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EXISTENCE OF PERIODIC SOLUTIONS
FOR TOTALLY NONLINEAR NEUTRAL

DIFFERENTIAL EQUATIONS
WITH FUNCTIONAL DELAY

Ernest Yankson

Abstract. We use a variant of Krasnoselskii’s fixed point theorem by T.A. Burton to show
that the nonlinear neutral differential equation with functional delay

x′(t) = −a(t)h(x(t)) + c(t)x′(t− g(t)) + q
(
t, x(t), x(t− g(t))

)
has a periodic solution.
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1. INTRODUCTION

In this work, we consider the totally nonlinear neutral differential equation

x′(t) = −a(t)h(x(t)) + c(t)x′(t− g(t)) + q
(
t, x(t), x(t− g(t))

)
. (1.1)

Equations of the form similar to equation (1.1), where h(x(t)) = x(t), has gained the
attention of many researchers in recent times, see [2, 6–8, 10–12] and the references
therein. Here a(t) is a real valued function, c(t) is continuously differentiable, g(t) is
twice continuously differentiable, h : R→ R is continuous with respect to its argument
and q : R × R × R → R is also continuous with respect to its arguments. Equation
(1.1) is such that the variation of parameters cannot be applied directly. We therefore
resort to the idea of adding and subtracting a linear term. As noted by Burton in
[1], the added terms destroy a contraction already present in part of the equation but
replaces it with the so called large contraction mapping which is suitable for fixed
point theory. Thus, in this paper we use the concept of the large contraction to study
the existence of periodic solutions of (1.1).
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2. PRELIMINARIES

Let T > 0 and define the set PT = {φ ∈ C(R,R) : φ(t + T ) = φ(t)} and the norm
‖x(t)‖ = maxt∈[0,T ] |x(t)|, where C is the space of continuous real valued functions.
Then (PT , ‖.‖) is a Banach space. Also, for any L > 0, define

ML = {ϕ ∈ PT : ‖ϕ‖ ≤ L}, (2.1)

In this paper we make the following assumptions.

a(t+ T ) = a(t), c(t+ T ) = c(t), g(t+ T ) = g(t), g(t) ≥ g∗ > 0 (2.2)

with c(t) continuously differentiable, g(t) twice continuously differentiable and g∗ is
constant. Also,

T∫
0

a(s)ds > 0. (2.3)

We also assume that q(t, x, y) is continuous and periodic in t and Lipschitz continuous
in x and y, that is

q(t+ T, x, y) = q(t, x, y) (2.4)

and for some positive constants K and E,

|q(t, x, y)− q(t, z, w)| ≤ K‖x− z‖+ E‖y − w‖. (2.5)

Also, we assume that for all t, 0 ≤ t ≤ T ,

g′(t) 6= 1. (2.6)

Since g(t) is periodic, condition (2.6) implies that g′(t) < 1.

Lemma 2.1. Suppose (2.2)–(2.3) and (2.6) hold. If x(t) ∈ PT , then x(t) is a solution
of equation (1.1) if and only if

x(t) =
c(t)

1− g′(t)
x(t− g(t)) +

(
1− e

−
t∫

t−T

a(s)ds
)−1
×

×
t∫

t−T

[
a(u)H(x(u))− r(u)x(u− g(u)) + q(u, x(u), x(u− g(u)))

]
e
−

t∫
u

a(s)ds
du,

(2.7)
where

r(u) =

(
c′(u)− c(u)a(u)

)(
1− g′(u)

)
+ g′′(u)c(u)

(1− g′(u))2
, (2.8)

and
H(x(t)) = x(t)− h(x(t)). (2.9)
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Proof. Let x(t) ∈ PT be a solution of (1.1). We first rewrite (1.1) in the form

x′(t) + a(t)x(t) = a(t)H(x(t)) + c(t)x′(t− g(t)) + q
(
t, x(t), x(t− g(t))

)
. (2.10)

Multiply both sides of (2.10) by e
∫ t
0
a(s)ds and then integrate from t−T to t to obtain

t∫
t−T

[
x(u)e

u∫
0

a(s)ds
]′
du =

=

t∫
t−T

[
a(u)H(x(u)) + c(u)x′(u− g(u)) + q(u, x(u), x(u− g(u)))

]
e

u∫
0

a(s)ds
du.

Thus we obtain,

x(t)e

t∫
0

a(s)ds
− x(t− T )e

t−T∫
0

a(s)ds
=

=

t∫
t−T

[
a(u)H(x(u)) + c(u)x′(u− g(u)) + q(u, x(u), x(u− g(u)))

]
e

u∫
0

a(s)ds
du.

By dividing both sides of the above equation by exp(
∫ t
0
a(s)ds) and using the fact

that x(t) = x(t− T ), we obtain

x(t) =

(
1− e

−
t∫

t−T

a(s)ds
)−1
×

×
t∫

t−T

[
a(u)H(x(u)) + c(u)x′(u− g(u)) + q(u, x(u), x(u− g(u)))

]
e
−

t∫
u

a(s)ds
du.

(2.11)
Rewrite

t∫
t−T

c(u)x′(u− g(u))e
−

t∫
u

a(s)ds
du =

=

t∫
t−T

c(u)x′(u− g(u))(1− g′(u))
(1− g′(u))

e
−

t∫
u

a(s)ds
du.

Using integration by parts on the above integral with

U =
c(u)

1− g′(u)
e
−

t∫
u

a(s)ds
and dV = x′(u− g(u))(1− g′(u))du
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we obtain

t∫
t−T

c(u)x′(u− g(u))e
−

t∫
u

a(s)ds
du =

=
c(t)

1− g′(t)
x(t− g(t))

(
1− e

−
t∫

t−T

a(s)ds
)
−

t∫
t−T

r(u)e
−

t∫
u

a(s)ds
x(u− g(u))du,

(2.12)

where r(u) is given by (2.8). Then substituting (2.12) into (2.11) gives the desired
results. Since each step in the above work is reversible, the proof is complete.

In the analysis, we employ a fixed point theorem in which the notion of a large
contraction is required as one of the sufficient conditions. First, we give the following
definition which can be found in [4].

Definition 2.2. Let (M, d) be a metric space and B : M→M. B is said to be a large
contraction if ψ,ϕ ∈ M, with ψ 6= ϕ then d(Bϕ,Bψ) < d(ϕ,ψ) and if for all ε > 0
there exists δ < 1 such that

[ψ,ϕ ∈M, d(ϕ,ψ) ≥ ε]⇒ d(Bϕ,Bψ) ≤ δd(ϕ,ψ).

Theorem 2.3. Let (M, d) be a complete metric space and B a large contraction.
Suppose there is an x ∈ M and an L > 0, such that d(x,Bnx) ≤ L for all n ≥ 1.
Then B has a unique fixed point in M.

The next theorem, which constitutes a basis for our main result, is a reformulated
version of Krasnoselskii’s fixed point theorem.

Theorem 2.4 ([4]). Let M be a bounded convex non-empty subset of a Banach space
(S, ‖.‖). Suppose that A, B map M into M and that:

(i) for all x, y ∈M⇒ Ax+By ∈M,
(ii) A is continuous and AM is contained in a compact subset of M,
(iii) B is a large contraction.

Then there is a z ∈M with z = Az +Bz.
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3. EXISTENCE OF PERIODIC SOLUTION

In this section we state and prove our main results. In view of this we first define the
operator P by

(Pϕ)(t) =
c(t)

1− g′(t)
ϕ(t− g(t)) +

(
1− e

−
t∫

t−T

a(s)ds
)−1
×

×
t∫

t−T

[
a(u)H(ϕ(u))− r(u)ϕ(u− g(u))+

+ q(u, ϕ(u), ϕ(u− g(u)))
]
e
−

t∫
u

a(s)ds
du,

(3.1)

where r and H are given in (2.8) and (2.9), respectively. It therefore follows from
Lemma 2.1 that fixed points of P are solutions of (1.1) and vice versa.
In order to employ Theorem 2.4 we need to express the operator P as a sum of two
operators, one of which is completely continuous and the other a large contraction.
Let (Pϕ)(t) = Aϕ(t) +Bϕ(t), where A,B : PT → PT are defined by

(Bϕ)(t) =

(
1− e

−
t∫

t−T

a(s)ds
)−1

×
t∫

t−T

[
a(u)H(ϕ(u))

]
e
−

t∫
u

a(r)dr
du, (3.2)

and

(Aϕ)(t) =
c(t)

1− g′(t)
ϕ(t− g(t)) +

(
1− e

−
t∫

t−T

a(s)ds
)−1
×

×
t∫

t−T

[
− r(u)ϕ(u− g(u)) + q(u, ϕ(u), ϕ(u− g(u)))

]
e
−

t∫
u

a(s)ds
du.

(3.3)

In the rest of the paper we require the following conditions.

KL+ EL+ |q(t, 0, 0)| ≤ βLa(t), (3.4)

|r(t)| ≤ δa(t), (3.5)

max
t∈[0,T ]

∣∣∣ c(t)

(1− g′(t))

∣∣∣ = α, (3.6)

and

J(β + α+ δ) ≤ 1, (3.7)

where α, β, δ, L and J are constants with J ≥ 3.
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Next we state our main result and present its proof in four lemmas.

Theorem 3.1. Let L be a fixed positive number and let (PT , ‖.‖) be the Banach space
of continuous T -periodic real functions. Suppose (2.2)–(2.4), and (3.4)–(3.7) hold.
Then equation (1.1) possesses a periodic solution in the subset ML.

The proof is based on the following four lemmas.

Lemma 3.2. Suppose that conditions (2.2)–(2.4) and (3.4)–(3.7) hold. Then for L
defined in Theorem 3.1, A : ML → ML is continuous in the supremum norm and
maps ML into a compact subset of ML.

Proof. A change of variable in (3.3) shows that (Aϕ)(t+ T ) = (Aϕ)(t). Note that

|q(t, x, y)| ≤ |q(t, x, y)− q(t, 0, 0)|+ |q(t, 0, 0)| ≤ K|x|+ E|y|+ |q(t, 0, 0)|.

We will first show that A maps ML into itself. Thus, for any ϕ ∈ML, we have

|(Aϕ)(t)| ≤
∣∣∣c(t)ϕ(t− g(t))

1− g′(t)

∣∣∣+ (1− e− t∫
t−T

a(s)ds
)−1
×

×
t∫

t−T

|r(u)ϕ(u− g(u))|e
−

t∫
u

a(s)ds
du+

+

(
1− e

−
t∫

t−T

a(s)ds
)−1

×
t∫

t−T

|q(u, ϕ(u), ϕ(u− g(u)))|e
−

t∫
u

a(s)ds
du ≤

≤ αL+

(
1− e

−
t∫

t−T

a(s)ds
)−1

×
t∫

t−T

δa(u)Le
−

t∫
u

a(s)ds
du+

+

(
1− e

−
t∫

t−T

a(s)ds
)−1

×
t∫

t−T

(KL+ EL+ |q(t, 0, 0)|)e
−

t∫
u

a(s)ds
du ≤

≤ αL+ δL

(
1− e

−
t∫

t−T

a(s)ds
)−1

×
t∫

t−T

a(u)e
−

t∫
u

a(s)ds
du+

+ βL

(
1− e

−
t∫

t−T

a(s)ds
)−1

×
t∫

t−T

a(u)e
−

t∫
u

a(s)ds
du ≤

≤ (α+ δ + β)L ≤ L

J
< L.

Thus showing that A maps ML into itself.
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We next show that A is continuous. Let ϕ,ψ ∈ML, and let

a = max
t∈[0,T ]

(
1− e

−
t∫

t−T

a(s)ds
)−1

, b = max
u∈[t−T,t]

e
−

t∫
u

a(s)ds
,

σ = max
t∈[0,T ]

r(t), λ = max
t∈[0,T ]

|q(t, 0, 0)|,

ν = max
t∈[0,T ]

∣∣∣ c′(t)

(1− g′(t))

∣∣∣, µ = max
t∈[0,T ]

∣∣∣ g′′(t)c(t)

(1− g′(t))2
∣∣∣.

(3.8)

Given ε > 0, take δ = ε/F such that ‖ϕ− ψ‖ < δ. Then we get

∥∥(Aϕ)(t)− (Aψ)(t)∥∥ ≤ α‖ϕ− ψ‖+ ab

t∫
t−T

[
L‖ϕ− ψ‖+ E‖ϕ− ψ‖+ σ‖ϕ− ψ‖

]
du ≤

≤ F‖ϕ− ψ‖ < ε

where F = α+ Tab[σ + L+ E]. This proves A is continuous. To show A is compact,
we let ϕn ∈ML where n is a positive integer. Then as before we have that

‖A(ϕn(t))‖ ≤ L. (3.9)

Moreover, a direct calculation shows that

(Aϕn)
′(t) = q(t, ϕn(t), ϕn(t− g(t)))− r(t)ϕn(t− g(t))− a(t)

(
1− e

−
t∫

t−T

a(s)ds
)−1
×

×
t∫

t−T

[q(u, ϕn(u), ϕn(u− g(u)))− r(t)ϕn(u− g(u))]e
−

t∫
u

a(s)ds
du+

+
c′(t)ϕn(t) + c(t)ϕ′n(t)

1− g′(t)
+
g′′(t)c(t)ϕn(t)

(1− g′(t))2
.

By invoking conditions (2.5), (3.4)–(3.6), (3.8) and (3.9) we obtain

|(Aϕn)′(t)| ≤ KL+ EL+ λ+ δ‖a‖L+ ‖a‖L+ νL+ αL′ + µL ≤ D,

for some positive constant D. Hence the sequence (Aϕn) is uniformly bounded and
equicontinuous. The Ascoli-Arzela theorem implies that the subsequence (Aϕnk

) of
(Aϕn) converges uniformly to a continuous T -periodic function. Thus, A is compact.

Lemma 3.3. Suppose (2.2)–(2.5), and (3.4) hold. Suppose also that for L defined in
Theorem 3.1,(

1− e
−

t∫
t−T

a(s)ds
)−1

×
t∫

t−T

[
|a(u)||H(ϕ(u))|

]
e
−

t∫
u

a(r)dr
du ≤ (J − 1)L

J
.

(3.10)
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For B,A defined by (3.2) and (3.3), if ϕ,ψ ∈ML are arbitrary, then

Aϕ+Bψ : ML →ML.

Proof. Let ϕ,ψ ∈ML be arbitrary. Using the definition of B and the result of Lemma
3.2, we obtain

|(Aϕ)(t) + (Bψ)(t)| ≤

≤ | c(t)

1− g′(t)
ϕ(t− g(t))|+

(
1− e

−
t∫

t−T

a(s)ds
)−1
×

×
t∫

t−T

[
|r(u)ϕ(u− g(u))|+ |q(u, ϕ(u), ϕ(u− g(u)))|

]
e
−

t∫
u

a(s)ds
du+

+

(
1− e

−
t∫

t−T

a(s)ds
)−1

×
t∫

t−T

∣∣a(u)H(ϕ(u))
∣∣e− t∫

u

a(r)dr
du ≤

≤ L

J
+

(J − 1)L

J
= L.

Thus Aϕ+Bψ ∈ML. This completes the proof.

In the next lemma we prove that H is a large contraction on ML. To this end we
make the following assumptions on the function h : R→ R.

(H1) h is continuous and differentiable on UL = [−L,L].
(H2) h is strictly increasing on UL.
(H3) sups∈UL

h′(s) ≤ 1.

(H4) (s− r)
{
supt∈UL

h′(t)
}
≥ h(s)−h(r) ≥ (s− r)

{
inft∈UL

h′(t)
}
≥ 0 for s, r ∈ UL

with s ≥ r.

Lemma 3.4. Let h : R→ R be a function satisfying (H1)−(H4). Then for L defined
in Theorem 3.1, the mapping H is a large contraction on the set ML.

Proof. Let φ, ϕ ∈ML with φ 6= ϕ. Then φ(t) 6= ϕ(t) for some t ∈ R. Define the set

D(φ, ϕ) =
{
t ∈ R : φ(t) 6= ϕ(t)

}
.

Note that ϕ(t) ∈ UL for all t ∈ R whenever ϕ ∈ML. Since h is strictly increasing

h(ϕ(t))− h(φ(t))
ϕ(t)− φ(t)

=
h(φ(t))− h(ϕ(t))

φ(t)− ϕ(t)
> 0, (3.11)

holds for all t ∈ D(φ, ϕ). By (H3), we have

1 ≥ sup
t∈UL

h′(t) ≥ inf
s∈UL

h′(s) ≥ 0. (3.12)
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Define the set Ut ⊂ UL by Ut = [ϕ(t), φ(t)]∩UL if φ(t) > ϕ(t), and Ut = [φ(t), ϕ(t)]∩
UL if φ(t) < ϕ(t), for t ∈ D(φ, ϕ). Hence, for a fixed t0 ∈ D(φ, ϕ) we get by (H4) and
(3.11) that

sup{h′(u) : u ∈ Ut0} ≥
h(φ(t0))− h(ϕ(t0))

φ(t0)− ϕ(t0)
≥ inf{h′(u) : u ∈ Ut0}.

Since Ut ⊂ UL for every t ∈ D(φ, ϕ), we find

sup
u∈UL

h′(u) ≥ sup{h′(u) : u ∈ Ut0} ≥ inf{h′(u) : u ∈ Ut0} ≥ inf
u∈UL

h′(u),

and therefore,

1 ≥ sup
u∈UL

h′(u) ≥ h(ϕ(t))− h(φ(t))
ϕ(t)− φ(t)

≥ inf
u∈UL

h′(u) ≥ 0 (3.13)

for all t ∈ D(φ, ϕ). So, (3.13) yields

|(Hφ)(t)− (Hϕ)(t)| = |φ(t)− h(φ(t))− ϕ(t) + h(ϕ(t))| =

= |φ(t)− ϕ(t)|
∣∣∣1− (h(φ(t))− h(ϕ(t))

φ(t)− ϕ(t)

)∣∣∣ ≤
≤ |φ(t)− ϕ(t)|

(
1− inf

u∈UL

h′(u)
) (3.14)

for all t ∈ D(φ, ϕ). Thus, (3.13) and (3.14) imply that H is a large contraction in the
supremum norm. To see this choose a fixed ε ∈ (0, 1) and assume that φ and ϕ are
two functions in ML satisfying

‖φ− ϕ‖ = sup
t∈[−L,L]

|φ(t)− ϕ(t)| ≥ ε.

If |φ(t)− ϕ(t)| ≤ ε/2 for some t ∈ D(φ, ϕ), then from (3.14)

|(Hφ)(t)− (Hϕ)(t)| ≤ |φ(t)− ϕ(t)| ≤ 1

2
‖φ− ϕ‖. (3.15)

Since h is continuous and strictly increasing, the function h(u+ ε
2 )− h(u) attains its

minimum on the closed and bounded interval [−L,L]. Thus, if ε
2 < |φ(t) − ϕ(t)| for

some t ∈ D(φ, ϕ), then from (3.13) and (H3) we conclude that

1 ≥ h(φ(t))− h(ϕ(t))
φ(t)− ϕ(t)

> λ,

and therefore,

|(Hφ)(t)− (Hϕ)(t)| ≤ |φ(t)− ϕ(t)|
{
1− h(φ(t))− h(ϕ(t))

φ(t)− ϕ(t)

}
≤

≤ (1− λ)‖φ(t)− ϕ(t)‖,
(3.16)
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where

λ :=
1

2L
min

{
h
(
u+

ε

2

)
− h(u), u ∈ [−L,L]

}
> 0.

Consequently, it follows from (3.15) and (3.16) that

|(Hφ)(t)− (Hϕ)(t)| ≤ δ‖φ− ϕ‖,

where δ = max
{

1
2 , 1− λ

}
< 1. The proof is complete.

The next result gives a relationship between the mappings H and B in the sense
of a large contraction.

Lemma 3.5. If H is a large contraction on ML, then so is the mapping B.

Proof. If H is a large contraction on ML, then for x, y ∈ ML, with x 6= y, we have
‖Hx−Hy‖ ≤ ‖x− y‖. Thus, it follows from the equality

a(u)e
−

t∫
u

a(r)dr
=

d

du

[
e
−

t∫
u

a(r)dr
]
,

that

|Bx(t)−By(t)| ≤
(
1− e

−
t∫

t−T

a(s)ds
)−1
×

t∫
t−T

a(u)
∣∣H(x(u))−H(y(u))

∣∣e− t∫
u

a(r)dr
du≤

≤ ‖x− y‖(
1− e

−
t∫

t−T

a(s)ds
)−1

t∫
t−T

a(u)e
−

t∫
u

a(r)dr
du = ‖x− y‖.

Thus,

‖Bx−By‖ ≤ ‖x− y‖.

One may also show in a similar way that

‖Bx−By‖ ≤ δ‖x− y‖

holds if we know the existence of a δ ∈ (0, 1) and that for all ε > 0[
x, y ∈ML, ‖x− y‖ ≥ ε

]
⇒ ‖Hx−Hy‖ ≤ δ‖x− y‖.

The proof is complete.

By Lemma 2.1, ϕ is a solution of (1.1) if

ϕ = Aϕ+Bϕ,

where B and A are given by (3.2) and (3.3) respectively. By Lemma 3.2, A : ML →ML

is completely continuous. By Lemma 3.3, Aϕ + Bψ ∈ ML whenever ϕ,ψ ∈ ML.
Moreover, B : ML →ML is a large contraction by Lemma 3.5. Thus all the hypotheses
of Theorem 2.4 are satisfied. Thus, there exists a fixed point ϕ ∈ ML such that
ϕ = Aϕ+Bϕ. Hence (1.1) has a T− periodic solution.
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