Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is well-known that the left term of the classical Hermite-Hadamard inequality is closer to the integral mean value than the right one. We show that in the multivariate case it is not true. Moreover, we introduce some related inequality comparing the methods of the approximate integration, which is optimal. We also present its counterpart of Fejér type.
Czasopismo
Rocznik
Tom
Strony
591--600
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
autor
autor
- University of Bielsko-Biała, Department of Mathematics and Computer Science, Willowa 2, 43–309 Bielsko-Biała, Poland, swasowicz@ath.eu
Bibliografia
- [1] M. Bessenyei, The Hermite–Hadamard inequality on simplices, Amer. Math. Monthly 115 (2008), 339–345.
- [2] S.S. Dragomir, C.E.M. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2002. http://www.rgmia.org/monographs/hermite_hadamard.html.
- [3] L. Fejér, Über die Fourierreihen II, Math. Naturwiss. Anz. Ungar. Akad. Wiss. 24 (1906), 369–390.
- [4] S. Łojasiewicz, An introduction to the theory of real functions, John Wiley & Sons, Chichester, 1988.
- [5] D.S. Mitrinović, I.B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229–232.
- [6] F.–C. Mitroi, C.I. Spiridon, Refinements of Hermite–Hadamard inequality on simplices, arXiv:1105.5043v6 [math.CA], to appear in Math. Rep. (Bucur.) 15(65) 2013. http://arxiv.org/PS_cache/arxiv/pdf/1105/1105.5043v6.pdf.
- [7] E. Neuman, Inequalities involving multivariate convex functions II, Proc. Amer. Math. Soc. 109 (1990), 965–974.
- [8] E. Neuman, J. Pečarić, Inequalities involving multivariate convex functions, J. Math. Anal. Appl. 137 (1989), 541–549.
- [9] C. P. Niculescu, L.E. Persson, Convex functions and their applications. A contemporary approach, Springer, New York, 2006.
- [10] J.E. Pečarić, F. Proschan, Y.L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, vol. 187, Academic Press Inc., Boston, MA, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHS-0004-0014