PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On a class of nonhomogenous quasilinear problems in Orlicz-Sobolev spaces

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the nonlinear boundary value problem [formula], where Ω is a bounded domain in RN with smooth boundary, λ, μ are positive real numbers, q and α are continuous functions and a1,a2 are two mappings such that a1 (/t/)t; a2(/t/)t; are increasing homeomorphisms from R to R. The problem is analysed in the context of Orlicz-Soboev spaces. First we show the existence of infinitely many weak solutions for any λ, μ > 0. Second we prove that for any μ > 0, there exists λ* sufficiently small, and λ* large enough such that for any λ ∈ (0, λ*) ∪ (λ*, ∞), the above nonhomogeneous quasilinear problem has a non-trivial weak solution.
Rocznik
Strony
731--750
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Institut Preparatoire aux Etudes d’ingenieurs de Gafsa Campus Universitaire Sidi Ahmed Zarrouk - 2112 Gafsa, Tunisia, asma.souayah@yahoo.fr
Bibliografia
  • [1] R. Adams, L. Hedberg, Function Spaces and Potential Theory, Grundlehren Math. Wiss. 314, Springer-Verlag, Berlin, 1996.
  • [2] R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  • [3] Ph. Clement, M. García-Huidobro, R. Manásevich, K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations 11 (2000), 33–62.
  • [4] Ph. Clement, B. de Pagter, G. Sweers, F. de Thélin, Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math 1 (2004), 241–267.
  • [5] M. Garciá-Huidobro, V.K. Le, R. Manásevich, K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting, Nonlinear Differential Equations Appl. (NoDEA) 6 (1999), 207–225.
  • [6] J.P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163–205.
  • [7] O. Allegue, M. Bezzarga, A multiplicity of solutions for a nonlinear degenerate problem involving a p(x)-Laplace type operator, Complex Var. Elliptic Equ. 55 (2010), 417–429.
  • [8] O. Allegue, A. Karoui Souayah, Compactness results for quasilinear problems with variable exponent on the whole space, EJDE, (2011), 1–15.
  • [9] K. Ben Ali, M. Bezzarga, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Potential Theory and Stochastics in Albac, Aurel Cornea Memorial Volume, Conference Proceedings Albac, September 4–8, 2007, Theta 2008, 21–34.
  • [10] K. Ben Ali, K. Kefi, Mountain pass and Ekeland’s principle for eigenvalue problem with variable exponent, Complex Var. Elliptic Equ. 54 (2009), 795–809.
  • [11] H. Brezis, Analyse fonctionnelle: théorie et applications, Masson, Paris, 1992.
  • [12] Ph. Clément, M. Garcia-Huidobro, R. Manasevich, K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations 11 (2000), 33–62.
  • [13] Ph. Clément, B. de Pagter, G. Sweers, F. de Thélin, Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math. 1 (2004), 241–267.
  • [14] L. Diening, P. Harjulehto, P. Hästö, M. Ružicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011.
  • [15] R. Filippucci, P. Pucci, V. Radulescu, Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Comm. Partial Differential Equations 33 (2008), 706–717.
  • [16] M. Ghergu, V. Radulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, 37, Oxford University Press, New York, 2008.
  • [17] T.C. Halsey, Electrorheological fluids, Science 258 (1992), 761–766.
  • [18] A. Karoui Souayah, K. Kefi, On a class of nonhomogenous quasilinear problem involving Sobolev spaces with variable exponent, An. St. Univ. Ovidius Constanµa 18 (2010) 1, 309–328.
  • [19] A. Kristály, V. Radulescu, C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Cambridge University Press, Cambridge, 2010.
  • [20] K. Kefi, Nonhomogeneous boundary value problems in Sobolev spaces with variable exponent, Int. J. Appl. Math. Sci. 3 (2006), 103–115.
  • [21] O. Kovàcik, J. Ràkosnìk, On spaces Lp(x) and W1;p(x), Czechoslovak Math. J. 41 (1991), 592–618.
  • [22] M. Mihailescu, V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Roy. Soc. London Ser. A 462 (2006), 2625–2641.
  • [23] M. Mihailescu, V. Radulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), 2625–2641.
  • [24] M. Mihailescu, V. Radulescu, Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting, J. Math. Anal. Appl. 330 (2007), 416–432.
  • [25] M. Mihailescu, V. Radulescu, Neumann problems associated to nonhomogeneous differential operations in Orlicz-Sobolev spaces, Ann. Inst. Fourier 58 (2008), 2087–2111.
  • [26] M. Mihailescu, V. Radulescu, D. Repovš, On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting, J. Math. Pures Appliquées 93 (2010), 132–148.
  • [27] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983.
  • [28] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Expository Lectures from the CBMS Regional Conference held at the University of Miami, American Mathematical Society, Providence, RI, 1984.
  • [29] V. Radulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, Handbook of Differential Equations: Stationary Par. Diff. Equa. 4 (Michel Chipot, ed.), North Holland, Elsevier, Amsterdam, 2007, 483–591.
  • [30] M.M. Rao, Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
  • [31] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelberg, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHS-0007-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.