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1. INTRODUCTION

It is well known that periodic motion is a very important and special phenomena
not only in the natural sciences but also in social sciences such as climate, food
supplements, insecticide population and sustainable development. The problem of
finding periodic solutions is an important subject in the qualitative study of differen-
tial equations. Related studies (such as existence, the relationship between bounded
solutions and periodic solutions, stability and robustness) and examples concerning
non-autonomous periodic systems on finite dimensional spaces can be found in refer-
ences such as [5,6,13,16]; periodic systems with time-varying generating operators on
infinite dimensional spaces can be found in references such as [1, 7–11].

On the other hand, the theory of impulsive differential equations appears as a
natural description of several real processes subject to certain perturbations whose
duration is negligible in comparison with the duration of the process. Processes of
this type are often investigated in various fields of science and technology: physics,
population dynamics, ecology, biological systems, pharmacokinetics, optimal control,
etc. For the basic theory on impulsive differential equations on finite dimensional
spaces, the reader can see, for instance, the monographs of Bainov and Simeonov [5],
Lakshmikantham [12] and Yang [16] et al. For the basic theory on impulsive differen-
tial equations on infinite dimensional spaces, the reader can refer to Ahmed’s paper
(see [3, 4]).
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Impulsive periodic systems with time-varying generator operators are basic perio-
dic systems with time-varying generator operators to study the dynamics of processes
that are subject to periodic changes in their states. Recently, we have established peri-
odic solutions theory under the existence of a bounded solution for the linear impulsive
periodic system with time-varying generator operators on infinite dimensional spaces.
Several criteria were obtained to ensure the existence, uniqueness, alternative theo-
rem, Massera’s theorem and robustness of the T0-periodic PC-mild solution for the
linear impulsive periodic system with time-varying generator operators (see [14,15]).
However, to our knowledge, we have not seen results about periodic PC-mild solutions
of semilinear impulsive periodic system with time-varying generator operators, thus
we would like to provide one here.

This paper is concerned with deriving periodic solutions from ultimate bound-
edness of solutions for the following semilinear impulsive periodic system with
time-varying generating operators{

ẋ(t) = A(t)x(t) + f(t, x), t 6= τk,

∆x(t) = x(t+)− x(t−) = Bkx(t) + ck, t = τk,
(1.1)

in the parabolic case on an infinite dimensional Banach space X, where {A (t), t ∈
[0, T0]} is a family of closed densely defined linear unbounded operators on X and the
resolvent of the unbounded operator A(t) is compact. f is a measurable function from
[0,∞)×X to X and is T0-periodic in t. 0 = τ0 < τ1 < τ2 < . . . < τk . . ., limk→∞ τk =

∞, τk+δ = τk + T0, D̃ = {τ1, τ2, . . . , τδ} ⊂ (0, T0), 4x(τk) := x(τ+k ) − x(τ−k ), where
k ∈ Z+

0 := {0, 1, 2, . . .}, T0 is a fixed positive number and δ ∈ N := {1, 2, . . .} denotes
the number of impulsive points between 0 and T0; for each k ∈ Z+

0 , Bk ∈ Lb(X),
ck ∈ X and there exists a δ ∈ N such that Bk+δ = Bk and ck+δ = ck where Lb(X)
denotes the space of bounded linear operators on X equipped with the usual operator
norm.

In the study of periodic solutions, we first construct the new suitable Poincaré
operator P(x̄) = x(T0, x̄), (T0 units along x) by virtue of the impulsive evolution
operator corresponding to a homogeneous linear impulsive periodic system with
time-varying generator operators and show that P is compact, where T0 is the periodic
of the system (1.1) and x is the unique solution determined by initial value x̄. Then
some suitable conditions are given such that Horn’s fixed point theorem can be used
to to get fixed points for the Poincaré operator P, which give rise to periodic solutions.
This extends the study of periodic solutions for the periodic system with time-varying
generator operators without impulse to impulsive periodic system with time-varying
generator operators on general Banach spaces.

This paper is organized as follows. In section 2, some results of linear impulsive
periodic systems with time-varying generator operators and properties of impulsive
evolution operators corresponding to homogeneous linear impulsive periodic systems
with time-varying generator operators are recalled. In section 3, the Gronwall lemma
with an impulse is used and the T0-periodic PC-mild solution of a semilinear impulsive
periodic system with time-varying generator operators (1.1) is introduced. The new
Poincaré operator P is constructed and the relation between T0-periodic PC-mild
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solution and the fixed point of Poincaré operator P is given. After the compactness
of Poincaré operator P are shown, the existence of T0-periodic PC-mild solutions for
semilinear impulsive periodic systems with time-varying generator operators is estab-
lished by virtue of Horn’s fixed point theorem when PC-mild solutions are ultimate
bounded. At last, an example is given to demonstrate the applicability of our result.

2. PRELIMINARIES

Throughout this paper, we denote by X a Banach space with the norm ‖ · ‖. Lb(X)
denotes the Banach space of all bounded linear operators on X equipped with the
usual operator norm. Define D̃={τ1, . . . , τδ} ⊂ [0, T0], where δ ∈ N denotes the number
of impulsive points between 0 and T0. We introduce PC([0, T0];X) ≡ {x : [0, T0] →
X | x is continuous at t ∈ [0, T0]\D̃, x is continuous from the left and has right hand
limits at t ∈ D̃} and PC1([0, T0];X) ≡ {x ∈ PC([0, T0];X) | ẋ ∈ PC([0, T0];X)}. Set
‖x‖PC = supt∈[0,T0] ‖x(t)‖ and ‖x‖PC1 = ‖x‖PC+‖ẋ‖PC . It can be seen that endowed
with the norm ‖ · ‖PC (‖ · ‖PC1), PC([0, T0];X)

(
PC1([0, T0];X)

)
is a Banach space.

In order to study the semilinear impulsive periodic system with time-varying gen-
erating operators, we first recall the following linear impulsive periodic system{

.
x (t) = A(t)x(t), t 6= τk,

∆x(t) = Bkx(t), t = τk,
(2.1)

where ∆x(t) = x(t+) − x(t−), Bk ∈ Lb(X) for each k ∈ Z+
0 and {A (t), t ∈ [0, T0]}

is a family of closed densely defined linear unbounded operators on X satisfying the
following assumption.

Assumption 2.1 (A1, [2, p. 158]). For t ∈ [0, T0], one has:

(P1) The domain D(A(t)) = D is independent of t and is dense on X.
(P2) For t ≥ 0, the resolvent R(λ,A(t)) = (λI−A(t))−1 exists for all λ with Reλ ≤ 0,

and there is a constant M independent of λ and t such that

‖R (λ,A(t))‖ ≤M(1 + |λ|)−1 for Reλ ≤ 0.

(P3) There exist constants L > 0 (independent of t, θ, τ) and 0 < α ≤ 1 such that∥∥(A(t)−A(θ)
)
A−1(τ)

∥∥ ≤ L|t− θ|α for t, θ, τ ∈ [0, T0].

Lemma 2.2 ([2, p. 159]). Under the assumption (A1), the Cauchy problem

ẋ(t) +A(t)x(t) = 0, t ∈ (0, T0] with x(0) = x̄ (2.2)

has a unique evolution system {U(t, θ) | 0 ≤ θ ≤ t ≤ T0} on X satisfying the following
properties:

(1) U(t, θ) ∈ Lb(X) for 0 ≤ θ ≤ t ≤ T0.
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(2) U(t, r)U(r, θ) = U(t, θ) for 0 ≤ θ ≤ r ≤ t ≤ T0;
(3) U(·, ·)x ∈ C(∆, X) for x ∈ X, ∆ = {(t, θ) ∈ [0, T0]× [0, T0] | 0 ≤ θ ≤ t ≤ T0};
(4) For 0 ≤ θ < t ≤ T0, U(t, θ): X −→ D and t −→ U(t, θ) is strongly differentiable

on X. The derivative ∂
∂tU(t, θ) ∈ Lb(X) and it is strongly continuous on 0 ≤ θ <

t ≤ T0. Moreover,

∂

∂t
U(t, θ) = −A(t)U(t, θ) for 0 ≤ θ < t ≤ T0,∥∥∥∥ ∂∂tU(t, θ)

∥∥∥∥
Lb(X)

= ‖A(t)U(t, θ)‖Lb(X) ≤
C

t− θ
,∥∥A(t)U(t, θ)A(θ)−1

∥∥
Lb(X)

≤ C for 0 ≤ θ ≤ t ≤ T0;

(5) For every v ∈ D and t ∈ (0, T0], U(t, θ)v is differentiable with respect to θ on
0 ≤ θ ≤ t ≤ T0

∂

∂θ
U(t, θ)v = U(t, θ)A(θ)v,

and, for each x̄ ∈ X, the Cauchy problem (2.2) has a unique classical solution
x ∈ C1([0, T0];X) given by

x(t) = U(t, 0)x̄, t ∈ [0, T0].

In addition to assumption (A1), we introduce the following assumptions.

Assumption 2.3 (A2). There exits T0 > 0 such that A(t+T0) = A(t) for t ∈ [0, T0].

Assumption 2.4 (A3). For t ≥ 0, the resolvent R(λ,A(t)) is compact.

Then we have the following lemma.

Lemma 2.5. Let assumptions (A1), (A2) and (A3) be satisfied. Then evolution sys-
tem {U(t, θ) | 0 ≤ θ ≤ t ≤ T0} on X has the following two properties:

(6) U(t+ T0, θ + T0) = U(t, θ) for 0 ≤ θ ≤ t ≤ T0;
(7) U(t, θ) is a compact operator for 0 ≤ θ < t ≤ T0.

In order to introduce an impulsive evolution operator and give its properties, we
need the following assumption.

Assumption 2.6 (B). For each k ∈ Z+
0 , Bk ∈ Lb(X), there exists δ ∈ N such that

τk+δ = τk + T0 and Bk+δ = Bk.

In order to study system (2.1), we need to consider the associated Cauchy problem
ẋ(t) = A(t)x(t), t ∈ [0, T0]\D̃,
∆x(τk) = Bkx(τk), k = 1, 2, . . . , δ,

x(0) = x̄.

(2.3)

For every x̄ ∈ X, suppose that the domain D is an invariant subspace of Bk, by
using Lemma 2.2, step by step, one can verify that the Cauchy problem (2.3) has a
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unique classical solution x ∈ PC1([0, T0];X) represented by x(t) = S (t, 0)x̄, where
S (·, ·) : 4 = {(t, θ) ∈ [0, T0]× [0, T0] | 0 ≤ θ ≤ t ≤ T0} −→ X is given by

S (t, θ) =

=



U(t, θ), τk−1 ≤ θ ≤ t ≤ τk,

U(t, τ+k )(I +Bk)U(τk, θ), τk−1 ≤ θ < τk < t ≤ τk+1,

U(t, τ+k )

[∏
θ<τj<t

(I +Bj)U(τj , τ
+
j−1)

]
(I +Bi)U(τi, θ),

τi−1 ≤ θ < τi ≤ . . . < τk < t ≤ τk+1.

(2.4)

The operator S (t, θ)
(
(t, θ) ∈ 4

)
is called an impulsive evolution operator associated

with {Bk; τk}∞k=1.
Now we introduce the PC-mild solution of Cauchy problem (2.3) and T0-periodic

PC-mild solution of system (2.1).

Definition 2.7. For every x̄ ∈ X, the function x ∈ PC([0, T0];X) given by x(t) =
S (t, 0)x̄ is said to be the PC-mild solution of the Cauchy problem (2.3).

Definition 2.8. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild
solution of system (2.1) if it is a PC-mild solution of Cauchy problem (2.3) corre-
sponding to some x̄ and x(t+ T0) = x(t) for t ≥ 0.

The following lemma on the properties of the impulsive evolution operator
{S (t, θ), (t, θ) ∈ 4} associated with {Bk; τk}∞k=1 is widely used in this paper.

Lemma 2.9 (see [14, Lemma 2.7]). Assumptions (A1), (A2), (A3) and (B) hold. The
impulsive evolution operator {S (t, θ), (t, θ) ∈ 4} has the following properties:

(1) For 0 ≤ θ ≤ t ≤ T0, S (t, θ) ∈ Lb(X), and there exists a constant MT0
> 0 such

that
sup

0≤θ≤t≤T0

‖S (t, θ)‖ ≤MT0
;

(2) For 0 ≤ θ < r < t ≤ T0, r 6= τk, S (t, θ) = S (t, r)S (r, θ);
(3) For 0 ≤ θ ≤ t ≤ T0, S (t+ T0, θ + T0) = S (t, θ);
(4) For 0 ≤ t ≤ T0, S (T0 + t, 0) = S (t, 0)S (T0, 0);
(5) S (t, θ) is compact operator for 0 ≤ θ < t ≤ T0.

Secondly, we recall nonhomogeneous linear impulsive periodic systems with
time-varying generating operators{

ẋ(t) = A(t)x(t) + f(t), t 6= τk,

∆x(τk) = Bkx(τk) + ck, t = τk,
(2.5)

where f ∈ L1 ([0, T0];X), f(t+ T0) = f(t) and ck+δ = ck.
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Meanwhile, we need to recall the following Cauchy problem
ẋ(t) = A(t)x(t) + f(t), t ∈ [0, T0]\D̃,
∆x(τk) = Bkx(τk) + ck, k = 1, 2, . . . , δ,

x(0) = x̄,

(2.6)

and introduce the PC-mild solution of Cauchy problem (2.6) and T0-periodic PC-mild
solution of system (2.5).

Definition 2.10. A function x ∈ PC([0, T0];X), for finite interval [0, T0], is said to
be a PC-mild solution of the Cauchy problem (2.6) corresponding to the initial value
x̄ ∈ X and input f ∈ L1 ([0, T0];X) if x is given by

x(t) = S (t, 0)x̄+

t∫
0

S (t, θ)f(θ)dθ +
∑

0≤τk<t

S
(
t, τ+k

)
ck. (2.7)

Definition 2.11. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild
solution of system (2.5) if it is a PC-mild solution of Cauchy problem (2.6) corre-
sponding to some x̄ and x(t+ T0) = x(t) for t ≥ 0.

Here, we note that system (2.1) has a T0-periodic PC-mild solution x if and
only if S (T0, 0) has a fixed point. The impulsive periodic evolution operator
{S (t, θ), (t, θ) ∈ 4} can be used to reduce the existence of T0-periodic PC-mild so-
lutions for system (2.5) to the existence of fixed points for an operator equation. This
implies that we can use the new framework to study the existence of periodic PC-mild
solutions for impulsive periodic systems with time-varying generating operators on a
Banach space.

3. MAIN RESULTS

In order to derive prior bounds for the solutions, we use the following generalized
Gronwall inequality with impulse which can be used in the sequel.

Lemma 3.1. Let x ∈ PC([0, T0];X) and

‖x(t)‖ ≤ a+ b

t∫
0

‖x(θ)‖dθ +
∑

0<τk<t

ζk‖x(τk)‖,

where a, b, ζk ≥ 0, are constants. Then

‖x(t)‖ ≤ a
∏

0<τk<t

(1 + ζk)ebt.
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Proof. Define

u(t) = a+ b

t∫
0

‖x(θ)‖dθ +
∑

0<τk<t

ζk‖x(τk)‖,

we get 
u̇(t) = b‖x(t)‖ ≤ bu(t), t 6= τk,

u(0) = a,

u(τ+k ) = u(τk) + ζk‖x(τk)‖ ≤ (1 + ζk)u(τk).

(3.1)

For t ∈ (τk, τk+1], by (3.1), we obtain

u(t) ≤ u(τ+k )eb(t−τk) ≤ (1 + ζk)u (τk) eb(t−τk),

further,
u(t) ≤ a

∏
0<τk<t

(1 + ζk)ebt,

thus,
‖x(t)‖ ≤ a

∏
0<τk<t

(1 + ζk)ebt.

For more details, the reader can refer to Lemma 1.7.1 in [16].

Now, we consider the following semilinear impulsive periodic system with
time-varying generating operators{

ẋ(t) = A(t)x(t) + f(t, x), t 6= τk,

∆x(t) = Bkx(t) + ck, t = τk,
(3.2)

and introduce the Poincaré operator and study the T0-periodic PC-mild solution of
system (3.2).

In order to study the system (3.2), we need to consider the following associated
Cauchy problem 

ẋ(t) = A(t)x(t) + f(t, x), t ∈ [0, T0]\D̃,
∆x(τk) = Bkx(τk) + ck, k = 1, 2, . . . , δ,

x(0) = x̄.

(3.3)

Definition 3.2. A function x ∈ PC([0, T0];X) is said to be a PC-mild solution of
the Cauchy problem (3.3) corresponding to the initial value x̄ ∈ X if x satisfies the
following integral equation

x(t) = S (t, 0)x̄+

t∫
0

S (t, θ)f(θ, x(θ))dθ +
∑

0≤τk<t

S
(
t, τ+k

)
ck for t ∈ [0, T0].
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In order to show the existence of the PC-mild solution of Cauchy problem (3.3)
and the T0-periodic PC-mild solution of system (3.2), we introduce the following
assumptions.

Assumption 3.3 (F1). f : [0,∞) ×X → X is measurable for t ≥ 0 and for any x,
y ∈ X satisfying ‖x‖, ‖y‖ ≤ ρ there exists a constant Lf (ρ) > 0 such that

‖f(t, x)− f(t, y)‖ ≤ Lf (ρ)‖x− y‖.

Assumption 3.4 (F2). There exists a positive constant Mf > 0 such that

‖f(t, x)‖ ≤Mf (1 + ‖x‖) for all x ∈ X.

Assumption 3.5 (F3). f(t, x) is T0-periodic in t, i.e. f(t+ T0, x) = f(t, x), t ≥ 0.

Assumption 3.6 (C). For each k ∈ Z+
0 and ck ∈ X, there exists δ ∈ N such that

ck+δ = ck.

Now, we recall the following result which asserts the existence of PC-mild solutions
for Cauchy problem (3.3) and gives a prior bounds of PC-mild solutions for Cauchy
problem (3.3) by virtue of Lemma 3.1.

Theorem 3.7. Let assumptions (A1), (F1) and (F2) be satisfied, and for each k ∈
Z+
0 , Bk ∈ Lb(X), ck ∈ X be fixed. Let x̄ ∈ X be fixed. Then Cauchy problem (3.3)

has a unique PC-mild solution given by

x(t, x̄) = S (t, 0)x̄+

t∫
0

S (t, θ)f
(
θ, x(θ, x̄)

)
dθ +

∑
0≤τk<t

S
(
t, τ+k

)
ck.

Further, suppose x̄ ∈ Ξ ⊂ X, Ξ is a bounded subset of X, then there exits a constant
M∗ > 0 such that

‖x(t, x̄)‖ ≤M∗ for all t ∈ [0, T0].

Proof. Under the assumptions (A1), (F1) and (F2), it is well known that Cauchy
problem {

.
x (t) = A(t)x(t) + f(t, x), t ∈ [0, τ ],

x(0) = x̄ ∈ X,

has a unique mild solution

x(t, x̄) = U(t, 0)x̄+

t∫
0

U(t, θ)f(θ, x(θ, x̄))dθ.

In general, for t ∈ (τk, τk+1], Cauchy problem{
.
x (t) = A(t)x(t) + f(t, x), t ∈ (τk, τk+1],

x(τk) = xk ≡ (I +Bk)x(τk) + ck ∈ X,
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has a unique PC-mild solution

x(t, xk) = U(t, τk)xk +

t∫
τk

U(t, θ)f(θ, x(θ, xk))dθ.

Combining all solutions on [τk, τk+1] (k = 1, . . . , δ), one can obtain the PC-mild
solution of the Cauchy problem (3.3) given by

x(t, x̄) = S (t, 0)x̄+

t∫
0

S (t, θ)f
(
θ, x(θ, x̄)

)
dθ +

∑
0≤τk<t

S
(
t, τ+k

)
ck.

Further, by assumption (F2) and (1) of Lemma 2.9, we obtain

‖x(t, x̄)‖ ≤ MT0
‖x̄‖+MT0

MfT0 +MT0

δ∑
k=1

‖ck‖+MT0

t∫
0

‖x(θ, x̄)‖dθ.

From x̄ ∈ Ξ ⊂ X, Ξ is a bounded subset of X and Lemma 3.1, one can verify that
there exists a constant M∗ > 0 such that

‖x(t, x̄)‖ ≤
(
MT0
‖x̄‖+MT0

MfT0 +MT0

∑
0≤τk<T0

‖ck‖
)
eMT0

T0 ≡

≡M∗, for all t ∈ [0, T0].

Now, we can introduce the T0-periodic PC-mild solution of system (3.2).

Definition 3.8. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild
solution of system (3.2) if it is a PC-mild solution of the Cauchy problem (3.3)
corresponding to some x̄ and x(t+ T0) = x(t) for t ≥ 0.

In order to study the periodic solutions of system (3.2), we construct a new
Poincaré operator from X to X as follows.

P(x̄) = x(T0, x̄) = S (T0, 0)x̄+

T0∫
0

S (T0, θ)f (θ, x(θ, x̄)) dθ +
∑

0≤τk<T0

S
(
T0, τ

+
k

)
ck

(3.4)
where x(·, x̄) denotes the PC-mild solution of the Cauchy problem (3.3) corresponding
to the initial value x(0) = x̄.

We note that a fixed point of P gives rise to a T0-periodic PC-mild solution as
follows.

Lemma 3.9. System (3.2) has a T0-periodic PC-mild solution if and only if P has
a fixed point.
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Proof. Suppose x(·, x̄) is a T0-periodic PC-mild solution of system (3.2), then x(·, x̄) =
x(·+T0, x̄), which implies x̄ = x(0, x̄) = x(T0, x̄) = P(x̄). This shows that x̄ is a fixed
point of P. On the other hand, if Px0 = x0, x0 ∈ X, then for the PC-mild solution
x(·, x0) of the Cauchy problem (3.3) corresponding to the initial value x(0) = x0, we
can define y(·, y(0)) = x(· + T0, x0), then y(0) = x(T0, x0) = Px0 = x0. Now, for
t > 0, we can use (2), (3) and (4) of Lemma 2.9 and assumptions (A2), (B), (F3) and
(C) to obtain

y(t, y(0)) = x(t+ T0, x0) =

= S (t+ T0, 0)x0 +

t+T0∫
0

S (t+ T0, θ)f (θ, x(θ, x0)) dθ +
∑

0≤τk<t+T0

S
(
t+ T0, τ

+
k

)
ck =

= S (t+ T0, T0)S (T0, 0)x0 +

T0∫
0

S (t+ T0, T0)S (T0, θ)f
(
θ, x(θ, x0)

)
dθ+

+
∑

0≤τk<T0

S (t+ T0, T0)S
(
T0, τ

+
k

)
ck+

+

t+T0∫
T0

S (t+ T0, θ)f
(
θ, x(θ, x0)

)
dθ +

∑
T0≤τk+δ<t+T0

S
(
t+ T0, τ

+
k+δ

)
ck+δ =

= S (t, 0)

{
S (T0, 0)x0 +

T0∫
0

S (T0, θ)f
(
θ, x(θ, x0)

)
dθ +

∑
0≤τk<T0

S
(
T0, τ

+
k

)
ck

}
+

+

t∫
0

S (t+ T0, s+ T0)f
(
s+ T0, x(s+ T0, x0)

)
ds+

∑
0≤τk<t

S
(
t, τ+k

)
ck =

= S (t, 0)y(0) +

t∫
0

S (t, s)f
(
s, y(s, y(0))

)
ds+

∑
0≤τk<t

S
(
t, τ+k

)
ck.

(3.5)

This implies that y(·, y(0)) is a PC-mild solution of Cauchy problem (3.3) with initial
value y(0) = x0. Thus the uniqueness implies that x(·, x0) = y(·, y(0)) = x(·+T0, x0),
so that x(·, x0) is T0-periodic.

In the sequel, we need to prove the compactness of the operator P defined by
(3.4). We also list the following definition.

Definition 3.10. An operator P: X → X is called compact on X if P maps a
bounded set into precompact set.

Lemma 3.11. Let assumptions (A1), (A3), (F1) and (F2) be satisfied. Then the
operator P defined by (3.4) is a compact operator.
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Proof. We only verify that P takes a bounded set into a precompact set on X. By
Theorem 3.1, Cauchy problem (3.3) has a unique PC-mild solution given by

x(t, x̄) = S (t, 0)x̄+

t∫
0

S (t, θ)f
(
θ, x(θ, x̄)

)
dθ +

∑
0≤τk<t

S
(
t, τ+k

)
ck for t ∈ [0, T0].

Let Γ be a bounded subset of X. Define K = PΓ and K = PΓ = {P(x̄) ∈ X | x̄ ∈ Γ}.
For 0 < ε < t ≤ T0, define

Kε = PεΓ = S (T0, T0 − ε)
{
x(T0 − ε, x̄) | x̄ ∈ Γ

}
.

Next, we show that Kε is precompact on X. In fact, for x̄ ∈ Γ fixed, we have

‖x(T0 − ε, x̄)‖ =

=

∥∥∥∥∥∥S (T0 − ε, 0)x̄+

T0−ε∫
0

S (T0 − ε, θ)f (θ, x(θ, x̄)) dθ +
∑

0≤τk<T0−ε

S
(
T0 − ε, τ+k

)
ck

∥∥∥∥∥∥ ≤
≤MT0‖x̄‖+MT0MfT0 +

T0∫
0

‖x(θ, x̄)‖dθ +MT0

∑
0≤τk<T0

‖ck‖ ≤

≤MT0
‖x̄‖+MT0

MfT0 + T0ρ+MT0

δ∑
k=1

‖ck‖.

This implies that the set
{
x(T0 − ε, x̄) | x̄ ∈ Γ

}
is totally bounded.

By assumption (A3) and (5) of Lemma 2.9, S (T0, T0 − ε) is a compact operator.
Thus, Kε is precompact on X.

On the other hand, for arbitrary x̄ ∈ Γ,

Pε(x̄) = S (T0, 0)x̄+

T0−ε∫
0

S (T0, θ)f (θ, x(θ, x̄)) dθ +
∑

0≤τk<T0−ε

S
(
T0, τ

+
k

)
ck.

Thus, combining with (3.4), using assumption (F2), we have

∥∥Pε(x̄)− P(x̄)
∥∥ ≤ ∥∥∥∥

T0−ε∫
0

S (T0, θ)f(θ, x(θ))dθ −
T0∫
0

S (T0, θ)f(θ, x(θ))dθ

∥∥∥∥+

+

∥∥∥∥∥∥
∑

0≤τk<T0−ε

S
(
T0, τ

+
k

)
ck −

∑
0≤τk<T0

S
(
T0, τ

+
k

)
ck

∥∥∥∥∥∥ ≤
≤

T0∫
T0−ε

‖S (T0, θ)‖‖f(θ, x(θ))‖dθ +MT0

∑
T0−ε≤τk<T0

‖ck‖ ≤

≤ 2MT0Mf (1 + ρ)ε+MT0

∑
T0−ε≤τk<T0

‖ck‖.
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It shows that the set K can be approximated to an arbitrary degree of accuracy by a
precompact set Kε. Hence K itself is precompact set in X, that is, P takes a bounded
set into a precompact set in X. As a result, P is a compact operator.

After showing the compactness of the operator P, we can follow and derive peri-
odic PC-mild solutions for system (3.2). The following definitions are standard, we
state them here for convenient reference. Note that uniform boundedness and uniform
ultimate boundedness are not required to obtain the periodic solutions here, so we
only define (local) boundedness and ultimate boundedness.

Definition 3.12. We say that PC-mild solutions of Cauchy problem (3.3) are
bounded if for each B1 > 0, there is a B2 > 0 such that ‖x̄‖ ≤ B1 implies
‖x(t, x̄)‖ ≤ B2 for t ≥ 0.

Definition 3.13. We say that PC-mild solutions of Cauchy problem (3.3) are locally
bounded if for each B1 > 0 and k0 > 0, there is a B2 > 0 such that ‖x̄‖ ≤ B1 implies
‖x(t, x̄)‖ ≤ B2 for 0 ≤ t ≤ k0.

Definition 3.14. We say that PC-mild solutions of Cauchy problem (3.3) are ulti-
mate bounded if there is a bound B > 0, such for each B3 > 0, there is a k > 0 such
that ‖x̄‖ ≤ B3 and t ≥ k imply ‖x(t, x̄)‖ ≤ B.

We also list the following result as a reference.

Lemma 3.15 ([10, Theorem 3.1]). {Local boundedness and ultimate boundedness}
implies {boundedness and ultimate boundedness}.

Lemma 3.16 (Horn’s Fixed Point Theorem). Let E0 ⊂ E1 ⊂ E2 be convex subsets
of a Banach space X, with E0 and E2 compact subsets and E1 open relative to E2.
Let P: E2 → X be a continuous map such that for some integer m, one has

Pj(E1) ⊂ E2, 1 ≤ j ≤ m− 1,

Pj(E1) ⊂ E0, m ≤ j ≤ 2m− 1.

Then P has a fixed point in E0.

With these preparations, we can prove our main result of this paper.

Theorem 3.17. Let assumptions (A1)–(A3), (B), (C) and (F1)–(F3) be satisfied. If
the PC-mild solutions of Cauchy problem (3.3) are ultimately bounded, then system
(3.2) has a T0-periodic PC-mild solution on [0,+∞).

Proof. Let x(·, x̄) be a PC-mild solution of Cauchy problem (3.3) corresponding to
the initial value x(0) = x̄. From Lemma 3.11, we know that P(x̄) = x(T0, x̄) on X
is compact. By Theorem 3.7 and Definition 3.13, x(·, x̄) is locally bounded, and from
Lemma 3.15, x(·, x̄) is bounded. Next, let B > 0 be the bound in the definition of
ultimate boundedness. Then by boundedness, there is a B1 > B such that ‖x̄‖ ≤ B
implies ‖x(t, x̄)‖ ≤ B1 for t ≥ 0. Furthermore, there is a B2 > B1 such that ‖x̄‖ ≤ B1

implies ‖x(t, x̄)‖ ≤ B2 for t ≥ 0. Now, using ultimate boundedness, there is a positive
integer m such that ‖x̄‖ ≤ B1 implies ‖x(t, x̄)‖ ≤ B for t ≥ (m− 2)T0.



Existence results for mild solutions of impulsive periodic systems 613

Define y(·, y(0)) = x(· + T0, x̄). Then y(0) = x(T0, x̄) = P (x̄). Using (3.5) in
Lemma 3.9, we see that y(t, y(0)) = x(t + T0, x̄) for t ≥ 0, is also a PC-mild solu-
tion of Cauchy problem (3.3) corresponding to the initial value y(0) = x(0) = x̄.
Further, P (y(0)) = y (T0, y(0)) = x(2T0, x̄). Thus, the uniqueness implies that
P 2(x̄) = P (P (x̄)) = P (y(0)) = x(2T0, x̄). Suppose that there exists integer m − 1
such that Pm−1(x̄) = x

(
(m− 1)T0, x̄

)
. By introduction, we arrive at

Pm(x̄) = Pm−1(P (x̄)) = Pm−1(y(0)) = y
(
(m− 1)T0, y(0)

)
= x(mT0, x̄) for x̄ ∈ X.

Thus, we have∥∥Pj−1(x̄)
∥∥ =

∥∥x((j − 1)T0, x̄
)∥∥ < B2, j = 1, 2, . . . ,m− 1 and ‖x̄‖ < B1; (3.6)∥∥Pj−1(x̄)

∥∥ =
∥∥x((j − 1)T0, x̄

)∥∥ < B, j ≥ m and ‖x̄‖ < B1. (3.7)

Now let

H = {x̄ ∈ X: ‖x̄‖ < B2}, E2 = cl.
(
cov.(P(H))

)
,

W = {x̄ ∈ X: ‖x̄‖ < B1}, E1 = W ∩ E2,

G = {x̄ ∈ X: ‖x̄‖ < B}, E0 = cl.
(
cov.(P(G))

)
,

where cov.(Y ) is the convex hull of the set Y defined by cov.(Y ) =
{
∑n
i=1 λiyi | n ≥ 1, yi ∈ Y , λi ≥ 0,

∑n
i=1 λi = 1}, and cl.(Y ) denotes the closure of

Y . Then we see that E0 ⊂ E1 ⊂ E2 are convex subsets of X with E0, E2 compact
subsets and E1 open relative to E2 and from (3.6) and (3.7), one has

Pj(E1) ⊂ Pj(W ) = PPj−1(W ) ⊂ P(H) ⊂ E2, j = 1, 2, . . . ,m− 1;

Pj(E1) ⊂ Pj(W ) = PPj−1(W ) ⊂ P(G) ⊂ E0, j = m,m+ 1, . . . , 2m− 1.

Finally, we verify the continuity of the map P. Let x̄, ȳ ∈ E2, E2 is a bounded
subset of X. Suppose x(·, x̄) and x(·, ȳ) are the PC-mild solutions of Cauchy problem
(3.3) corresponding to the initial value x̄ and ȳ ∈ E2, respectively and are given by

x(t, x̄) = S (t, 0)x̄+

t∫
0

S (t, θ)f
(
θ, x(θ, x̄)

)
dθ +

∑
0≤τk<t

S
(
T0, τ

+
k

)
ck;

x(t, ȳ) = S (t, 0)ȳ +

t∫
0

S (t, θ)f
(
θ, x(θ, ȳ)

)
dθ +

∑
0≤τk<t

S
(
T0, τ

+
k

)
ck.

Thus, by assumption [F2], we obtain

‖x(t, x̄)‖ ≤MT0
‖x̄‖E2

+MT0
MfT0 +MT0

∑
0≤τk<T0

‖ck‖+MT0

t∫
0

‖x(θ, x̄)‖dθ;

‖x(t, ȳ)‖ ≤MT0‖ȳ‖E2 +MT0MfT0 +MT0

∑
0≤τk<T0

‖ck‖+MT0

t∫
0

‖x(θ, ȳ)‖dθ.
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By Lemma 3.1, one can verify that there exist constants M∗1 and M∗2 > 0 such that

‖x(t, x̄)‖ ≤M∗1 and ‖x(t, ȳ)‖ ≤M∗2 .

Let ρ = max{M∗1 ,M∗2 } > 0, then ‖x(·, x̄)‖, ‖x(·, ȳ)‖ ≤ ρ. By assumptions [F1] and
(1) of Lemma 2.9, we obtain

‖x(t, x̄)− x(t, ȳ)‖ ≤ ‖S (t, 0)‖‖x̄− ȳ‖E2+

+

t∫
0

‖S (t, θ)‖f (θ, x(θ, x̄))− f (θ, x(θ, ȳ)) ‖dθ ≤

≤MT0‖x̄− ȳ‖E2 +MT0Lf (ρ)

t∫
0

‖x(θ, x̄)− x(θ, ȳ)‖dθ.

By Lemma 3.1 again, one can verify that there exists a constant M0 > 0 such that

‖x(t, x̄)− x(t, ȳ)‖ ≤M0MT0
‖x̄− ȳ‖E2

≡ L̃‖x̄− ȳ‖E2
, for all t ∈ [0, T0],

which implies that

‖P(x̄)− P(ȳ)‖ =
∥∥x(T0, x̄)− x(T0, ȳ)

∥∥ ≤ L̃‖x̄− ȳ‖E2 .

Hence, P: E2 → X is a continuous map. Consequently, from Horn’s fixed point
theorem, we know that the operator P has a fixed point x0 ∈ E0 ⊂ X. By Lemma 3.9,
we know that the PC-mild solution x(·, x0) of Cauchy problem (3.3) corresponding
to the initial value x(0) = x0, is just T0-periodic. Therefore x(·, x0) is a T0-periodic
PC-mild solution of system (3.2). This completes the proof.

Remark 3.18. For the impulsive differential equations on a general Banach space,
if the following conditions are satisfied:

1. The PC-mild solutions of the impulsive differential equations are locally bounded
and ultimate bounded;

2. The main equation is T0-periodic at time t 6= τk;
3. Impulsive perturbations are also T0-periodic at time t = τk;
4. The map P that maps an initial value along the PC-mild solution by T0 units is

compact.

Then the impulsive differential equations has at least one T0-periodic PC-mild solu-
tion.
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