Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The recent growing interest in special Clifford algebra valued polynomial solutions of generalized Cauchy-Riemann systems in (n + 1)-dimensional Euclidean spaces suggested a detailed study of the arithmetical properties of their coefficients, due to their combinatoric relevance. This concerns, in particular, a generalized Appell sequence of homogeneous polynomials whose coefficient set can be treated as a one-parameter family of non-symmetric triangles of fractions. The discussion of its properties, similar to those of the ordinary Pascal triangle (which itself does not belong to the family), is carried out in this paper.
Czasopismo
Rocznik
Tom
Strony
661--673
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
autor
- University of Aveiro Center for Research and Development in Mathematics and Applications University of Minho Department of Mathematics and Applications Campus de Gualtar 4710-057 Braga, Portugal, mif@math.uminho.pt
Bibliografia
- [1] M.A. Abul-Ez, D. Constales, Basic sets of polynomials in Clifford analysis, Comment. Math. Univ. Carolin. 30 (1989) 4, 647–655.
- [2] P. Appell, Sur une classe de polynômes, Ann. Sci. École Norm. Sup. 9 (1880) 2, 119–144.
- [3] S. Bock, K. Gürlebeck, On a generalized Appell system and monogenic power series, Math. Methods Appl. Sci. 33 (2010) 4, 394–411.
- [4] F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Pitman, Boston-London-Melbourne, 1982.
- [5] I. Cação, Complete orthonormal sets of polynomial solutions of the Riesz and Moisil-Teodorescu systems in R3, Numer. Algorithms 55 (2010) 2–3, 191–203.
- [6] I. Cação, M.I. Falcão, H.R. Malonek, Laguerre derivative and monogenic Laguerre polynomials: An operational approach, Math. Comput. Model. 53 (2011) 5–6, 1084–1094.
- [7] I. Cação, M.I. Falcão, H.R. Malonek, On generalized hypercomplex laguerre-type exponentials and applications, [in:] B. Murgante et al., eds, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, 6784 (2011), 271–286.
- [8] I. Cação, H. Malonek, On complete sets of hypercomplex Appell polynomials [in:] Th.E. Simos et al., eds, AIP Conference Proceedings 1048 (2008), 647–650.
- [9] I. Cação, H.R. Malonek, On an hypercomplex generalization of Gould-Hopper and related Chebyshev polynomials, [in:] B. Murgante et al., eds, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, 6784 (2011), 316–326.
- [10] C. Cruz, M.I. Falcão, H.R. Malonek, 3D Mappings by Generalized Joukowski Transformations, [in:] B. Murgante et al., eds, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, 6784 (2011), 358–373.
- [11] M.I. Falcão, J. Cruz, H.R. Malonek, Remarks on the generation of monogenic functions, [in:] K. Gürlebeck and C. Könke, eds, Proc. of the 17-th Inter. Conf. on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, Bauhaus-University Weimar, ISSN 1611-4086, 2006.
- [12] M.I. Falcão, H.R. Malonek, Generalized exponentials through Appell sets in Rn+1 and Bessel functions, [in:] Th. E. Simos et al., eds, AIP Conference Proceedings 936 (2007), 738–741.
- [13] M.I. Falcão, F. Miranda, Quaternions: A Mathematica package for quaternionic analysis [in:] B. Murgante et al., eds, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, 6784 (2011), 200–214.
- [14] K. Gürlebeck, H. Malonek, A hypercomplex derivative of monogenic functions in Rn+1 and its applications, Complex Variables Theory Appl. 39 (1999), 199–228.
- [15] N. Gürlebeck, On Appell sets and the Fueter-Sce mapping, Adv. Appl. Clifford Algebr. 19 (2009) 1, 51–61.
- [16] R. Lávicka, Canonical bases for sl(2,c)-modules of spherical monogenics in dimension 3, Archivum Mathematicum 46 (2010), 339–349.
- [17] H. Malonek, Selected topics in hypercomplex function theory, [in:] S.-L. Eriksson, ed., Clifford algebras and potential theory, Report Series 7, Dep. Math., University of Joensuu, (2004), 111–150.
- [18] H.R. Malonek, M.I. Falcão, 3D-mappings using monogenic functions, [in:] Th.E. Simos et al., eds, ICNAAM-2006 Conference Proceedings, Wiley-VCH, Weinheim, 2006, 615–619.
- [19] H.R. Malonek, M.I. Falcão, Special monogenic polynomials—properties and applications, [in:] Th.E. Simos et al., eds, AIP Conference Proceedings 936 (2007), 764–767.
- [20] J. Morais, H.T. Le, Orthogonal Appell systems of monogenic functions in the cylinder, Math. Methods Appl. Sci. 34 (2011) 12, 1472–1486.
- [21] B. Pascal, Traité du triangle arithmétique, avec quelques autres petits traitez sur la mesme matiere, (posthumously) Guillaume Desprez, Paris, 1665.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHS-0007-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.