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ON THE UNIQUENESS OF MINIMAL PROJECTIONS
IN BANACH SPACES
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Abstract. Let X be a uniformly convex Banach space with a continuous semi-inner product.
We investigate the relation of orthogonality in X and generalized projections acting on X.
We prove uniqueness of orthogonal and co-orthogonal projections.

Keywords:minimal projection, orthogonal projection, co-orthogonal projection, uniqueness
of norm-one projection.

Mathematics Subject Classification: 41A65, 46B20, 46B25.

1. INTRODUCTION

In the theory of operators on a Hilbert space most of the terminology and techniques
are developed by use of the inner-product. It is known that a Banach space can
be represented as a semi-inner product space with a more general axiom system
than that of a Hilbert space (see [10]). Hence, in a Banach space we can define
orthogonality and transversality relations. A natural consequence of these relations
are an orthogonal set M⊥ and a transversal set M> for a set M . In a Hilbert space
X we have M⊥ =M> and X =M ⊕M⊥ for a closed subspace M of X. It turns out
that there holds the decomposition theorem on a uniformly convex Banach space with
a continuous semi-inner product. This result is presented in detail in Theorem 2.5.
However,M⊥ is not always a linear subspace of X. If it were, the space X would have
to be isomorphic to some Hilbert space by the Lindenstrauss-Tzafriri theorem [9], but
this is not always true. In Theorem 3.10 we give conditions for M⊥ to be a subspace
of X. If the set M⊥ is a subspace of the space X, then M is one-co-complemented
and the converse of this statement is also true. In this paper a new definition of a
generalized projection is given. The inspiration for this was the metric projection. The
main result in this article is Theorem 3.5. We show that for a closed subspace M in
a uniformly convex Banach space with a continuous semi-inner product there exists
at most one homogenous generalized projection P : X → M satisfying the Lipschitz
condition with the constant equal to one.
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2. AUXILIARY RESULTS

To apply Hilbert space type methods to the theory of Banach spaces, G. Lumer [10]
constructed a semi-inner product (s.i.p.) on a complex linear space X as a complex
function [·, ·] on X ×X with the following properties:

[αx+ βy, z] = α[x, z] + β[y, z], x, y, z ∈ X, α, β ∈ C, (2.1)

[x, λy] = λ[x, y], x, y ∈ X, λ ∈ C. (2.2)

[x, x] > 0 for x 6= 0, (2.3)

|[x, y]|2 ≤ [x, x][y, y], x, y ∈ X. (2.4)

(X, [·, ·]) is called a complex space with semi-inner product.
The importance of a semi-inner product space (s.i.p.s.) is that every normed space

can be represented as a semi-inner product space so that the theory of operators on
a Banach space can be represented by Hilbert space type arguments.

Theorem 2.1 ([4], [10]). A semi-inner product space (X, [·, ·]) is a normed linear
space with the norm

‖x‖ = [x, x]1/2, x ∈ X.

Every normed linear space can be made into a semi-inner product space (in general,
in infinitely many different ways).

In a normed space X we set

S = {x ∈ X : ‖x‖ = 1} .

We introduce additional properties of the semi-inner product that will help us to
carry over Hilbert space type arguments to the case of a Banach space. Note that a
semi-inner product is continuous with respect to the first component. A very conve-
nient property of a s.i.p. is continuity with respect to the second variable.

A s.i.p.s. X is called a continuous s.i.p. space when a semi-inner product satisfies
the following additional condition:
for every x, y ∈ S,

Re[y, x+ λy]→ Re[y, x] for all real λ→ 0. (2.5)

The space X is a uniformly continuous s.i.p.s. if the above limit (2.5) is approached
uniformly for all (x, y) ∈ S × S.

Define a relation on a s.i.p. space which may be called an orthogonality relation.
Let x, y ∈ X. We say that x is normal to y and y is transversal to x if [y, x] = 0. A
vector x ∈ X is normal to a subspace N and N is transversal to x if x is normal to
all vectors from N .

For a normed space, R.C. James [6] studied the orthogonality relation (in the sense
of Birkhoff) defined as follows:
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A vector x is orthogonal to y in the sense of Birkhoff if

‖x+ λy‖ ≥ ‖x‖ for all λ ∈ C.

It is worth noting that orthogonality in the sense of Birkhoff is very close to the
concept of an element of best approximation. It was shown that in a continuous s.i.p.s.
an orthogonality relation is equivalent to a Birkhoff orthogonality relation (see [4]).

Theorem 2.2 ([4]). In a continuous s.i.p.s. x is normal to y if and only if x is
orthogonal to y in the sense of Birkhoff.

Since a s.i.p. is not commutative, this orthogonality relation is not symmetric, i.e.
if x is normal to y, then y is not neccessarily normal to x. So, for a subset M of X
we define an orthogonal set by

M⊥ = {x ∈ X : ∀ y ∈M [y, x] = 0 }

and a transversal set by

M> = {x ∈ X : ∀ y ∈M [x, y] = 0 } .

It is easy to see that

X⊥ = X> = {0} , (2.6)

M ∩M⊥ = {0}, (2.7)

M ∩M> = {0}. (2.8)

2.1. THE DECOMPOSITION THEOREM

To extend Hilbert space type arguments to the theory of decomposition we need to
impose an additional structure on a s.i.p. chiefly to guarantee the existence of normal
vectors to closed subspaces.

A normed space is uniformly convex if given ε ∈ (0, 2], there exists δ(ε) > 0 such
that for x, y ∈ S, ‖x− y‖ > ε implies ‖x+ y‖/2 ≤ 1− δ(ε).

Recall the notion of strict convexity. A normed space is strictly convex if whenever
‖x‖+ ‖y‖ = ‖x+ y‖, where x, y 6= 0, then y = λx for some real λ > 0.

It is well known that uniform convexity implies strict convexity. The following two
lemmas will help us to characterize a strictly convex space by the structure of the
semi-inner product. We will also need them for further considerations. Note also that
for linearly dependent elements we have equality in the Schwarz inequality.

Lemma 2.3 ([4]). A s.i.p.s. is strictly convex if and only if whenever [x, y] = ‖x‖‖y‖,
where x, y 6= 0, then y = λx for some real λ > 0.

Lemma 2.4 ([4]). Let X be a strictly convex space with a semi-inner product. Let
y, z ∈ X. If [x, y] = [x, z] for all x ∈ X, then y = z.
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LetM andM ′ be subsets of a linear space X. We say that X =M⊕M ′ if and only
if for x ∈ X there exist unique elements xM ∈M , xM ′ ∈M ′ such that x = xM +xM ′

and M ∩M ′ = {0}.
We will prove that in a uniformly convex Banach space with a continuous

semi-inner product we have
X =M ⊕M⊥

for a closed subspace M of X.

Theorem 2.5. Let X be a uniformly convex Banach space with a continuous
semi-inner product. Let M be a closed subspace of X. Then each x ∈ X can be
uniquely decomposed in the form x = y + z with y ∈M and z ∈M⊥.

Proof. It is well known that, in a uniformly convex Banach space, for a closed subspace
M and a vector x 6∈M , there exists a unique nonzero vector y ∈M such that

‖x− y‖ = d(x,M) = inf{‖x− y′‖ : y′ ∈M}.

Let us set z = x− y. Then z is normal to M .
In order to prove the uniqueness of the representation x = y + z we assume

that x = y1 + z1 = y2 + z2, where y1, y2 ∈ M and z1, z2 ∈ M⊥. It follows that
z1 − z2 = y1 − y2 ∈ M . If z1 − z2 ∈ M ∩M⊥, then z1 − z2 = 0 and y1 = y2. If
z1 − z2 6∈M⊥, then

0 = [z1 − z2, z1] = [z1, z1]− [z2, z1] ≥ ‖z1‖2 − ‖z1‖ ‖z2‖,
0 = [z2 − z1, z2] = [z2, z2]− [z1, z2] ≥ ‖z2‖2 − ‖z1‖ ‖z2‖.

Therefore,
‖z1‖ = ‖z2‖ and ‖z1‖ ‖z2‖ = [z1, z2].

By the strict convexity of X, we obtain z1 = z2. This implies that y1 = y2.

In all that follows, we assume that X is a uniformly convex Banach space with a
continuous semi-inner product and M is a proper closed subspace of X.
In this case, we can define a metric projection Pm : X → M such that Pm(x) is an
element that best approximates x ∈ X with respect to M, i.e.

‖x− Pm(x)‖ = dist(x,M).

In a Hilbert space we have M⊥ =M>. The following theorem shows the relation-
ship between an orthogonal set and a transversal set.

Theorem 2.6. Let X be a uniformly convex Banach space with a continuous
semi-inner product. Let M be a closed subspace of X. Then

M ⊂
(
M>

)⊥
,(

M⊥
)>

=M.
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Proof. If x ∈M , then [y, x] = 0 for y ∈M>, hence

M ⊂
(
M>

)⊥
.

If x ∈M , then we have [x, y] = 0 for y ∈M⊥, i.e. x ∈ (M⊥)>.
Conversely, suppose that x ∈ (M⊥)>, i.e. [x, y] = 0 for y ∈ M⊥. By Theorem

2.5, there exist x1 ∈ M and x2 ∈ M⊥ such that x = x1 + x2. Then [x1 + x2, y] = 0.
Hence [x2, y] = 0 for all y ∈ M⊥. Setting y = x2, we deduce that x2 = 0. Therefore,
x = x1 ∈M .

It should be noted that the set M> is a closed subspace of X. According to
Theorem 2.2 M⊥ is a closed subset (but not necessarily a subspace) of X.

Example 2.7. Let X = lp, 1 < p < ∞. Let us equip lp with a semi-inner product
given by

[y, x] =

‖x‖
2−p
p

∞∑
k=1

ykxk|xk|p−2, x 6= 0,

0, x = 0,

where ‖x‖p =
( ∞∑

k=1

|xk|p
)1/p

.

(i) Let M = span{e1, e2, . . . , en}, where n ∈ N and (ei)
n
i=1 are elements from

the standard basis in lp. Then v is orthogonal to M if and only if v(i) = 0 for
i = 1, 2, . . . , n. Note that in this case M⊥ is a linear subspace of lp.

(ii) Take n ∈ N, n > 1. Let M = span{e}, where e(i) = 1 for i = 1, 2, . . . , n and
e(i) = 0 otherwise. Then v is orthogonal to M if and only if

∑n
i=1 |v(i)|p−2v(i) = 0.

In this case M⊥ is not a linear subspace of lp.

3. ORTHOGONAL PROJECTIONS IN BANACH SPACES

3.1. GENERALIZED PROJECTIONS

Let X be a Banach space and M be a subspace of X. An operator P : X → M is
called a generalized projection if it satisfies the following conditions:

(P1) P is continuous;
(P2) kerP = {x− Px : x ∈ X};
(P3) X = kerP ⊕M ;
(P4) For every x ∈ X, we set P (x) = xM , where x = xkerP + xM , xkerP ∈ kerP ,

xM ∈M .

An inspiration to define a generalized projection was the metric projection Pm that
satisfies the conditions (P1)-(P4). The continuous property of the metric projection
is a consequence of the assumptions on the space X (see [5]). It is easy to show that
every continuous linear projection is a generalized projection.
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Note that if there exists a projection P : X → M , then M is closed. Moreover,
a projection P is linear if and only if kerP is a subspace of X. Furthermore, every
linear and continuous projection has properties from (P1) to (P4).

3.2. ORTHOGONAL PROJECTIONS

Let P : X → M be a generalized projection. We say that P is orthogonal if
(kerP )⊥ =M .

The following theorem holds.

Theorem 3.1. Let M be a closed subspace of a uniformly convex Banach space X
with a continuous semi-inner product. Let P : X →M be a projection (not necessarily
linear) satisfying conditions (P2)-(P4). If P is homogeneous and

‖P (x)− P (y)‖ ≤ ‖x− y‖ for all x, y ∈ X,

then P is orthogonal.

Proof. Note that P (0) = 0, hence for x ∈ X we have

‖P (x)‖ ≤ ‖x‖. (3.1)

Moreover, if y−P (y) ∈ kerP , then λ(y−P (y)) ∈ kerP . Indeed, using the homogeneity
of P we obtain

P (λ(y − P (y))) = λP (y − P (y)) = 0.

We shall show that (kerP )⊥ =M . Setting x equal to P (x) + λ(y−P (y)) in (3.1)
we obtain

‖P (P (x) + λ(y − P (y)))‖ ≤ ‖P (x) + λ(y − P (y))‖,
hence

‖P (x)‖ ≤ ‖P (x) + λ(y − P (y))‖
by virtue of Theorem 2.2, which is equivalent to the fact that P (x) is orthogonal to
every z ∈ kerP .

Conversely, suppose that x ∈ (kerP )⊥. Then [z, x] = 0 for z ∈ kerP . Hence
[x− P (x), x] = 0 and

‖x‖2 = [x− P (x) + P (x), x] = [x− P (x), x] + [P (x), x] ≤ ‖x‖‖P (x)‖ ≤ ‖x‖2.

By assumptions, it follows that ‖x‖ = ‖P (x)‖ and ‖P (x)‖‖x‖ = [P (x), x]. By the
strict convexity of X, we obtain P (x) = x, and so x ∈M .

Now we can conclude that in a uniformly convex Banach space with a continuous
semi-inner product every orthogonal projection is linear and sastisfies the Lipschitz
condition.

Theorem 3.2. Assume that X is a uniformly convex Banach space with a continuous
semi-inner product and M is a closed subspace of X. Let P : X →M be a generalized
projection. If P is orthogonal, then P is linear and Lipschitz continuous with the
constant equal to one.
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Proof. Note that P (x1 + x2)− P (x1)− P (x2) ∈M for x1, x2 ∈ X. Let

y = P (x1 + x2)− P (x1)− P (x2).

Then

‖P (x1 + x2)− P (x1)− P (x2)‖2 = [P (x1 + x2)− P (x1)− P (x2), y] =
= −[(x1 + x2)− P (x1 + x2), y] + [x1 − P (x1), y] + [x2 − P (x2), y] = 0.

Therefore, P (x1 + x2) = P (x1) + P (x2). Now, let y = P (αx)− αP (x). Then

‖P (αx)− αP (x)‖2 = [P (αx)− αP (x), y] =
= −[αx− P (αx), y] + α[x− P (x), y] = 0,

hence P (αx) = αP (x) for x ∈ X and a scalar α.
We next show that ‖P‖ = 1. Let x ∈ X. Then Px− x ∈ kerP and

‖Px‖2 = [Px, Px] = [Px− x+ x, Px] = [Px− x, Px] + [x, Px] = [x, Px].

Using (2.4) we get
‖Px‖ ≤ ‖x‖,

hence ‖P‖ = 1.

Lemma 3.3. Let P : X → M be an orthogonal projection. Then P is a unique or-
thogonal projection.

Proof. Let Pi be an orthogonal projection (i = 1, 2). Hence (kerPi)
⊥ =M (i = 1, 2).

Then P1x− P2x ∈M and

‖P1x− P2x‖2 = [P1x− P2x, P1x− P2x] =

= [P1x− x+ x− P2x, P1x− P2x] =

= [P1x− x, P1x− P2x] + [x− P2x, P1x− P2x] = 0.

Consequently, we conclude that P1x = P2x, which completes the proof.

Lewicki and Skrzypek proved that the minimal projection onto a symmetric sub-
space of a smooth Banach space is unique (see [8, Theorem 2.9]). Now, we show an
analogous theorem in a uniformly convex Banach space X with a continuous s.i.p. In
its proof we use the structure of a semi-inner product.

Theorem 3.4. Let X be a uniformly convex Banach space with continuous semi-inner
product. Let M be a closed subspace of X. If there exists a linear projection
P : X →M such that ‖P‖ = 1, then P is unique.

Proof. Suppose that there exist linear projections P1, P2 such that ‖P1‖ = ‖P2‖ = 1.
Then according to Theorem 3.1 they are orthogonal and hence P1 = P2 by Lemma 3.3.
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A stronger result is given below. Its proof is similar to those of Theorem 3.4, so
we omit it.

Theorem 3.5. LetM be a closed subspace of a uniformly convex Banach space X with
continuous semi-inner product. If there exists a homogeneous projection P : X → M
satisfying (P1)-(P4) such that

‖P (x)− P (y)‖ ≤ ‖x− y‖ for all x, y ∈ X,

then P is unique.

A linear subspace M is one-complemented if there exists a linear projection
P : X →M such that ‖P‖ = 1.

Remark 3.6. Let M be a subspace of X such that dimM = 1. Then from the
Hahn-Banach theorem there exists a linear projection such that ‖P‖ = 1. Therefore,
P is an orthogonal projection and M is one-complemented.

In this paper we give a necessary and sufficient condition for the set M⊥ to be a
subspace of X. We also show when the equality

M =
(
M>

)⊥
(3.2)

holds.

Theorem 3.7. Let X be a uniformly convex Banach space with continuous semi-inner
product and M be a closed subspace of X. Then M is one-complemented if and only
if there exists a closed subspace V of X such that V ⊥ =M .

Proof. LetM be one-complemented, hence there exists a linear, continuous projection
P : X → M such that ‖P‖ = 1. By virtue of Theorem 3.1, P is an orthogonal
projection, thus (kerP )⊥ = M . Setting V = kerP we complete the first part of the
proof.

Conversely, suppose that there exists a closed subspace V such that V ⊥ = M .
Then X = V ⊕ V ⊥ = V ⊕M . We define an orthogonal projection PV : X →M such
that

PV x = PV (xV + xM ) = xM ,

where xV ∈ V, xM ∈M . This finishes the proof.

The following theorem gives a characterization of one-complemented spaces.

Theorem 3.8. A subspaceM of a uniformly convex Banach space X with continuous
semi-inner product is one-complemented if and only if

M = (M>)⊥. (3.3)

Moreover, if (3.3) holds, then a projection P : X →M given by

P (xM + xM>) = xM , xM ∈M, xM> ∈M>, (3.4)

is the only projection with the norm equal to one.
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Proof. From Theorem 3.7 we deduce that exists a closed subspace V of X such that

V ⊥ =M. (3.5)

Hence

V =
(
V ⊥
)>

=M>. (3.6)

From (3.5) and (3.6) we get M = V ⊥ =
(
M>

)⊥
. By Theorem 2.5, we deduce that

X = V ⊕ V ⊥ =M ⊕M>.

Conversely, let M = (M>)⊥. Hence

X = (M>)⊥ ⊕M> =M ⊕M>. (3.7)

From (3.7) it easy to see that a linear projection P : X → M given by the formula
(3.4) is orthogonal.

3.3. CO-ORTHOGONAL PROJECTIONS

A projection P is called co-orthogonal if M⊥ = kerP . Note that not every
co-orthogonal projection is linear, for example a metric projection.

We start with the following theorem.

Theorem 3.9. Let M be a closed proper subspace of a uniformly convex Banach
space X with a continuous semi-inner product. Let P : X →M be a linear projection.
Then the following conditions are equivalent:

(i) P is co-orthogonal,
(ii) ‖Id− P‖ = 1.

Proof. Suppose that the linear projection P : X →M is co-orthogonal.
Let x ∈ X. Then x− Px ∈ kerP and

‖x− Px‖2 = [x− Px, x− Px] = [x, x− Px]− [Px, x− Px] =
= [x, x− Px] ≤ ‖x‖‖x− Px‖.

Therefore, we have
‖x− Px‖ ≤ ‖x‖,

hence ‖Id− P‖ = 1.
Conversely, suppose that for each x ∈ X we get

‖x− Px‖ ≤ ‖x‖. (3.8)

We now show that kerP =M⊥. Setting x equal to x− Px+ λPy in (3.8) we obtain

‖x− Px+ λPy − P (x− Px+ λPy)‖ ≤ ‖x− Px+ λPy‖,
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hence
‖x− Px‖ ≤ ‖x− Px+ λPy‖

by virtue of Theorem 2.2, which is equivalent to x−Px is orthogonal to every z ∈M .
On the other hand, suppose that x ∈ M⊥. Then [z, x] = 0 for z ∈ M . Hence

[Px, x] = 0 and
‖x‖2 = [x− Px, x].

Therefore,
‖x‖2 = [x− Px, x] ≤ ‖x− Px‖‖x‖ ≤ ‖x‖2.

By assumption it follows ‖x−Px‖ = ‖x‖. By Lemma 2.4, we obtain that x−Px = x,
therefore x ∈ kerP .

Let us now characterize the linearity of the set of M⊥. We present the following
theorem.

Theorem 3.10. Let M be a closed proper subspace of a uniformly convex Banach
space X with a continuous semi-inner product. Then the following conditions are
equivalent:

(i) the set M⊥ is a linear space,
(ii) there exists a linear projection P : X →M such that ‖Id− P‖ = 1.

Proof. If M⊥ is a linear subspace, we get X = M ⊕M⊥. Then it easy to see that
linear projection P : X →M given by the formula

Px = P (xM + xM⊥) = xM , x ∈ X (3.9)

is co-orthogonal.
Conversely, if a linear projection P : X →M is co-orthogonal, then kerP =M⊥.

Finally, we will prove the following lemma.

Lemma 3.11 ([8]). Let P : X → M be a co-orthogonal linear projection. Then P is
a unique co-orthogonal linear projection.

Proof. Let Pi be a co-orthogonal projection, hence kerPi = M⊥ (i = 1, 2). Then
P1x − P2x ∈ M and x − P1x ∈ M⊥, x − P2x ∈ M⊥. Since M⊥ is a subspace of X,
then P1x− P2x ∈ M⊥. According to (2.7) we conclude P1x = P2x, which completes
the proof.

Let M be a closed proper subspace of a uniformly convex Banach space X with a
continuous semi-inner product.
We say that M is one-co-complemented if there exists a linear projection P : X →M
such that ‖Id− P‖ = 1.
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From the above discussion we obtain the following result.

Theorem 3.12. Let M be a closed proper subspace of a uniformly convex Banach
space X with a continuous semi-inner product. Then M is one-co-complemented if
and only if M⊥ is a vector space. Moreover, if M⊥ is a linear space, then a projection
P : X →M given by

P (xM + xM⊥) = xM ,

is the only projection which satisfies the equality ‖Id− P‖ = 1.
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