moreover, there are at least l + 1 detectors reporting some vertex different
than w and v, therefore d(av,a) ≥ (k + 1) + (l + 1) > k + l + 1.
• In the last case of v, w satisfying (3.2d), i.e. |N [w]∩D| ≥ 2k+ l+1, we easily

observe that at least (2k + l + 1) − k = k + l + 1 detectors report w, hence
d(av,a) ≥ k + l + 1.

This completes the proof that set D satisfying conditions (3.1) and (3.2) is a
(k(A ∨B) + lC)-fault-tolerant dominating set.

Now we show that if at least one of conditions (3.1), (3.2) is not fulfilled then D
is not a (k(A ∨ B) + lC)-fault-tolerant dominating set. If (3.1) is not satisfied then
for some vertex u then there exists k′, l′ such that

|N [u] ∩D| = k′ + l′, where k′ ∈ {0, 1, . . . , k}, l′ ∈ {0, 1, . . . , l}.

Then clearly D is not a (k(A ∨ B) + lC)-dominating set, because if l′ detectors of
N [u] report u and all other detectors report ∅, we cannot state if there is an undesired
event at u or not.

Consider now the case when condition (3.1) is satisfied, but condition (3.2) is
not (for some u, v ∈ V ). Then all the following conditions (which are negations of
statements (3.2a)– (3.2d)) are satisfied,

suv + svu + |Y | ≤ 2k + 2l, (3.5)
|Y | ≤ 2k, (3.6)

k + l + 1 ≤ suv + |Y | ≤ 2k + l, (3.7)
k + l + 1 ≤ svu + |Y | ≤ 2k + l, (3.8)

with Y and suv as defined in (3.3) and (3.4). First, observe that, due to (3.5),(3.7)
and (3.8), suv and svu are not greater than l + k. Moreover, due to (3.5)-(3.8), there
exists non-negative integers tu, tv such that |Y | = tu + tv, and

tv +max{0, suv − l} ≤ k and tu +max{0, svu − l} ≤ k.

Consider the following reporting:

— min{l, suv} detectors of Xuv and tu detectors of Y report u,
— min{l, svu} detectors of Xvu and another tv detectors of Y report v,
— all the rest, i.e. max{0, suv− l} detectors of Xuv, max{0, svu− l} detectors of Xvu

and all the other detectors report ∅,
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Fig. 2. The case when suv > l and svu ≤ l. Both u and v are possible location of an
undesired event

In this case both u and v are a possible undesired event’s location (Figure 2),
namely:

— an event is at u, while max{0, suv − l} detectors of Xuv make a fault of type A,
tv detectors of Y make a fault of type B and min{l, svu} detectors of Xvu make a
fault of type C, or

— an event is at v, while max{0, svu − l} detectors of Xvu make a fault of type A,
tu detectors of Y make a fault of type B and min{l, suv} detectors of Xuv make a
fault of type C.

This shows that if conditions (3.1) and (3.2) are not simultaneously satisfied then
D is not (k(A ∨B) + lC)-fault-tolerant dominating set.

Now let us present some modifications to the interpretation of detectors faults.
Namely, one can assume that having too low sensitivity means the possibility of re-
porting no undesired event, if there is one in a closed neighbourhood (fault of type A).
On the other hand having too low precision (or specificity) means the possibility of
reporting the wrong location (faults of type B or C).

Definition 3.3. Set of detectors D ⊂ V is called a (kA + l(B ∨ C))-fault-tolerant
dominating set if the presence and location of an undesired event at any given vertex
v ∈ V can be correctly inferred from the set of reports sent from all vertices in D,
given that at most k vertices in D sends a faulty report of type A and at most l
vertices in D sends a faulty report of type B or type C.
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Theorem 3.4. Set D is a (kA+ l(B ∨ C))-fault-tolerant dominating set if and only
if conditions (3.9) and (3.10) are simultaneously satisfied:

for every v ∈ V |N [v] ∩D| ≥ k + l + 1, (3.9)
for every distinct u, v ∈ V at least one of (3.10a) – (3.10c) is satisfied: (3.10)

(3.10a) |(N [u] ∪N [v]) ∩D| ≥ 2k + 2l + 1,
(3.10b) |N [u] ∩D| ≥ k + 2l + 1,
(3.10c) |N [v] ∩D| ≥ k + 2l + 1.

Proof. Let D be a set of vertices for which conditions (3.9) and (3.10) are satisfied.
Then the procedure of identifying an undesired event’s location is as follows:

(i) If not more than l detectors report the existence of an undesired event, then
there is no such event in G. Otherwise there is an event somewhere in G, which
is a simple consequence of the assumption that not more than l faults of type C
can occur.
Now consider only the case of the existence of an undesired event in G.

(ii) If there is some vertex v reported at least l+ 1 times then an undesired event is
clearly at v. It is easy to observe that there is no possibility that more than one
vertex is reported more than l times.

(iii) If there is no vertex reported more than l times then an undesired event is in
only one vertex u such that d(a,au) ≤ k + l.
We have to show that there exists exactly one vertex u with this property. To
the contrary assume that there exists w 6= u such that d(a,aw) ≤ k + l.

— If u,w are satisfying (3.10a) then d(au,aw) ≤ 2k + 2l + 1 what leads us to a
contradiction to our assumptions that d(a,au) ≤ k + l and d(a,aw) ≤ k + l.

— If u,w are satisfying (3.10b), i.e. |N [u] ∩ D| ≥ k + 2l + 1, then d(a,au) ≤ k + l
implies that u is reported at least l + 1 times - a contradiction.

— Analogously we obtain a contradiction if u,w are satisfying (3.10c).

This shows that a set fulfilling the conditions (3.9) and (3.10) is indeed a (kA +
l(B ∨ C))-fault-tolerant dominating set.
Now let us show the necessity of conditions (3.9) and (3.10). If D is not satisfying (3.9)
then some vertex u has not more than k′ + l′ detectors in its closed neighbourhood,
where k′, l′ are such non-negative integers that k′ ≤ k and l′ ≤ l. Then, if l′ detectors
from N [u] report u and all the rest report ∅ we cannot state if there is an undesired
event at u or not.
Assume now that (3.9) is satisfied and (3.10) is not. It means that there exist u, v ∈ V
such that:

suv + svu + |Y | ≤ 2k + 2l, (3.11)
k + l + 1 ≤ suv + |Y | ≤ k + 2l, (3.12)
k + l + 1 ≤ svu + |Y | ≤ k + 2l, (3.13)

where Y and suv are defined in (3.3) and (3.4). For clarity we analyse two subcases.
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Subcase 1. t ≥ 2l.
Consider the following reporting:

— l detectors from Y report u,
— another l detectors from Y reports v,
— the rest of the detectors reports ∅.

Due to (3.12) and (3.13) we notice that not more than k detectors from N [u]∩D
and no more than k detectors from N [v]∩D report ∅. Thus an undesired event might
be at u or might be at v – in both possibilities there are not more than k faults of
type A and l faults of type B or C.
Subcase 2. t < 2l. Observe that due to (3.11)-(3.13) there exist non-negative integers
tu, tv such that tu + tv = t, where

tu +max{0, suv − k} ≤ l and tv +max{0, svu − k} ≤ l.

Consider the following reporting (Figure 3):

— tu detectors of Y and max{0, suv − k} of Xuv report u,
— another tv detectors of Y and max{0, svu − k} of Xvu report v,
— min{k, suv} of Xuv, min{k, svu} of Xvu and all the rest report ∅.

In that case we also cannot be sure if there is an undesired event at u or it is at v
– in both possibilities there are not more than k faults of type A and not more than
l faults of type B or C, which ends the proof.

Fig. 3. The case when suv > k and svu ≤ k. Both u and v are possible locations of an
undesired event
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