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RECURSIVELY ARBITRARILY
VERTEX-DECOMPOSABLE GRAPHS

Olivier Baudon, Frédéric Gilbert, and Mariusz Woźniak

Abstract. A graph G = (V,E) is arbitrarily vertex decomposable if for any sequence τ of
positive integers adding up to |V |, there is a sequence of vertex-disjoint subsets of V whose
orders are given by τ , and which induce connected graphs. The main aim of this paper is
to study the recursive version of this problem. We present a solution for trees, suns, and
partially for a class of 2-connected graphs called balloons.
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1. INTRODUCTION

We deal with finite, simple and undirected graphs. Let G = (V,E) be a graph of order
n. A sequence τ = (n1, ..., nk) of positive integers is called admissible for G if it sums
up to n. If τ = (n1, ..., nk) is an admissible sequence for G and there exists a partition
(V1, ..., Vk) of the vertex set V such that Vi induces a connected subgraph of order
ni for each i ∈ [1, k], then τ is called realizable in G, and the sequence (V1, ..., Vk) is
said to be a realization of τ in G. A graph G is arbitrarily vertex decomposable (AVD,
for short) if for each admissible sequence τ for G there exists a realization of τ in G.
Clearly, every AVD graph has to be connected.

The notion of AVD graphs was first introduced by Barth et al. in [1] and motivated
by the following problem in computer science. Consider a network connecting different
computing resources; such a network is modeled by a graph. Suppose there are k
different users, where the i-th one needs ni resources in our graph. The subgraph
induced by the set of resources attributed to each user should be connected and each
resource should be attributed to one user. So we are seeking a realization of the
sequence τ = (n1, . . . , nk) in this graph. Thus, such a network should be an AVD
graph.
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This problem can also be considered as a natural analogy of the similar notion
in which vertices are replaced by edges. Some references concerning arbitrarily edge
decomposable graphs can be found in [8].

The problem of deciding whether a given graph is arbitrarily vertex decomposable
has been considered in several papers. The investigation of AVD trees is motivated
by the fact that a connected graph is AVD if its spanning tree is AVD. It turned out,
however, that the structure of AVD trees is not obvious in general.

On the other hand, it is clear that each path, and therefore each traceable graph, is
AVD. So, the problems concerning AVD graphs can be considered as a generalization
of hamiltonian problems. Some results in this direction were obtained by use of some
characterizations of AVD graphs in the family of graphs with a large dominating cycle,
called suns. This justifies investigating AVD graphs in this family.

2. TERMINOLOGY AND PRELIMINARY RESULTS

In this paper, we deal only with simple graphs, that means graphs without loops or
multiple edges. We denote by n the number of vertices, also called order of the graph
and by m the number of edges. If G = (V,E) and A ⊆ V , G[A] will denote the
subgraph of G induced by A. For more definitions on graphs, please refer to [6].

2.1. ARBITRARILY VERTEX-DECOMPOSABLE GRAPHS

Let n, τ1, . . . , τk be positive integers such that τ1 + . . . + τk = n. τ = (τ1, . . . , τk) is
called a decomposition of n.

Let G = (V,E) be a graph of order n, and τ = (τ1, . . . , τk) a decomposition of n.
G is τ -Vertex-Decomposable iff there exists a partition of V : V1, . . . , Vk such that for
each i, 1 ≤ i ≤ k,
— |Vi| = τi,
— G[Vi] is connected.

A graph G = (V,E) of order n is arbitrarily vertex-decomposable (for short AVD)
iff for each decomposition τ of n, G is τ -vertex-decomposable.

2.2. RECURSIVELY ARBITRARILY VERTEX-DECOMPOSABLE GRAPHS

We present here a new definition of graph decomposition into connected components.
This definition introduces the main topic of this paper. The goal is to characterize
graphs for which it is possible to perform arbitrarily decomposition recursively on
each subgraph.

Definition 2.1. A graph G = (V,E) of order n is recursively arbitrarily
vertex-decomposable (for short R-AVD) iff:

— G = K1

or
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— G is connected and for each decomposition τ = (τ1, . . . , τk) of n, k ≥ 2, there
exists a partition of V : V1, . . . , Vk such that for all i, 1 ≤ i ≤ k,
— |Vi| = τi,
— G[Vi] is R-AVD.

A stronger version of the recursive decomposition of graphs into connected com-
ponents will also be studied in the last section of this paper, based on the following
definition.

Definition 2.2. A graph G = (V,E) of order n is strongly recursively arbitrarily
vertex-decomposable (for short SR-AVD) iff:

— G is AVD,
— for each sequence τ of length k ≥ 2 admissible for G and for each realization

V1, . . . , Vk of τ the graph G[Vi], i = 1, . . . , k, is SR-AVD.

2.3. FAMILIES OF GRAPHS

The following definitions presents some families of graphs and their notations, used
in further sections.

Definition 2.3.

— Let a be a positive integer. Pa denotes the path of order a, Ca the cycle of order
a (cf. Figures 1a and 1b).

— A k-pode Tk(t1, . . . , tk) is a tree of order 1 +
∑k
i=1 ti composed by k paths of

respective orders t1, . . . , tk, connected to a unique node, called the root of the
k-pode (cf. Figure 1c).

— Let a and b be two positive integers. A caterpillar Cat (a, b) is a tree of order a+b,
composed by three paths of order a, b and 2, sharing exactly one node, called the
root of the caterpillar. Cat (a, b) is isomorphic to T3(a−1, b−1, 1) (cf. Figure 1d).

— A sun with r rays is a graph of order n ≥ 2r with r hanging vertices u1, . . . , ur
whose deletion yields a cycle Cn−r, and each vertex vi adjacent to ui is of degree
three. If the sequence of vertices vi is situated on the cycle Cn−r in such a way
that there are exactly ai ≥ 0 vertices, each of degree two, between vi and vi+1, i =
1, ..., r (the indices taken modulo r), then this sun is denoted by Sun (a1, . . . , ar),
and is unique up to isomorphism (cf. Figure 1e).
Note that the order of Sun (a1, . . . , ar) equals n = 2r + a1 + ...+ ar.

— Let b1, . . . , bk be positive integers. A k-balloon B(b1, . . . , bk) is a graph of order
2 +

∑k
i=1 bi composed by two vertices (called roots) linked by k paths (called

branches) of widths (the number of internal vertices) b1, . . . , bk (cf. Figure 1f).

Definition 2.4. A graph of order n even (resp. odd) has a perfect matching (resp.
quasi-perfect matching) iff it contains a set of bn2 c disjoint edges. A graph is traceable
iff it contains a hamiltonian path.
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(a) Path P5 (b) Cycle C5 (c) 3-pode T3(3, 2, 2)

(d) Cat (3, 5) (e) Sun (2, 3, 1) (f) B(3, 2, 2, 1)

Fig. 1. Examples of graphs

2.4. PRELIMINARY RESULTS

Remark 2.5. A graph G having an AVD spanning subgraph is AVD. But there are
AVD-graphs without any AVD-spanning tree.

Proof. The first part of Remark 2.5 is trivial. We now prove that the graph G of
Figure 21) is AVD, but has no AVD spanning tree.

To prove that the graph is AVD, we show that for any value of λ ≤ n− 1, we may
find a connected induced subgraph G[Vλ] of G of order λ such that the remaining
graph G[V \Vλ] is traceable. The values of Vλ are given in Table 1.

The graph G is of order n = 24 and any of its spanning trees is of the form
G− ej , j ∈ {1, . . . , 19}. If G− ej is AVD, then the sequence (i, . . . , i) is realizable in
G − ej , i = 2, 3, 4, 6. For i ∈ {2, 3, 4, 6} let Ri be the set of all j ∈ {1, . . . , 19} such
that (i, . . . , i) is realizable in G − ej . Then R2 = {1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19},
R3 = {1, 4, 7, 10, 13, 16, 19}, R4 = {1, 5, 9, 13, 17} and R6 = {3, 4, 9, 10, 15, 16, 18, 19}.
Since R2 ∩R3 ∩R4 ∩R6 = ∅, the graph G has no AVD spanning tree.

1) This counter-example has been proposed by Hervé Fournier. Another counter-example may be
find in [12].
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Fig. 2. An AVD graph without any AVD spanning tree

Table 1. Values of Vλ

λ Vλ

1 {v19}
2 {a1, a2}
3 {b1, b2, b3}
4 {a1, a2, v1, v19}
≥ 5 {a1, a2, v19, v1, v2, . . . , vλ−3}

Remark 2.6. A graph G = (V,E) of order n is R-AVD iff for each integer 1 ≤ λ ≤
bn2 c, there exists a subset Vλ of V such that:

— |Vλ| = λ,
— G[Vλ] is R-AVD,
— G[V \Vλ] is R-AVD.

The notion of an on-line arbitrarily vertex decomposable graph has been intro-
duced by Horňák et al. in [7]. This version of the problem is even more natural when
applied to the problem in computer networks mentioned in Section 1.
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Let G = (V,E) be a graph. Imagine now the following decomposition procedure
consisting of k stages, where k is a random variable attaining (integer) values from
interval [1, n]. In the ith stage, where i ∈ [1, k], a positive integer τi arrives and we
have to choose a subset Vi of V of order τi that is disjoint from all subsets of V chosen
in previous stages (without a possibility of changing the choice in the future). More
precisely, for every partial sequence (τ1, . . . τi) whose sum is less than n, there is a
sequence (V1, . . . , Vi) of disjoint subsets of V such that for 1 ≤ j ≤ i, |Vj | = τj , with
the following property: for all sequences (τ ′1, . . . , τ

′
k) with k ≥ i and summing to n,

such that τ ′r = τr for 1 ≤ r ≤ i, there is a decomposition of V into disjoint subsets
V ′1 , . . . , V

′
k with |V ′j | = τ ′j and G[V ′j ] connected, for all j, and V ′j = Vj for 1 ≤ j ≤ i.

Definition 2.7 ([7]). If the decomposition procedure can be accomplished for any
(random) sequence of positive integers (τ1, . . . , τk) adding up to n, the graph G is said
to be on-line AVD, (for short OL-AVD).

Lemma 2.8 ([7]). A graph connected G = (V,E) of order n is OL-AVD iff for each
integer 1 ≤ λ ≤ n− 1, there exists a subset Vλ of V such that:

— |Vλ| = λ,
— G[Vλ] is connected,
— G[V \Vλ] is OL-AVD.

Remark 2.9. A straightforward consequence of Lemma 2.8 and Remark 2.6 is that
every R-AVD graph is OL-AVD.

The opposite is not true. For example, the caterpillar Cat (8, 11) is OL-AVD [7],
but not R-AVD (cf. Section 3.1).

We denote by:

— PF (n) the set of graphs of order n with a perfect matching or a quasi-perfect
matching;

— AVD(n) the set of AVD graphs of order n;
— OL−AVD(n) the set of OL-AVD graphs of order n;
— R−AVD(n) the set of R-AVD graphs of order n;
— Traceable(n) the set of traceable graphs of order (n);
— SR−AVD(n) the set of SR-AVD graphs of order n.

Theorem 2.10. PF (n) ) AVD(n) ) OL−AVD(n) ) R−AVD(n) )
Traceable(n) ) SR−AVD(n).

Proof.

— PF (n) ) AVD(n)
If G is AVD, then it is (2, . . . , 2) or (2, . . . , 2, 1)-decomposable, following the
parity of its order.
The caterpillar Cat (3, 3) has a perfect matching, but is not (3,3)-decomposable.

— AVD(n) ) OL−AVD(n)
The inclusion is trivial.
The 3-pode T3(2, 3, 5) is AVD ([1]), but not OL-AVD ([7]).
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— OL−AVD(n) ) R−AVD(n)
see Remark 2.9.

— R−AVD(n) ) Traceable(n)
The inclusion is trivial, using Remark 2.6.
The caterpillar Cat (2, 3) is R-AVD (cf. Section 3.1) and not traceable.

— Traceable(n) ) SR−AVD(n)
The proof of the inclusion is given in Section 4, Theorems 4.2 and 4.3.
The graph from Figure 3 is traceable, but not SR-AVD. Consider the (4,1) de-
composition, where the set of size 4 is S = {v1, v2, v3, v5}. The induced subgraph
G[S] is isomorphic to K1,3 and therefore is not (2,2)-decomposable.

v1 v2 v3 v4 v5

Fig. 3. A traceable graph, which is not SR-AVD

2.5. KNOWN RESULTS ON AVD AND OL-AVD GRAPHS

Theorem 2.11 ([2]). There is no AVD k-pode for k ≥ 5. All AVD 4-podes have a
branch of length 1.

A direct consequence of Theorem 2.11 is that the maximum degree of an AVD
tree is at most 4. Nevertheless, this problem remains difficult on the class of trees, as
shown by the next theorem.

Definition 2.12. Decision problem TP3:
INSTANCE: A tree T with maximum degree 3 and order n and τ a decomposition
of n.
QUESTION: Is T τ -decomposable?

Theorem 2.13 ([2]). TP3 is NP-complete.

The two next results give a complete characterization of OL-AVD trees and suns.

Theorem 2.14 ([7]). A tree T is OL-AVD if and only if either T is a path or T is
a caterpillar Cat (a, b) with a and b given in Table 2 or T is the 3-pode T3(2, 4, 6).

Theorem 2.15 ([10]). A sun with one ray is always OL-AVD.
A sun with two rays Sun (a, b) is OL-AVD iff a and b take values given in Table 3a.
A sun with three rays Sun (a, b, c) is OL-AVD iff a, b and c take values given in
Table 3b.
A sun with four rays is OL-AVD iff it is isomorphic to Sun (0, 0, 1, d), where d ≡ 2, 4
(mod 6 ).
A sun with five or more rays is never OL-AVD.



696 Olivier Baudon, Frédéric Gilbert, and Mariusz Woźniak

Table 2. Values a, b (b ≥ a), such that Cat (a, b) is OL-AVD

a b

2, 4 ≡ 1 (mod 2)
3 ≡ 1, 2 (mod 3)
5 6, 7, 9, 11, 14, 19
6 ≡ 1, 5 (mod 6)

a b

7 8, 9, 11, 13, 15
8 11, 19

9, 10 11
11 12

Table 3. Values for OL-AVD Suns

(a) Values a, b (b ≥ a), such that
Sun (a, b) is OL-AVD

a b

0 arbitrary
1, 3 ≡ 0 (mod 2)
2 6≡ 3 (mod 6), 3, 9, 21
4 ≡ 2, 4 (mod 6), [4, 19]\{15}
5 ≡ 2, 4 (mod 6), 6, 18
6 6, 7, 8, 10, 11, 12, 14, 16
7 8, 10, 12, 14, 16
8 8, 9, 10, 11,12
9 10, 12

(b) Values a, b, c (c ≥ b ≥ a), such that
Sun (a, b, c) is OL-AVD

a b c

0 ≡ 1, 2 (mod 3)
1 ≡ 0 (mod 2)
2 ≡ 2, 4 (mod 6), 3, 6, 7, 11, 18, 19

0 3 ≡ 2, 4 (mod 6)
4 4, 5, 6, 8, 10, 11, 12, 14, 16
5 6, 8, 16

6, 7 8, 10
8 8, 9

1 2 ≡ 2, 4 (mod 6), 6, 18
2 3 4, 8, 16

3. RECURSIVELY AVD GRAPHS

In this section, we give a complete characterization of R-AVD trees and suns and a
tight upper bound of the maximum degree of R-AVD balloons.

3.1. TREES

Theorem 3.1. A tree T is R-AVD if and only if either T is a path or T is a caterpillar
Cat (a, b) with a and b given in Table 4 or T is the 3-pode T3(2, 4, 6).

Proof. Only trees which are OL-AVD may be R-AVD (cf. Remark 2.9). The case of
paths is trivial. Thus, we have only to check whether or not caterpillars from Table 2
and T3(2, 4, 6) are R-AVD. For that, we use Remark 2.6. That means that for each
λ ≤ n

2 , where n denotes the order of the graph, we have to find a subset of vertices
Vλ of size λ such that both G[V λ] and G[V \Vλ] are R-AVD.

Labellings are those from Figure 4.
For Cat (a, b) and λ = 1, Vλ = {x}. The remaining graph is a path.
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Table 4. Values a, b (b ≥ a), such that Cat (a, b) is R-AVD

a b

2, 4 ≡ 1 (mod 2)
3 ≡ 1, 2 (mod 3)
5 6, 7, 9, 11, 14, 19
6 7
7 8, 9, 11, 13, 15

For Cat (a, b) and 2 ≤ λ ≤ a+b
2 , we have only two possibilities: either aa−1 or bb−1

belongs to Vλ. If Cat (a, b) is R-AVD, the two graphs G[Vλ] and G[V \Vλ] are either
a path or a smaller R-AVD caterpillar. Table 5 gives the solution when it exists. For
values a and b such that Cat (a, b) is OL-AVD, but not R-AVD, Table 6 gives a value
λ for which it is not possible to find a set Vλ such that both G[Vλ] and G[V \Vλ] are
R-AVD.

Table 5. Leaf of Cat (a, b) in Vλ following values of a, b and λ

a b λ ∈ Vλ
any any 1 x
2 ≡ 1 (mod 2) ≡ 1 (mod 2) a1

≡ 0 (mod 2) bb−1
3 ≡ 1, 2 (mod 3) ≡ 1, 2 (mod 3) a2

≡ 0 (mod 3) bb−1
4 ≡ 1 (mod 2) ≡ 1 (mod 2) a3

≡ 0 (mod 2) bb−1
6 4 a4

2, 3, 5 b5
5 7 2, 3, 4 a4

5, 6 b6
9 4 a4

2, 3, 5, 6, 7 b8
11 3, 4, 6 a4

2, 5, 7, 8 b10

a b λ ∈ Vλ
5 14 2, 4, 6, 9 a4

3, 5, 7, 8 b13
19 2, 3, 4, 6, 7, 9, 11, 12 a4

5, 8, 10 b18
6 7 2, 3, 4, 5 a5

6 b6
8 6 a6

2, 3, 4, 5, 7 b7
9 2, 5, 6 a6

3, 4, 7, 8 b8
7 11 2, 3, 4, 5, 6, 8 a6

7, 9 b10
13 3, 5, 6, 8 a6

2, 4, 7, 9, 10 b7
15 3, 5, 6, 8 a6

2, 4, 7, 9 10 b14
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For T3(2, 4, 6), values of Vλ are given in Table 7, using labelling from Figure 4.

x

a1

a2

c1 c2 c3 c4 c5b1b2b3 r

x

b1 bb−1a1aa−1
c6b4

Fig. 4. 3-pode T3(2, 4, 6) and Cat (a, b)

Table 6. Values a and b with b ≥ a,
such that Cat (a, b) is OL-AVD, but not R-AVD

a b λ

6 ≡ 1 (mod 6) and 6= 7 9
≡ 5 (mod 6) 8

8 11 2
19 8

a b λ

9 11 3
10 11 4
11 12 2

Table 7. Values of G[Vλ] and G[V \Vλ] for T3(2, 4, 6)
λ Vλ G[Vλ] G[V \Vλ]
1 {a2} P1 Cat (5, 7)
2 {a1, a2} P2 P11

3 {b2, b3, b4} P3 Cat (3, 7)

λ Vλ G[Vλ] G[V \Vλ]
4 {b1, b2, b3, b4} P4 P9

5 {c2, c3, c4, c5, c6} P5 Cat (3, 5)
6 {c1, c2, c3, c4, c5, c6} P6 P7

3.2. SUNS

Theorem 3.2.
A sun with one ray is always R-AVD.
A sun with two rays Sun (a, b) is R-AVD if and only if a and b take values given in
Table 8a.
A sun with three rays Sun (a, b, c) is R-AVD if and only if a, b and c take values given
in Table 8b.
A sun with four rays is R-AVD if and only if it is isomorphic to Sun (0, 0, 1, 2) or to
Sun (0, 0, 1, 4).
A sun with five or more rays in never R-AVD.

The proof of this theorem uses arguments that are similar to those used for The-
orem 3.1. Because it is quite long, it has been given in a separate paper [4].
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Table 8. Values for R-AVD Suns

(a) Values a, b (b ≥ a),
such that Sun (a, b) is R-AVD

a b
0 arbitrary
1 ≡ 0 (mod 2)
2 6≡ 0 (mod 3), 3, 6, 9, 12, 18, 21, 24, 36
3 ≡ 0 (mod 2)
4 4 ≤ b ≤ 19 except for b = 15,

≡ 2, 4 (mod 6) with 20 ≤ b ≤ 46
5 ≡ 2, 4 (mod 6) with 8 ≤ b ≤ 32, 6, 18
6 6, 7, 8, 10, 11, 12, 14, 16

(b) Values a, b, c (c ≥ b ≥ a),
such that Sun (a, b, c) is R-AVD

a b c
0 ≡ 1, 2 (mod 3)
1 ≡ 0 (mod 2)

0 2 2, 3, 4, 6, 7, 8, 10, 11, 14, 16, 18, 19
3 4, 8, 10
4 4, 5, 6, 8, 10, 11, 12, 14, 16
5 6

1 2 2, 4, 6, 8, 10, 14, 16, 18
2 3 4

3.3. BALLOONS

3.3.1. Maximum degree of RAVD Balloons

Remark 3.3. B(b1, . . . , bk) is AVD (resp. R-AVD) iff B(b1, . . . , bk, 0) is AVD (resp.
R-AVD). Thus, we will always consider non-zero values for bi, 1 ≤ i ≤ k.

Vi

Vi

Vi

Fig. 5. Removing the empty branch

Proof. Consider a balloon B(b1, . . . , bk, 0) and a decomposition λ = (λ1, . . . , λp) of
n = b1 + . . . + bk + 2 (cf. Figure 5). The branch of width 0 means that there exists
an edge between the two roots. The existence of such a branch is essential (i.e., it
guarantees connectedness of a part G[Vi]) only if the part G[Vi] is a tree containing
both roots of the balloon. Thus, the other parts Vj , j 6= i, are all situated on the
branches. We may then move them in such a way that for one root, Vi contains
exactly one of its neighbours, that means the other root. And then, we may move one
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of the Vj , j 6= i, on this root. Now, the edge of the branch with width zero is not
necessary and may be removed.

Theorem 3.4. An R-AVD k-balloon has maximum degree at most 5. This bound is
tight.

The proof of Theorem 3.4 is based on Lemmas 3.5 to 3.7.

Lemma 3.5. The two 5-balloons B(3, 2, 2, 1, 1) and B(4, 2, 1, 1, 1) are R-AVD.

e3

ab
c2

d1
e1

r1

r2

d2

c1

e2

(a) B(3, 2, 2, 1, 1)

c ab
d1

e1

r1

d2

r2

e2

e3

e4

(b) B(4, 2, 1, 1, 1)

Fig. 6. RAVD 5-balloons

Proof. The proof is based on Remark 2.6. The values of Vλ are given in Table 9a for
B(3, 2, 2, 1, 1) and Table 9b for B(4, 2, 1, 1, 1), using vertex labelings from Figure 6.
Please remark that:

— B(2, 2, 1, 1) contains Cat (3, 5) as a spanning tree and then is R-AVD,
— B(4, 2, 1, 1) contains Cat (3, 7) as a spanning tree and then is R-AVD,
— B(4, 1, 1, 1) contains Cat (2, 7) as a spanning tree and then is R-AVD,
— B(2, 1, 1, 1) contains Cat (2, 5) as a spanning tree and then is R-AVD.

Table 9. Values of G[Vλ] and G[V \Vλ] for B(3, 2, 2, 1, 1) and B(4, 2, 1, 1, 1)

(a) Values of G[Vλ] and G[V \Vλ]
for B(3, 2, 2, 1, 1)

λ Vλ G[Vλ] G[V \Vλ]
1 {a} P1 Cat (3, 7)

2 {c1, c2} P2 Cat (2, 7)

3 {e1, e2, e3} P3 B(2, 2, 1, 1)

4 {a, c1, c2, r2} P4 Cat (3, 4)

5 {a, b, c1, c2, r2} Cat (2, 3) P6

(b) Values of G[Vλ] and G[V \Vλ]
for B(4, 2, 1, 1, 1)

λ Vλ G[Vλ] G[V \Vλ]
1 {a} P1 B(4, 2, 1, 1)

2 {d1, d2} P2 B(4, 1, 1, 1)

3 {a, b, r2} P3 Cat (3, 5)

4 {e1, e2, e3, e4} P4 B(2, 1, 1, 1)

5 {a, b, d1, d2, r2} Cat (2, 3) P6
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Lemma 3.6. A k-balloon with k ≥ 7 cannot be R-AVD.

Proof. We have proved in subsection 3.1 that an R-AVD tree is a path or a 3-pode.
Consider a k-balloon B(b1, . . . , bk) of order n = b1 + . . . + bk + 2 with k ≥ 7,

b1 ≥ . . . ≥ bk, and the integer λ = b1 + 1. The only way to obtain two R-AVD
subgraphs with sizes λ and n− λ is to separate the vertices into two trees. Then, at
least one of these trees is a k′-pode with k′ ≥ 4.

Thus, a k-balloon with k ≥ 7 cannot be R-AVD.

Lemma 3.7. A 6-balloon cannot be R-AVD.

Proof. We suppose there exists an R-AVD 6-balloon Bmin = B(b1, . . . , b6) of order
n = b1 + . . .+ b6 + 2 as small as possible.

Let λ be an integer, with λ ≤ n
2 . We want to split Bmin into two R-AVD subgraphs

G[Vλ] and G[V \Vλ] of respective orders λ and n− λ.
Suppose that G[Vλ] is a path consisting of inner vertices of a branch of width

bi > λ. Then the 6-balloonB(b1, . . . , bi−1, bi−λ, bi+1, . . . , b6)must be R-AVD. Because
this 6-balloon has a smaller order than Bmin, it is impossible.

The two remaining possibilities is to have a branch of width bi = λ or three
branches of respective widths bi1 , bi2 , bi3 , with bi1+bi2+bi3+1 = λ, and T3(bi1 , bi2 , bi3)
R-AVD.

Now, consider the values from 1 to 6 for λ:
For λ ∈ {1, 2, 3, 4, 6}, the only possibility is to have a branch of width λ.
For λ = 5, the two possibilities are G[Vλ] = Cat (2, 3) or there is a branch with
width 5.

Then, the two candidates for Bmin are B1 = B(1, 1, 2, 3, 4, 6) and B2 =
B(1, 2, 3, 4, 5, 6):

— B1 = B(1, 1, 2, 3, 4, 6)
Consider λ = 5. The only possibility for G[Vλ] is Cat (2, 3), using the two branches
of width 1 and those of width 2. Then the remaining graph is T3(3, 4, 6) which is
not R-AVD. Thus, B1 is not R-AVD.

— B2 = B(1, 2, 3, 4, 5, 6)
Consider λ = 7. The only possibility for G[Vλ] is Cat (3, 4), using the branches of
width 1, 2 and 3. The remaining graph is T3(4, 5, 6) which is not R-AVD. Thus,
B2 is not R-AVD.

3.3.2. Other results

Lemma 3.8. Let b1, . . . , bk be positive integers with b1 ≥ . . . ≥ bk ≥ 1. If B(b1, . . . , bk)
is AVD, then

k∑
j=i+1

bj ≤ 2bi for i = 1, . . . , k − 1.

Proof. Consider the decomposition λ = (bi+1, . . . , bi+1, r) = (λ1, . . . , λl) of n and its
B(b1, . . . , bk)-realization (V1, . . . , Vl). Note that each part G[Vj ] of order bi+1 contains
at least one root of the balloon. Let s denote the sum of terms of the decomposition
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λ corresponding to the minimal set of parts that cover inner vertices of branches of
widths bi, . . . , bk. Since i ≤ k − 1, at least one summand in s is equal to bi + 1, and
so at least one root is covered. On the other hand, there are two roots, hence at most
two summands in s are equal to bi +1. Besides that, the summand r can be involved
in s.

If s has just one summand equal to bi+1, then
∑k
j=i bj+1 ≤ (bi+1)+r ≤ 2(bi+1)

and
∑k
j=i+1 bj ≤ bi < 2bi.

If, however, s has two summands equal to bi+1, then
∑k
j=i bj+2 ≤ 2(bi+1)+r <

3(bi + 1) and
∑k
j=i+1 bj ≤ 2bi.

In the next lemma, we denote by BP (b1, b2, . . . , bk) the graph formed by attaching
a path of length b1 to a (k − 1)-balloon B(b2, . . . , bk). BP (b1, b2, . . . , bk) may also be
viewed as a spanning subgraph of the k-balloon B(b1, b2, . . . , bk) after removing an
edge joining the branch of width b1 to a root.

Lemma 3.9. BP (b1, 2, 1, 1) with b1 ≥ 0 and BP (b1, 1, 1, 1) with b1 ≡ 0 (mod 2) are
R-AVD.

Proof. The proof is based on Lemma 2.6. The values of Vλ for BP (b1, 2, 1, 1) are given
in Table 10, and for BP (b1, 1, 1, 1) in Table 11. These tables use the vertex labeling
from Figure 7.

Please remark that:

— for BP (b1, 2, 1, 1), λ ≥ 6⇒ b1 ≥ λ,
— for BP (b1, 1, 1, 1), λ ≥ 5⇒ b1 ≥ λ,
— BP (b1, 2, 1) and BP (b1, 1, 1) are traceable,
— BP (b1, 1, 1) is traceable,
— λ odd ⇒ λ− 5 even,
— λ and b1 even ⇒ b1 − λ even.

Table 10. Values of G[Vλ] and G[V \Vλ]
for BP (b1, 2, 1, 1)

λ Vλ G[Vλ] G[V \Vλ]
1 {a} P1 BP (b1, 2, 1)
2 {c1, c2} P2 BP (b1, 1, 1)
3 {a, b, r2} P3 Pb1+3

4 {a, c1, c2, r2} P4 Pb1+2

5 {a, b, c1, c2, r2} Cat (2, 3) Pb1+1

6 {a, b, c1, c2, r1, r2} B(2, 1, 1) Pb1
≥ 7 {vb1 , vb1−1, . . . , vb1−λ+1} Pλ BP (b1 − λ, 2, 1, 1)
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Table 11. Values of G[Vλ] and G[V \Vλ] for BP (b1, 1, 1, 1), b1 ≡ 0 (mod 2)

λ Vλ G[Vλ] G[V \Vλ]
1 {a} P1 BP (b1, 1, 1)

2 {a, r2} P2 Cat (2, b1 + 1)

3 {a, b, r2} P3 Pb1+2

b1 = 0 {a, b, r1, r2} C4 P1

4 b1 = 2 {v2, v1, r1, c} P4 P3

b1 ≥ 4 {vb1 , vb1−1, vb1−2, vb1−3} P4 BP (b1 − 4, 1, 1, 1)

5 {a, b, c, r1, r2} B(1, 1, 1) Pb1
≥ 5 and odd {a, b, c, r1, r2, v1, . . . , vλ−5} BP (λ− 5, 1, 1, 1) Pb1−λ+5

≥ 5 and even {vb1 , . . . , vb1−λ+1} Pλ BP (b1 − λ, 1, 1, 1)

r1

r2

ab

c1

c2

v1

v2

v3

v4

vb1

r1

r2

abc

v1

v2

v3

v4

vb1

Fig. 7. BP (b1, 2, 1, 1) and BP (b1, 1, 1, 1)

4. STRONGLY RECURSIVELY AVD GRAPHS

In this section, we give a characterization of SR-AVD graphs. This characterization,
based on the exclusion of two induced subgraphs, leads a polynomial algorithm to
check if a graph is SR-AVD or not.

Definition 4.1. A claw is a star isomorphic to K1,3. A net is a graph obtained from
a triangle by attaching to each vertex a new dangling edge (cf. Figure 8). A graph is
said claw- and net-free if it has no induced subgraph isomorphic to either a claw or
a net.
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Fig. 8. A claw and a net

We use the following theorem on connected claw- and net-free graphs.

Theorem 4.2 ([5]). Any connected claw- and net-free graph is traceable.

Now, we may give a characterization of the SR-AVD graphs.

Theorem 4.3. A connected graph G is SR-AVD if and only if it is claw- and net-free.

Proof. First of all, we may remark that both claw and net are not SR-AVD (and even
not AVD). The sequence (2, 2) is not realizable in the claw and the sequence (3, 3) is
not realizable in the net. Thus, if a graph is SR-AVD, it cannot contains a claw or a
net as induced subgraph.

The proof of the sufficient condition is based on induction. Let P (n) be the fol-
lowing proposition: “Every connected claw- and net-free graph of order n is SR-AVD”.
P (1) is trivially true.

Suppose that P (i) is true for any 1 ≤ i ≤ n−1 and let G be a connected claw- and
net-free graph of order n. Thus G is traceable (and hence AVD) for any decomposition
λ = (λ1, . . . , λk) of length k ≥ 2 admissible for G we can find (using a hamiltonian
path in G) a partition (V1, . . . , Vk) of the vertex set of G in which G[Vi] is connected
and of order λi for i = 1, . . . , k. Since clearly each G[Vi] is claw-free, net-free and of
order smaller than n, by the induction hypothesis it is SR-AVD. Thus, P (n) is true
for any n ≥ 1.
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