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Abstract.We deal with a symbolic approach to the cubic decomposition (CD) of polynomial
sequences – presented in a previous article referenced herein – which allows us to compute
explicitly the first elements of the nine component sequences of a CD. Properties are in-
vestigated and several experimental results are discussed, related to the CD of some widely
known orthogonal sequences. Results concerning the symmetric character of the component
sequences are established.
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INTRODUCTION

The most general cubic decomposition (CD) of a monic polynomial sequence (MPS)
was presented recently in [9,12] and constitutes a complete polynomial CD of a given
MPS. In this last reference, the reader can find extensive information and a bibliog-
raphy about this subject. Indeed, this kind of CD is a natural feature of 2-orthogonal
sequences and in wider contexts might lead us to the knowledge of new polynomial se-
quences or to the study of some properties of the polynomial sequences involved. Nev-
ertheless, the extensive calculations involved can sometimes discourage an analytical
treatment of certain conjectures. In the present work, we use symbolic computations
in order to compute explicitly the first elements of each one of the nine component
sequences of a CD of a given MPS {Wn}n≥0, and to investigate some properties of
these sequences, namely their linear independence and their orthogonal or symmetric
character. The computer algebra manipulation software chosen to accomplish this
purpose was Mathematica 8.01.0 [13, 14].
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Once we have found the first polynomials of a component sequence, we can deter-
mine the correspondent first structure coefficients and, consequently, investigate its
orthogonal character, or other properties. Indeed, we constructed commands whose
aim is to calculate the structure coefficients of any monic polynomial sequence and to
test its orthogonality. Other Mathematica commands were used in order to examine
the six component sequences of a CD which are not necessarily linearly independent,
neither monic.

In the last years, the use of computer algebra manipulation in the framework of
orthogonal polynomials has been developed. We can refer to CAOP [5], a package
for calculating formulas for orthogonal polynomials belonging to the Askey scheme in
Maple, an approach based on special functions available on the internet elaborated
by W. Koepf and R. Swarttouw. Also, using Matlab, W. Gautschi presents in [2–4]
routines dealing with orthogonal polynomials and applications, in order to develop the
constructive, computational and software aspects of the practice of this domain. For
this matter, we remark that the instruments presented here aim to study polynomial
sequences involved in a complete cubic decomposition of a given MPS not necessarily
orthogonal.

Next, we summarize the contents of this work. In the first section, we present the
basic notions and fundamental results needed in the sequel. Section two is devoted to
the explanation of the implementation performed inMathematica. We remark that the
corresponding Mathematica notebook can be consulted in [11]. In section three, some
concrete orthogonal sequences are taken as examples of study, with a special attention
to symmetric sequences, for specific choices of the six parameters of the CD. Section
four is reserved to the demonstration of some symmetry properties - fulfilled by any
MPS - which caught our attention during the examination of the results obtained for
the set of examples considered. We present, also, in that section, two tables whose aim
is to summarize the conclusions obtained. Finally, we indicate some general comments
to the symbolic work developed in this article.

1. BASIC NOTIONS AND FUNDAMENTAL RESULTS

Let P be the vector space of polynomials with coefficients in C. In the following, we
will call polynomial sequence (PS) to any sequence {Wn}n≥0 such that degWn = n,
for all n ≥ 0. In this sense, a PS will always be a free sequence. We refer to PS so
that, in each polynomial, the leading coefficient is equal to one, as a monic polynomial
sequence (MPS).

Given a MPS {Wn}n≥0, there are complex sequences {βn}n≥0 and
{χn,ν}0≤ν≤n, n≥0 such that

W0(x) = 1; W1(x) = x− β0; (1.1)

Wn+2(x) = (x− βn+1)Wn+1(x)−
n∑
ν=0

χn,νWν(x), n ≥ 0. (1.2)
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This relation is called the structure relation of {Wn}n≥0, and {βn}n≥0 and
{χn,ν}0≤ν≤n, n≥0 are called the correspondent structure coefficients. They define each
MPS and are known for a very wide range of MPSs.

A polynomial sequence {Wn(x)}n≥0 is said to be symmetric if and only if
Wn(−x) = (−1)nWn(x), n ≥ 0. For each MPS {Wn}n≥0, the following statements
are equivalent [6]:

a) {Wn}n≥0 is symmetric;
b) βn = 0; χ2n+1,2ν = 0, 0 ≤ ν ≤ n, n ≥ 0; χ2n,2ν+1 = 0, 0 ≤ ν ≤ n− 1, n ≥ 1.

A PS {Wn}n≥0 is regularly orthogonal with respect to the form u if and only if it
fulfils:

〈u,WnWm〉 = 0, n 6= m, n,m ≥ 0, and 〈u,W 2
n〉 6= 0, n ≥ 0 [6, 8].

It is well known that the structure relation (1.1)–(1.2) of a regular monic orthog-
onal PS (MOPS) becomes the following second order recurrence relation [1, 7], since
χn,ν = 0, 0 ≤ ν < n, n ≥ 0, and recalling that γn+1 = χn,n 6= 0, n ≥ 0,

W0(x) = 1; W1(x) = x− β0; Wn+2(x) = (x− βn+1)Wn+1 − γn+1Wn(x), n ≥ 0,
(1.3)

which characterizes the orthogonality of MPS {Wn}n≥0. In this case, the structure
coefficients are called recurrence coefficients.

1.1. CUBIC DECOMPOSITION OF A MONIC POLYNOMIAL SEQUENCE

In [9] the most general cubic decomposition of a given MPS was presented. Indeed,
fixing a monic cubic polynomial

$(x) = x3 + p x2 + q x+ r; (1.4)

by its three coefficients p, q and r, and three constants a, b and c, it was proved, using
Euclidean division (of a polynomial W (x) by $(x)) and induction on n, the following
result.

Proposition 1.1 ([9]). Given any MPS {Wn}n≥0, there are three MPSs {Pn}n≥0,
{Qn}n≥0 and {Rn}n≥0, so that

W3n(x) = Pn($(x)) + (x− a)a1n−1($(x)) + (x− b)(x− c)a2n−1($(x)), (1.5)

W3n+1(x) = b1n($(x)) + (x− a)Qn($(x)) + (x− b)(x− c)b2n−1($(x)), (1.6)

W3n+2(x) = c1n($(x)) + (x− a)c2n($(x)) + (x− b)(x− c)Rn($(x)), (1.7)

with deg a1n−1 ≤ n − 1, deg a2n−1 ≤ n − 1, deg b1n ≤ n, deg b2n−1 ≤ n − 1, deg c1n ≤ n
and deg c2n ≤ n.

In the cubic decomposition (CD) (1.5)–(1.7) of {Wn}n≥0, the sequences:

— {Pn}n≥0, {Qn}n≥0, {Rn}n≥0 are called the principal components;
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— {a1n−1}n≥0, {a
2
n−1}n≥0, {b

1
n}n≥0, {b2n−1}n≥0, {c

1
n}n≥0, {c2n}n≥0 are called the se-

condary components.

In other words, the component sequences are divided in two sets: three prin-
cipal components which are MPSs, in the sense mentioned before, more precisely,
degPn = degQn = degRn = n, n ≥ 0, and six secondary components which are not
necessarily free subsets of P, neither monic. Theorem 2.4 of reference [9] characterizes
the component sequences of a CD of {Wn}n≥0 in terms of its structure coefficients
and it is enunciated as follows.

Theorem 1.2 ([9]). A MPS {Wn}n≥0, with structure coefficients (1.1)–(1.2), admits
the CD (1.5)–(1.7) if and only if the following relations are fulfilled for n ≥ 0,

(Z0) b10(x) = a− β0,

(Z1) c1n(x) = −
n−1∑
ν=0

χ3n,3ν+1 b
1
ν(x)− (β3n+1 − a)b1n(x) + Θ(x)b2n−1(x)−

−
n−1∑
ν=0

χ3n,3ν+2 c
1
ν(x)−

n∑
ν=0

χ3n,3ν Pν(x)− (a− b)(a− c)Qn(x),

(Z2) c2n(x) = −
n∑
ν=0

χ3n,3ν a
1
ν−1(x) + b1n(x) + Lb2n−1(x)−

n−1∑
ν=0

χ3n,3ν+2 c
2
ν(x)−

−
n−1∑
ν=0

χ3n,3ν+1 Qν(x)− (β3n+1 + a− b− c)Qn(x),

(Z3) Rn(x) = −
n∑
ν=0

χ3n,3ν a
2
ν−1(x)−

n−1∑
ν=0

χ3n,3ν+1 b
2
ν−1(x)−

− (β3n+1 + b+ c+ p)b2n−1(x) +Qn(x)−
n−1∑
ν=0

χ3n,3ν+2 Rν(x),

(Z4) Pn+1(x) = −
n∑
ν=0

χ3n+1,3ν Pν(x)− (β3n+2 − a)c1n(x)−
n−1∑
ν=0

χ3n+1,3ν+2 c
1
ν(x)−

−
n∑
ν=0

χ3n+1,3ν+1 b
1
ν(x)− (a− b)(a− c)c2n(x) + Θ(x)Rn(x),

(Z5) a1n(x) = −
n∑
ν=0

χ3n+1,3ν a
1
ν−1(x) + c1n(x)−

n−1∑
ν=0

χ3n+1,3ν+2 c
2
ν(x)−

− (β3n+2 + a− b− c)c2n(x)−
n∑
ν=0

χ3n+1,3ν+1 Qν(x) + LRn(x),



Symbolic approach to the general cubic decomposition of polynomial sequences. . . 679

(Z6) a2n(x) = −
n∑
ν=0

χ3n+1,3ν a
2
ν−1(x)−

n∑
ν=0

χ3n+1,3ν+1 b
2
ν−1(x) + c2n(x)−

−
n−1∑
ν=0

χ3n+1,3ν+2 Rν(x)− (β3n+2 + b+ c+ p)Rn(x),

(Z7) b1n+1(x) = −(a− b)(a− c)a1n(x) + Θ(x)a2n(x)−
n∑
ν=0

χ3n+2,3ν+1 b
1
ν(x)−

−
n∑
ν=0

χ3n+2,3ν+2 c
1
ν(x)−

n∑
ν=0

χ3n+2,3ν Pν(x)− (β3n+3 − a)Pn+1(x),

(Z8) Qn+1(x) = −
n∑
ν=0

χ3n+2,3ν a
1
ν−1(x)− (β3n+3 + a− b− c)a1n(x) + La2n(x)−

−
n∑
ν=0

χ3n+2,3ν+2 c
2
ν(x) + Pn+1(x)−

n∑
ν=0

χ3n+2,3ν+1 Qν(x),

(Z9) b2n(x) = a1n(x)−
n∑
ν=0

χ3n+2,3ν a
2
ν−1(x)− (β3n+3 + b+ c+ p)a2n(x)−

−
n∑
ν=0

χ3n+2,3ν+1 b
2
ν−1(x)−

n∑
ν=0

χ3n+2,3ν+2 Rν(x),

where by convention
∑−1
ν=0 . = 0, and

Θ(x) = x− r + aL+ bc(b+ c+ p), (1.8)
L = bc− q − (b+ c+ p)(b+ c). (1.9)

1.2. CUBIC DECOMPOSITION
OF A MONIC ORTHOGONAL POLYNOMIAL SEQUENCE

Let us suppose that {Wn}n≥0 is a MOPS. Then, as a consequence of Theorem 1.2,
the principal components fulfil the three relations that we reproduce in the following
theorem, each one beginning as a recurrence relation of second order for each principal
component and completed with elements of only two secondary component sequences.

Theorem 1.3 ([9]). For a MOPS with CD given by (1.5)–(1.7), the correspondent
principal components fulfill the following relations, for n ≥ 0.

Pn+2(x) =
(
Θ(x)−A3n

)
Pn+1(x)−B3nPn(x)−

−K3nb
1
n(x)−H3nb

1
n+1(x)− V3nc1n(x)− S3nc

1
n+1(x),

(1.10)

Qn+2(x) =
(
Θ(x)−A3n+1

)
Qn+1(x)−B3n+1Qn(x)−

−K3n+1c
2
n(x)−H3n+1c

2
n+1(x)− V3n+1a

1
n(x)− S3n+1a

1
n+1(x),

(1.11)
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Rn+2(x) =
(
Θ(x)−A3n+2

)
Rn+1(x)−B3n+2Rn(x)−

−K3n+2a
2
n(x)−H3n+2a

2
n+1(x)− V3n+2b

2
n(x)− S3n+2b

2
n+1(x),

(1.12)

where
An = γn+3(βn+2 + 2βn+3 + p) + γn+4(2βn+3 + βn+4 + p)+

+(βn+3−a)
(

(βn+3+a−b−c)(βn+3+b+c+p)−L
)

+(a−b)(a−c)(βn+3+b+c+p);

Bn = γn+1γn+2γn+3;

Kn = γn+2γn+3 (βn+1 + βn+2 + βn+3 + p);
Hn = γn+3 + γn+4 + γn+5 + (a− b)(a− c)− L+

+(βn+3 + a− b− c)(βn+3 + b+ c+ p) + (βn+4 − a)(βn+3 + βn+4 + a+ p);

Vn = γn+3

(
γn+2 + γn+3 + γn+4 + (a− b)(a− c)− L+

+(βn+3 + a− b− c)(βn+3 + b+ c+ p) + (βn+2 − a)(βn+2 + βn+3 + a+ p)
)

;

Sn = βn+3 + βn+4 + βn+5 + p.

Corollary 1.4. In the context of Theorem 1.3, if

Kn = Hn = Vn = Sn = 0, n ≥ 0,

then all the principal components are orthogonal.

Proof. Under the hypotheses taken, and considering Theorem 1.3, the three prin-
cipal components fulfil recurrence relations of order two of type (1.3), assuring the
orthogonality of these sequences.

2. SYMBOLIC IMPLEMENTATION OF THE CUBIC DECOMPOSITION

2.1. RECURSIVE COMPUTATION OF ALL COMPONENT SEQUENCES

The symbolic implementation of relations (Z0)− (Z9), (1.8)–(1.9) permits us to com-
pute the first elements of the nine component sequences for any given MPS. The
required initial data are:

— the polynomial $(x), by its coefficients p, q and r;
— the zeros a, b and c of the auxiliary polynomials;
— the structure coefficients definitions of {βn}n≥0 and {χn,ν}0≤ν≤n, n≥0 for every n,

or their first elements {βn}n=0,...,3nmax+1 and {χn,ν}0≤ν≤n, n=0,...,3nmax.

However, the components of a CD of any polynomialW (x) can, also, be computed
exactly as they appear in (1.5)–(1.7), that is, as linear combinations of elements of the
set {($(x))n, (x− a)($(x))m, (x− b)(x− c)($(x))k, n,m, k positive integers}. Such
a procedure, with arguments W (x), p, q, r, a, b and c, requires a previous definition
of the MPS {Wn}n≥0 that we intend to decompose, given its structure coefficients,
and posterior definitions of the component sequences for final retrieval. Nevertheless,
comparing the two approaches, we find that the first approach given by the relations
(Z0)− (Z9) is more efficient.
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For any kind of procedure, it is useful to assemble the nine component sequences
in the following matrix (which was used in the demonstration of Theorem 1.2)

Mn(x) =

 Pn(x) a1n−1(x) a2n−1(x)
b1n(x) Qn(x) b2n−1(x)
c1n(x) c2n(x) Rn(x)

 ,

and to present the first nmax matrices M0,M1, . . . ,Mnmax of any CD of {Wn}n≥0,
for a fixed non-negative integer nmax.

For each example (for each set of data, as indicated before), we may observe, for
the first elements of component sequences, the following aspects: existence of zero
secondary components, the degrees of secondary components, the symmetric charac-
ter, among other aspects. Next, we cite one example of a non-symmetric orthogonal
sequence, where a = b = c = 0 and p = q = r = 0. Introducing the structure
coefficients definitions of the Laguerre sequence [1], with parameter 0, which are
βn = 2n+ 1; χn,n = (n+ 1)2; χn,ν = 0, we obtain for n = 0, 1, 2, respectively,

M0(x) =

 1 0 0
−1 1 0
2 −4 1

 , M1(x) =

 x− 6 18 −9
−16x+ 24 x− 96 72
200x− 120 −25x+ 600 x− 600

 ,

M2(x) =

 x2 − 2400x+ 720 450x− 4320 −36x+ 5400
−49x2 + 29400x− 5040 x2 − 7350x+ 35280 882x− 52920

1568x2 − 376320x+ 40320 −64x2 + 117600x− 322560 x2 − 18816x+ 564480

 .

For this example, observing the first Mn(x), for n = 0, . . . , nmax, we can re-
mark that there are no secondary components vanishing and that deg a1n−1(x) =
deg a2n−1(x) = deg b2n−1(x) = n− 1 and deg b1n(x) = deg c1n(x) = deg c2n(x) = n. These
empirical observations may lead one to conjecture that they hold for general n.

2.2. STUDY OF THE PRINCIPAL COMPONENTS

Regarding the principal components, the commands implemented are the following.
–A command, called OrthoPCdirectTestζ,nmax, with arguments ζ and nmax, that

investigates if a principal component sequence fulfils a recurrence relation of second
order of type (1.3), giving as output the message “{ζn}n≥0 is not orthogonal” or
“ {ζn}n≥0 satisfies the orthogonal recurrence relation of second order up to nmax”.
Obviously, we cannot conclude, by this way, that a principal component is orthogonal,
because this iterative process is finite; nevertheless we can conclude that a principal
component is not orthogonal, for the chosen set of parameters a, b, c, p, q and r.

–If the given MPS {Wn}n≥0 is orthogonal, we can also search for conditions
that assure the principal components orthogonality by computing the coefficients
An, Bn, Kn, Hn, Vn and Sn, mentioned before. If we are able to give the definitions
of the structure coefficients, for every n – which is possible in a large set of interesting
cases – then we can compute these coefficients for all n obtaining their closed formulas.

–Denoting by βζn and χζn,ν the structure coefficients of a given MPS {ζn}n≥0,
we defined the commands βSC ζ,n, with arguments ζ and n, which calculates the
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coefficient βζn, and χSC ζ,n,ν which computes the coefficient χζn,ν . A command, called
PrintSC ζ,nmax, prints the set of structure coefficients βζn and {χζn,ν , 0 ≤ ν ≤ n} of
the MPS {ζn}n≥0, from n = 0 to n = nmax, where nmax is a given non-negative
integer.

2.3. STUDY OF THE SECONDARY COMPONENTS

The secondary components are not necessarily free sequences, that is, the degree
of a1n−1, a2n−1 and b2n−1 can be less than n − 1, and the degree of b1n, c1n and c2n
can be less than n. In order to investigate their linear independence, we consider a
command degζ,n which gives as output the degree of the polynomial ζn, by the use
of the Mathematica function Exponent [13]. Notice that, if ζn(x) = 0 then degζ,n
returns −∞, which is helpful to distinguish a nonzero constant polynomial from the
zero polynomial. In fact, for some secondary components we have: degζ,0 = −∞,
degζ,1 = 0, degζ,2 = 1, degζ,3 = 2, giving us the idea that the sequence {lζn,x}n≥0
with

lζn,x = ζn+1,x, n ≥ 0,

might be a free sequence. Hence, we define these lζ sequences, and the degree of
each element of these new sequences is again reported by degζ,n, considering ζ =
la1, la2, lb1, lb2, lc1 and lc2.

In order to list the first values of degζ,n, we define a command called SCDe-
greeTestζ,nmax that, given a non-negative integer nmax, prints, for i from 0 to nmax,
the constant degζ,i. When the application of this command indicates that the sequence
{ζn,x}n≥0 – or {lζn,x}n≥0 – might be free, that is, the elements ζ0,x, ζ1,x, . . . , ζnmax,x
constitute a basis of Pnmax (vectorial space of polynomial functions of maximum
degree nmax), we can normalize the sequence, calculate its structure coefficients, like
we did before for the principal components, and investigate its orthogonality. The nor-
malized (monic) sequences are called mζ, where ζ = a1, a2, b1, b2, c1, c2, la1, la2, lb1,
lb2, lc1 and lc2.

2.4. SYMBOLIC RESULTS FOR SOME ORTHOGONAL EXAMPLES

In this subsection, we begin to present some results obtained from the commands
described in the preceding two subsections for a specific orthogonal sequence. Let us
consider the MOPS {Wn}n≥0 such that βn = β, γn = α, with α 6= 0. Notice that this
sequence is a shift of the Chebychev polynomials of the second kind. More precisely,
Wn(x) = A−nUn(Ax+B), n ≥ 0, where A = 1

2
√
α
, B = − β

2
√
α
and {Un}n≥0 denotes

the monic Chebyshev polynomials of the second kind [1]. Then, the coefficients of
Theorem 1.3 of [9], for all parameters a, b, c, p, q and r are the following.

An = −ab2− abc+ b2c− ac2+ bc2− abp− acp+ bcp− aq+ 2pα+ qβ+ 6αβ+ pβ2+ β3,

Θ(x)−An = x− r − 2pα− qβ − 6αβ − pβ2 − β3,

Bn = α3, Kn = α2(p+ 3β), Hn = q + 3α+ 2pβ + 3β2,

Vn = α(q + 3α+ 2pβ + 3β2), Sn = p+ 3β.
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Consequently, we conclude that if p = −3β and q = −3α+3β2, thenKn = Hn = Vn =
Sn = 0 and the principal components are orthogonal. Also, we can write precisely the
recurrence coefficients of the principal components, using the expressions of Θ(x)−An
and Bn, as follows (Table 1):

βP0 = r − aα− 2αβ + β3, βPn = r − 3αβ + β3, n ≥ 1,

βQn = βRn = r − 3αβ + β3, γPn+1 = γQn+1 = γRn+1 = α3, n ≥ 0.

The computation of the first elements of the component sequences of a CD of a
given sequence might yield extensive polynomials, if the recurrence coefficients are
just a bit more complicated. Therefore, besides the last MOPS indicated (a shift of
the Chebyshev polynomials of the second kind), we took as objects of experimentation
some symmetric orthogonal sequences, making the coefficients βn, n ≥ 0 disappear.
The sequences taken are the Hermite sequence, the Chebyshev polynomials of the
second kind, modified Lommel with parameter 1 and Tricomi-Carlitz with parameter
equal to 1 or 2 [1]. For these sequences, when a = b = c = p = q = r = 0, by
OrthoPCdirectTestP,3, we know that all principal components are not orthogonal. As
a further matter, each principal component seems to be symmetric. Also, the sequences
{ma1n}n≥0, {mla2n}n≥0, {mlb1n}n≥0, {mb2n}n≥0, {mc1n}n≥0 and {mlc2n}n≥0 seem to
be symmetric MPSs.

Other particular choices of the CD parameters considered were somewhat general,
like, for example, choose a = b = c = 0 and leave the parameters p, q and r free,
or choose p = q = r = 0 and leave the parameters a, b and c free. The application
of the commands OrthoPCdirectTestζ,nmax, PrintSC ζ,nmax and SCDegreeTestζ,nmax,
with these choices of parameters, yielded similar conclusions. For these choices, the
properties fulfilled by the first elements of each polynomial sequence are indicated in
Table 2.

3. THE SYMMETRIC CASE

In the next result we aim to prove, for the case when p = q = r = 0, that is $(x) = x3,
the symmetric character observed in the experimental essays. In order to simplify the
presentation of the following theorem, we will say that a sequence {Fn}n≥0, in P, is
symmetric if it fulfils Fn(−x) = (−1)nFn(x), n ≥ 0.

Theorem 3.1. Let {Wn}n≥0 be a symmetric MPS defined by (1.5)–(1.7), where p =
q = r = 0. Then, we have:

— {Rn}n≥0, {la2n}n≥0 and {b2n}n≥0 are symmetric;
— if a = 0, then {Pn}n≥0, {lb1n}n≥0 and {c1n}n≥0 are symmetric;
— if b+ c = 0, then {Qn}n≥0, {a1n}n≥0 and {lc2n}n≥0 are symmetric.

Proof. Writing every component sequence in terms of the canonical sequence, we have:
Wn(x) =

∑n
k=0 wn,kx

k, or a1n−1(x) =
∑n−1
k=0 a

1
n−1,kx

k, and similarly for all the other
component sequences, where, by convention,

∑−1
k=0 . = 0.
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The MPS {Wn}n≥0 fulfils Wn(−x) = (−1)nWn(x), n ≥ 0, therefore, identity
(1.5) can be written as follows, considering p = q = r = 0 and depending of the
parity of n.

Λ(x) =

(3n)/2∑
k=0

w3n,2kx
2k, if n is even, (3.1)

Λ(x) =

(3n−1)/2∑
k=0

w3n,2k+1x
2k+1 if n is odd, where (3.2)

Λ(x) =

n∑
k=0

pn,kx
3k − a

n−1∑
k=0

a1n−1,kx
3k + bc

n−1∑
k=0

a2n−1,kx
3k +

n−1∑
k=0

a1n−1,kx
3k+1−

− (b+ c)
n−1∑
k=0

a2n−1,kx
3k+1 +

n−1∑
k=0

a2n−1,kx
3k+2.

Let us remark that the terms in x3k, x3n+1 and x3m+2 are all different for every
set of positive integers k, n and m, and, also, that: 3k is even if and only if k is even;
3k+ 1 is even if and only if k is odd; 3k+ 2 is even if and only if k is even. These two
properties are subjacent to the following arguments.

Looking carefully at identities (3.1) and (3.2) and the correspondent terms of type
x3k+2, we conclude that a2n−1(x) is even, when n is even, and a2n−1(x) is odd, when
n is odd, and therefore, la2n(−x) = (−1)nla2n(x), n ≥ 0. Also, analysing the part
written in terms of x3k+1, we get that if b + c = 0, then a1n−1(x) is odd, when n
is even, and a1n−1(x) is even, when n is odd, thus, a1n(−x) = (−1)na1n(x), n ≥ 0.
Let us suppose that a = 0 and analyse the part written in terms of x3k. Taking into
account the already obtained property for a2n−1(x), we can conclude that {Pn}n≥0 is
symmetric.

In the same manner, considering identities (1.6) and (1.7), the remaining conclu-
sions are easily obtained.

4. SUMMARY OF THE RESULTS

Finally, we present two tables that organize the results advanced for each choice of
parameters, obtained with the software PolySeqCubicDecomposition2012.nb version
1.0 [11]. Let us remark that in the left column we indicate properties which are
established by Theorem 1.3, Corollary 1.4 and Theorem 3.1. In the right column, we
present properties fulfilled by the first elements of each polynomial sequence studied,
that is, for n = 0, . . . , nmax, for fixed values of nmax. These properties, not yet
proven for all n, can be the object of posterior theoretical studies that are out of the
scope of this work. For instance, the CD of an orthogonal MPS where {a2n}n≥0 and
{b2n}n≥0 vanish can be studied analogously to the case where a1n = a2n = 0, n ≥ 0,
which is treated in [9], although with an increase in technical difficulties.
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Table 1. A shift of the Chebyshev polynomials of the second kind: βn = β, γn+1 = α,
n ≥ 0, α 6= 0 (non-symmetric orthogonal case)

Results due to Theorem 1.3 Results fulfilled for n = 0, . . . , nmax
and Corollary 1.4

p = −3β and q = −3α+ 3β2 (β 6= a)

• The principal components • a2n and b2n vanish;
are orthogonal, • ma1n, mb1n, mc1n and mc2n are MOPSs,
with recurrence coefficients: with recurrence coefficients:
βP0 = r − aα− 2αβ + β3, βζn = r − 3αβ + β3, n ≥ 0, ζ = ma1,mc1,mc2,

βPn = r − 3αβ + β3, n ≥ 1, βmb
1

0 = −ar+α2+rβ+3aαβ−3αβ2−aβ3+β4

β−a ,
βQn = βRn = r − 3αβ + β3, n ≥ 0, βmb

1

n = r − 3αβ + β3, n ≥ 1,

γPn+1 = γQn+1 = γRn+1 = α3, n ≥ 0. γζn+1 = α3, ζ = ma1,mb1,mc1,mc2.

Table 2. Hermite, Chebyshev of the second kind, modified Lommel and Tricomi-Carlitz
sequences (symmetric orthogonal cases)

Results due to Theorem 3.1 Results fulfilled for n = 0, . . . , nmax

p = q = r = 0

• {Rn}n≥0, {mla2n}n≥0 and {mb2n}n≥0 • mla2n and mb2n are MPSs.
are symmetric.

p = q = r = 0 and a = 0

• {Pn}n≥0, {mlb1n}n≥0 and {mc1n}n≥0 • ma1n, mlb1n, mc1n and mc2n are MPSs.
are symmetric.

p = q = r = 0 and b+ c = 0

• {Qn}n≥0, {ma1n}n≥0 and {mlc2n}n≥0 • ma1n, mb1n, mc1n and mlc2n are MPSs.
are symmetric.

a = b = c = 0 and p = 0

• ma1n, mla2n, mlb1n,
mb2n, mc1n and mlc2n are MPSs.
• For ζ = P,Q,R, ma1,mla2,mlb1,mb2,
mc1 and mlc2, we have:
βζn = r, χζ2n+1,2ν = 0, 0 ≤ ν ≤ n,
χζ2n,2ν+1 = 0, 0 ≤ ν ≤ n− 1.

5. CONCLUSIONS

The symbolic implementation described along with this work allowed us to study some
characteristics of all polynomial sequences connected to a CD of a given MPS, but in
fact, some of the commands established can be applied to any polynomial sequence,
even if we are working outside the framework of the CD. On the other hand, the
list of examples considered was restricted to some very famous orthogonal sequences,
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having only the initial purpose of illustrating the use and interest of the commands.
Nonetheless, some symmetry behavior was remarked and conducted to a theoretical
result. Therefore, we consider that this implementation constitutes a useful tool for
CD analysis, and might be an efficient method of testing some future ideas, avoiding,
in a few cases, the extensive analytical calculations that are involved in this kind of
decomposition.
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