PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ zawartości azotu na właściwości kompostu wykorzystywanego do produkcji energii

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The possibilities of influencing the content of nitrogen in composts utilized for energy production
Języki publikacji
PL
Abstrakty
PL
Celem badań było przeanalizowanie zachowania się azotu podczas procesu kompostowania i zaproponowanie warunków jakie mogłyby zapewnić niską zawartość azotu w produkcie końcowym. Wymagana wartość stężenia azotu w kompoście wykorzystywanym do celów energetycznych może być uzyskana dla danej mieszaniny przez zmniejszenie stężenia azotu w materiale surowym od wartości 3,1% do 2,9% wagowych.
EN
The aim of research was to study the behaviour of nitrogen during composting process and to propose the conditions which are ensuring low content of nitrogen in the final compost. The requirement for nitrogen concentration in compost utilized for energy purposes can be met for given mixture of input raw materials by decreasing of nitrogen concentration in the input raw material from the value of 3.1 wt.% to the value of 2.9 wt.%.
Rocznik
Strony
69--79
Opis fizyczny
Bibliogr. 23 poz., wykr., tab.
Twórcy
autor
  • Institute of Environmental Engineering, Faculty of Mining and Geology, VŠB – Technical University of Ostrava17.listopadu 15, 708 33 Ostrava – Poruba, Czech Republic
  • Energy Units for Utilization of non Traditional Energy Sources (ENET), VŠB – Technical University of Ostrava17.listopadu 15, 708 33 Ostrava – Poruba, Czech Republic
autor
  • Institute of Environmental Engineering, Faculty of Mining and Geology, VŠB – Technical University of Ostrava17.listopadu 15, 708 33 Ostrava – Poruba, Czech Republic
autor
  • Energy Units for Utilization of non Traditional Energy Sources (ENET), VŠB – Technical University of Ostrava17.listopadu 15, 708 33 Ostrava – Poruba, Czech Republic
Bibliografia
  • 1. Amlinger F., Götz B., Dreher P., Geszti J., Weissteiner Ch. (2003): Nitrogen in biowaste and yard waste compost: dynamics of mobilisation and availability – a review. European Journal of Soil Biology. V.39, 107-116.
  • 2 American Public Health Association (APHA) (2005): Standard Methods for the Examination of Water and Wastewater. 21st ed., APHA, Washington DC.
  • 3 Barrington S., Choniere D., Trigui M., Knight W. (2002): Effect of carbon source on compost nitrogen and carbon losses. Biosource Technology, V.83, 189-194.
  • 4 Bouška V. (1981): Geochemistry of coal. Academia, Prague, 1-279.
  • 5 Bueno R., López F., Díaz M.J. (2008): Optimizing composting parameters for nitrogen conservation in composting. Bioresource Technology, V.11, 5069-5077.
  • 6 Dickson N., Richard T, Kozlowski R. (1991): Composting to Reduce the Waste Stream: A Guide to Small Scale Food and Yard Waste Composting. Northeast Regional Agricultural Engineering Service, Cornell University.
  • 7 Doublet J., Francou C., Pétraud J.P., Dignac M.F., Poitrenaud M., Houot S. (2010): Distribution of C and N mineralization of a sludge compost within particle-size fractions. Bioresource Technology, V.101, 1254-1262
  • 8 Finney K.N., Changkook R., Sharaifi V.N., Swithenbank J. (2009): The reuse of spent mushroom compost and coal tailings for energy recovery: comparison of thermal treatment technologies. Bioresour. Technology. V.100, 310–315.
  • 9 Grigatti M., Cavani L., Ciavatta C. (2011): The evaluation of stability during the composting of different starting materials: Comparison of chemical and biological parameters. Chemosphere, V.83, 41-48.
  • 10 Guardia A., Petiot C., Rogeau D., Druilhe C. (2008): Influence of aeration rate on nitrogen dynamics during composting. Waste Management, V.3, 575-587.
  • 11 Hajkova M., Raclavska H., Juchelkova D., Kucerova M (2010): Possibilities of technological utilisation of BDMW from municipalities with rural building development. Transaction of the VŠBTechnical University of Ostrava, Mechanical Series, V.56, 89-98.
  • 12 Himanen M., Hänninen K. (2011): Composting of bio-waste, aerobic and anaerobic sludges – Effect of feedstock on the process and quality of compost. Bioresource Technology, V.102, 2842-2852.
  • 13 Jouraiphy A., Amir S., El Gharous M., Revel J.C., Hafidi M. (2005): Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste.International Biodeterioration & Biodegradation, V.56, 101-108.
  • 14 Kranert M., Gottschall R., Bruns Ch., Hafner G. (2010): Energy or compost from green waste? A CO2-based assessment. Waste Management. V.30, 697–701.
  • 15 Litskas V.D., Mamolos A.P., Kalburtji K.L., Tsatsarelis A.C., Eleni Kiose-Kampasakali E.K. (2011): Energy flow and greenhouse gas emissions in organic and conventional sweet cherry orchards located in or close to Natura 2000 sites. Biomass and Bioenergy, V.35, 1302-1310.
  • 16 Mahimairaja S., Bolan N.S., Hedley M. J., Macgregor A. N. (1994): Losses and transformation of nitrogen during composting of poultry manure with different amendments: An incubation experiment. Bioresource Technology, V.47, 265-273.
  • 17 Martin A.M., Dewes T. (1992): Loss of nitrogenous compounds during composting of animal wastes. Bioresource Technology, V. 44, 65-69.
  • 18 Parkinson R., Gibbs P., Burchett S., Misselbrook T. (2004): Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Bioresource Technology, V.91, 171-178.
  • 19 Raclavská H., Juchelková D., Škrobánková H., Wiltowski J. Campen A. (2011): Conditions for energy generation as an alternative approach to compost utilization. Environmental Technology. V.32, 407-417.
  • 20 Reed T., Gaur S. (2009): An atlas of thermal data for biomass and other fuels. The Biomass Energy Foundation. ISBN 1-890607-21-7 277.
  • 21 Sánchez-Monedero M.A., Roig A., Paredes C., Bernal M.P. (2001): Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresource Technology, V.78, 301-308.
  • 22 Tiquia S.M., Tam N.F.Y. (2002): Characterization and composting of poultry litter in forced-aeration piles. Process Biochemistry. V.37, 869-880
  • 23 U.S. Department of Energy, Energy Efficiency and Renewable Energy Clearinghouse, Biomass Cofiring: A Renewable Alternative for Utilities. June 2000. DOE/GO-102000-1055.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHS-0005-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.