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ON THE ASYMPTOTIC BEHAVIOUR
OF SOLUTIONS

TO A LINEAR FUNCTIONAL EQUATION

Dariusz Sokołowski

Abstract. We investigate the asymptotic behaviour at infinity of solutions of the equation

ϕ(x) =

∫
S

ϕ(x+M(s))σ(ds).

We show among others that, under some assumptions, any positive solution of the equation
which is integrable on a vicinity of infinity or vanishes at +∞ tends on some sequence to
zero faster than some exponential function, but it does not vanish faster than another such
function.
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1. INTRODUCTION

The aim of this paper is to study the behaviour at infinity of solutions with a constant
sign to the functional equation

ϕ(x) =

∫
S

ϕ(x+M(s))σ(ds). (1.1)

More precisely, we shall compare at infinity these solutions with some exponential
functions. The crucial role is played here by real roots of the characteristic equation∫

S

eλM(s)σ(ds) = 1. (1.2)
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Together with equation (1.1) we shall consider also the inequalities

ϕ(x) ≥
∫
S

ϕ(x+M(s))σ(ds) (1.3)

and
ϕ(x) ≤

∫
S

ϕ(x+M(s))σ(ds). (1.4)

Similar subject matter to this and some other equations and inequalities has been
touched, among others, by B. Choczewski, L. Anczyk, M. Kuczma, R.O. Davies and
A.J. Ostaszewski; see [7, Sec. 3.3], [4, Theorems 5 and 6], [12, Lemma 2.2.2] and [14].

Equation (1.1) was studied by many authors, see Part 4 of the survey paper
[1] and Sections 4.4.2, 5.4 of the monograph [3]. The first who considered Equation
(1.1) were G. Choquet and J. Deny assuming that M is the identity on a locally
compact topological abelian group S and σ is a probabilistic measure defined on the
σ-field generated by the family of all real continuous functions defined on S. They
characterized all real continuous and bounded solutions of (1.1), see [10, Ch. VIII,
§1]; cf. also [12, Ch. 2, Ch. 9] and [9]. In the case of a finite set S, M. Laczkovich [8]
gave the form of all nonnegative solutions of (1.1) defined on R which are Lebesgue
measurable. If (1.2) has real roots, then any such a solution is a.e. equal to a linear
combination of (at most two) functions of the form

p(x)eλx, (1.5)

where p is a function constant on cosets with respect to cl〈supp(σ ◦M−1)〉 and λ is a
real root of (1.2); if (1.2) has no real roots, then the only such solution is the function
a.e. equal to zero; see also [5, Ch. III]. In the general case all nonnegative and locally
integrable solutions of (1.1) defined on R are a.e. equal to a linear combination of
functions of the form (1.5), see [12, Theorem 8.1.6].

Important theorems concerning inequality (1.3) obtained M. Pycia [11]. He inves-
tigated among others solutions of (1.3) such that

lim inf
x→−∞

ϕ(x)
e−λx

|x|
≥ 0 and lim inf

x→+∞
ϕ(x)

e−λx

|x|
≥ 0,

where λ is the only real root of (1.2), and showed that (under suitable assumptions)
they are a.e. equal to ϕ(0)eλx.

Bounded and Borel solutions of (1.4) were studied recently by K. Baron and W.
Jarczyk [2] in the case of probabilistic measure.

In the above mentioned papers a key point is the fact that solutions considered
there have a constant sign on the whole coset (or on the subsemigroup generated
by supp(σ ◦M−1)), or have specified properties in both infinities. R.O. Davies and
A.J. Ostaszewski [4] were the first authors who studied, without any assumptions
on roots of (1.2), solutions of (1.1) having a constant sign on a vicinity of one of
infinities. However, they considered only the case, where S consists of two elements.
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They showed that the existence of such solutions having some additional properties
implies the existence of real roots of (1.2) of a specified sign; concerning the general
case see [13–15]. Note that there exist solutions of (1.1) positive on a half-line which
have no constant sign on R, cf. [14, Preliminaries].

At present we will consider solutions having a constant sign only on a vicinity of
infinity showing among other things that their behaviour is connected with real roots
of (1.2).

2. ASSUMPTIONS AND DEFINITIONS

In what follows (S,Σ, σ) is a measure space with a finite measure σ and M : S → R
is a Σ-measurable bounded function with σ(M 6=0) > 0. Moreover,

m := sup{|M(s)| : s ∈ S}.

A nonempty set W ⊂ R is called invariant if W + 〈M(S)〉 ⊂ W , where 〈M(S)〉
denotes the additive subgroup of R generated by M(S). By a solution of (1.1) (resp.
(1.3), resp. (1.4)) we mean a real function ϕ defined on a set of the form (a,+∞)∩W ,
where a ∈ [−∞,+∞) andW ⊂ R is invariant, such that for every x ∈ (a+m,+∞)∩W
the integral

∫
S
ϕ(x+M(s))σ(ds) exists and (1.1) (resp. (1.3), resp. (1.4)) holds. By a

regular solution we mean a solution defined on an interval, which is Borel measurable
and Lebesgue integrable on every finite interval contained in its domain. By a positive
(resp. negative) solution we mean a solution which is nonnegative (resp. nonpositive)
and positive a.e. (resp. negative a.e.) on its domain. By a solution with a constant
sign we mean a solution which is either positive or negative.

3. PRELIMINARIES

Considering real roots of (1.2) we shall make use of the following remark.

Remark 3.1. The function u : R→ R given by

u(λ) =

∫
S

eλM(s)σ(ds)

is smooth and strictly convex. In particular equation (1.2) has at most two real roots.
Since

u(λ) =

∫
{M<0}

eλM(s)σ(ds) + σ(M=0) +

∫
{M>0}

eλM(s)σ(ds)

for λ ∈ R, we have

u(−∞) = +∞ · σ(M<0) + σ(M=0), u(+∞) = +∞ · σ(M>0) + σ(M=0).

Consequently, u increases if and only if M ≥ 0 a.e., and u decreases if and only if
M ≤ 0 a.e.
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In our further investigations we shall also rely on the following fact; cf.
[11, Remark 2].

Remark 3.2. Assume λ is a real number. Then ϕ is a solution of (1.3) if and only
if the function

ϕ(x)

eλx
(3.1)

is a solution of
ψ(x) ≥

∫
S

ψ(x+M(s))τ(ds), (3.2)

where τ : Σ→ [0,+∞) is given by

τ(A) =

∫
A

eλM(s)σ(ds). (3.3)

Clearly, for every A ∈ Σ, τ(A) > 0 if and only if σ(A) > 0, and∫
S

e(λ0+λ)M(s)σ(ds) =

∫
S

eλ0M(s)τ(ds)

for any number λ0.

4. ASYMPTOTIC BEHAVIOUR OF REGULAR SOLUTIONS

According to [13, Theorem 2], the existence of a positive regular solution of (1.3)
implies the existence of a real root of (1.2). Here we compare the behaviour of solutions
of (1.1) with eγx, where γ depends on the real root of (1.2).

The real roots of (1.2), if they exist, we shall denote by λ1 and λ2 assuming that
if they are different then λ1 < λ2.

Theorem 4.1. If ϕ : (a,+∞)→ R is a positive regular solution of (1.1), then

+∞∫
c

ϕ(x)

eλ1x
dx = +∞ for c ≥ a (4.1)

and
lim sup
x→+∞

ϕ(x)

eλ1x
> 0. (4.2)

Proof. With λ = λ1 let ψ denote the function (3.1) and define τ : Σ → [0,+∞) by
(3.3). It follows from Remark 3.2 that ψ is a solution of

ψ(x) =

∫
S

ψ(x+M(s))τ(ds).
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Applying [13, Theorems 27 and 29] and Remark 3.2 we infer that ψ is not integrable
on a half-line infinite from the right and due to [13, Corollary 36] and Remark 3.2 it
does not vanish at +∞.

Theorem 4.2. If σ(M < 0) > 0 and ϕ : (a,+∞) → R is a positive regular solution
of (1.3), then (4.1) holds and

lim sup
x→+∞

ϕ(x)

eγx
= +∞ for γ < λ1.

Proof. The property (4.1) we get, proceeding as before, from [13, Theorem 29].
Suppose that

lim sup
x→+∞

ϕ(x)

eγx
< +∞

for some γ < λ1 and fix λ ∈ (γ, λ1). Then the function (3.1) vanishes at +∞ and
according to Remark 3.2 it is a (regular) solution of (3.2) with τ given by (3.3). Since
τ(S) = u(λ) 6= 1, it follows from [13, Remark 33] and Remark 3.2 that there is a real
number κ < 0 with u(κ+ λ) = 1. This contradicts the fact that κ+ λ < λ1.

Theorem 4.3. If
M ≥ 0 a.e. and σ(M=0) < 1, (4.3)

then every positive regular solution ϕ : (a,+∞)→ R of (1.4) has the properties (4.1)
and (4.2).

In the proof we will need two other facts.

Lemma 4.4. Assume (4.3). If (1.4) has a positive regular solution integrable on a
half-line infinite from the right, then (1.2) has a negative root.

Proof. Let ϕ : (a,+∞) → R be a positive, regular and integrable solution of (1.4)
with a finite a. Applying [13, Lemma 4] we see that the function

ϕ(x) =

+∞∫
x

ϕ(y)dy, x > a, (4.4)

is a positive (regular) solution of (1.4) vanishing at +∞ and the existence of a negative
root of (1.2) gives the following lemma.

Lemma 4.5. Assume (4.3). If (1.4) has a positive regular solution vanishing at
infinity, then (1.2) has a negative root.

Proof. Let ϕ : (a,+∞)→ R be a positive regular solution of (1.4) vanishing at infinity
and a ∈ R. Using [13, Lemma 25] we have

(1− σ(S))

+∞∫
a+m

ϕ(y)dy ≤
∫
S

 a+m∫
a+m+M(s)

ϕ(y)dy

σ(ds). (4.5)
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Since
∫ a+m
a+m+M(s)

ϕ(y)dy is a.e. nonpositive and negative on the set of positive measure,
viz. on {M>0}, the right-hand-side of (4.5) is negative. Consequently σ(S) > 1, i.e.,
u(0) > 1, and so (cf. Remark 3.1) (1.2) has no nonnegative root. But it follows from
(4.3) that u(−∞) < 1 and thus (1.2) has a negative root.

Proof of Theorem 4.3. According to Remark 3.2 we can assume that λ1 = 0. Then
(1.2) has no negative root and it is enough to use Lemmas 4.4 and 4.5.

Theorem 4.6. If ϕ : (a,+∞)→ R is a positive regular solution of (1.1), then

+∞∫
c

ϕ(x)

eγx
dx < +∞ for any real numbers c ≥ a and γ > λ2 (4.6)

and
lim inf
x→+∞

ϕ(x)

eλ2x
< +∞ or

∫
S

M(s)eλ2M(s)σ(ds) = 0. (4.7)

Proof. Fix γ > λ2. Supposing that the integral in (4.6) is infinite and applying Remark
3.2 and [13, Theorems 16 and 19] we infer that (1.2) has a root in interval [γ,+∞);
a contradiction.

For the proof of (4.7) we can assume that λ2 = 0. Then (1.2) has no positive root
and according to [13, Theorems 7 and 9] we have (4.7).

Theorem 4.7. If σ(M > 0) > 0, then every positive regular solution ϕ : (a,+∞)→ R
of (1.3) has the properties (4.6) and (4.7).

Proof. We proceed as before using now [13, Theorems 19 and 9].

Theorem 4.8. If
M ≤ 0 a.e. and σ(M=0) < 1, (4.8)

and ϕ : (a,+∞)→ R is a positive regular solution of (1.4), then (4.6) holds and

lim inf
x→+∞

ϕ(x)

eλ2x
< +∞.

In the proof we will need the following lemma.

Lemma 4.9. Assume (4.8). If (1.4) has a positive regular solution which is not
integrable on a half-line infinite from the right, then (1.2) has a nonnegative root.

Proof. We can assume that u(0) 6= 1, i.e., that σ(S) 6= 1. Let ϕ : (a,+∞) → R be a
positive regular solution of (1.4) which is not integrable and a ∈ R. Making use of
[13, Lemma 3] it is easy to check that the function

x∫
a+m

ϕ(y)dy +
1

σ(S)− 1

∫
S

 a+m∫
a+m+M(s)

ϕ(y)dy

σ(ds), x > a, (4.9)
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is also a regular solution of (1.4). Clearly (4.9) has an infinite limit at +∞. Applying
now [15, Lemma 6] we infer that (1.2) has a positive root.

Proof of Theorem 4.8. We proceed as in the proof of Theorem 4.6 using Lemma 4.9
and [15, Lemma 6].

We show at present that we cannot replace the inequalities from Theorems 4.2,
4.3, 4.7, 4.8 by the opposite ones there. More precisely, we show that these inequalities
have analytic solutions tending very fast to zero (in the first two cases) and to infinity
(in the last two cases). The next two technical lemmas are very helpful.

Lemma 4.10. Assume ϕ : (b,+∞)→ (0,+∞) is a decreasing function.

(i) If there is an r ∈ (0,+∞) such that

lim sup
x→+∞

ϕ(x+ r)

ϕ(x)
< σ(M < −r), (4.10)

then there exists a real number a ≥ b such that the function ϕ|(a,+∞) is a solution
of (1.4).

(ii) If M ≥ 0 a.e. and there is an r ∈ (0,+∞) such that σ(M ≥ r) > 0 and

lim sup
x→+∞

ϕ(x+ r)

ϕ(x)
<

1− σ(M < r)

σ(M ≥ r)
, (4.11)

then there exists a real number a ≥ b such that the function ϕ|(a,+∞) is a solution
of (1.3).

Proof. Assuming (4.10) we can find a number a ≥ b such that

ϕ(x+ r)

ϕ(x)
< σ(M < −r) for x > a

and for any x > a+m we have∫
S

ϕ(x+M(s))σ(ds) ≥ σ(M < −r)ϕ(x− r) > ϕ(x).

In the case of (4.11) take an a ≥ b such that

ϕ(x+ r)

ϕ(x)
<

1− σ(M < r)

σ(M ≥ r)
for x > a.

Since M ≥ 0 a.e., for any x > a+m we get then∫
S

ϕ(x+M(s))σ(ds) =

∫
{M<r}

ϕ(x+M(s))σ(ds) +

∫
{M≥r}

ϕ(x+M(s))σ(ds) ≤

≤ σ(M < r)ϕ(x) + σ(M ≥ r)ϕ(x+ r) < ϕ(x).
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Lemma 4.11. Assume ϕ : (b,+∞)→ (0,+∞) is an increasing function.

(i) If there is an r ∈ (0,+∞) such that

lim sup
x→+∞

ϕ(x)

ϕ(x+ r)
< σ(M > r), (4.12)

then there exists a real number a ≥ b such that the function ϕ|(a,+∞) is a solution
of (1.4).

(ii) If M ≤ 0 a.e. and there is an r ∈ (0,+∞) such that σ(M ≤ −r) > 0 and

lim sup
x→+∞

ϕ(x)

ϕ(x+ r)
<

1− σ(M > −r)
σ(M ≤ −r)

, (4.13)

then there exists a real number a ≥ b such that the function ϕ|(a,+∞) is a solution
of (1.3).

Proof. Assuming (4.12) we can find a number a ≥ b such that

ϕ(x)

ϕ(x+ r)
< σ(M > r) for x > a

and for any x > a+m we have∫
S

ϕ(x+M(s))σ(ds) ≥ σ(M > r)ϕ(x+ r) > ϕ(x).

In the case of (4.13) take an a ≥ b such that

ϕ(x)

ϕ(x+ r)
<

1− σ(M > −r)
σ(M ≤ −r)

for x > a.

Since M ≤ 0, for any x > a+m we then get∫
S

ϕ(x+M(s))σ(ds) ≤ σ(M ≤ −r)ϕ(x− r) + σ(M > −r)ϕ(x) < ϕ(x).

In our construction of the above mentioned analytic solutions we use a strictly
increasing, convex and analytic solution A : (0,+∞)→ (1,+∞) of the equation

A(x+ r) = eA(x) − 1 (4.14)

satisfying the condition

lim
x→+∞

A(x)

expn(x)
= +∞ for n ∈ N, (4.15)

where expn denotes n-th iterate of exp. It is well known (see [6, p.174]) that for any
r ∈ (0,+∞) such a solution exists.
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Theorem 4.12. If σ(M < 0) > 0, then (1.4) has a strictly decreasing and analytic
solution ϕ : (a,+∞)→ (0,+∞) such that

lim
x→+∞

ϕ(x) expn(x) = 0 for n ∈ N. (4.16)

Proof. Take an r ∈ (0,+∞) with σ(M < −r) > 0, a strictly increasing, analytic
solution A : (0,+∞) → (1,+∞) of (4.14) satisfying (4.15) and define ϕ : (0,+∞) →
(0, 1) by

ϕ(x) =
1

A(x)
. (4.17)

Clearly ϕ is a strictly decreasing and analytic function. Making use of (4.14), (4.15)
we get

lim
x→+∞

ϕ(x+ r)

ϕ(x)
= lim
x→+∞

A(x)

eA(x) − 1
= 0 < σ(M < −r)

and (4.16). By virtue of the first part of Lemma 4.10, there exists an a ≥ 0 such that
ϕ|(a,+∞) is a solution of (1.4).

Theorem 4.13. If (4.3) holds, then (1.3) has a strictly decreasing and analytic so-
lution ϕ : (a,+∞)→ (0,+∞) with (4.16).

Proof. According to (4.3) we can choose a positive real r so that

σ(M < r) < 1 and σ(M ≥ r) > 0.

Let A : (0,+∞) → (1,+∞) be a strictly increasing and analytic solution of (4.14)
satisfying (4.15). Using the second part of Lemma 4.10 we see that the desired solution
is a restriction of ϕ : (0,+∞)→ (0, 1) given by (4.17).

Remark 4.14. For any Lebesgue measurable function ϕ : R → (0,+∞) satisfying
(4.16) there is a real number a such that

+∞∫
a

ϕ(x) expn(x)dx < +∞ for n ∈ N.

Proof. It is enough to prove that

expn(x)

expn+1(x)
≤ e−x for x ≥ ln 2 and n ∈ N.

We omit an easy inductive proof of this property.

Theorem 4.15. If σ(M > 0) > 0, then (1.4) has a strictly increasing, convex and
analytic solution ϕ : (a,+∞)→ R such that

lim
x→+∞

ϕ(x)

expn(x)
= +∞ for n ∈ N. (4.18)
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Proof. Take an r ∈ (0,+∞) with σ(M > r) > 0 and a strictly increasing, convex
and analytic solution A : (0,+∞)→ (1,+∞) of (4.14) satisfying (4.15). By virtue of
the first part of Lemma 4.11 there is an a ≥ 0 such that A|(a,+∞) is a solution of
(1.4).

Theorem 4.16. If (4.8) holds, then (1.3) has a strictly increasing, convex and ana-
lytic solution ϕ : (a,+∞)→ R with (4.18).

Proof. According to (4.8) we can choose a positive real r so that

σ(M > −r) < 1 and σ(M ≤ −r) > 0.

Taking now a strictly increasing, convex and analytic solution A : (0,+∞)→ (1,+∞)
of (4.14) satisfying (4.15) and applying the second part of Lemma 4.11 we obtain the
desired solution of (1.3).

5. ASYMPTOTIC BEHAVIOUR OF INCREASING SOLUTIONS

Here we show that if σ(S) 6= 1, then near infinity the graph of any increasing solution
of (1.1) is situated over the graph of some exponential function with infinite limit
at +∞. Let

ρ :=
lnσ(S)

m
.

Theorem 5.1. If ϕ : (a,+∞)∩W → (0,+∞) is an increasing solution of (1.1), then

ϕ(x)

e|ρ|x
≥ min

{
σ(S),

1

σ(S)

}
· sup

{
ϕ(y)

e|ρ|y
: y ∈ (a, x] ∩W

}
for x ∈ (a,+∞) ∩W,

and, moreover, either |ρ| is a root of (1.2) or

lim
x→+∞

ϕ(x)

e|ρ|x
= +∞.

This result is an immediate consequence of theorems concerning inequalities given
below, viz. Corollary 5.4 and Theorems 5.9, 5.2.

Theorem 5.2. If σ(S) > 1 and ϕ : (a,+∞) ∩W → R is a solution of (1.3) bounded
from below by a positive constant C, then a is a real number and

ϕ(x)

eρx
≥ C

σ(S)eρa
for x ∈ (a,+∞) ∩W ; (5.1)

moreover, either ρ is a root of (1.2) or

lim
x→+∞

ϕ(x)

eρx
= +∞. (5.2)
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Proof. According to [14, Lemma 1] we have

ϕ(x) ≥ Cσ(S)n for n ∈ N ∪ {0} and x ∈ (a+ nm,+∞) ∩W.

In particular a is finite. Fix x ∈ (a,+∞) ∩W and put

N = max{n ∈ N ∪ {0} : x > a+ nm}.

Then
σ(S)N

eρx
= e(N−

x
m ) lnσ(S) ≥ e−(1+ a

m ) lnσ(S) =
1

σ(S)eρa

and
ϕ(x) ≥ Cσ(S)N ,

whence (5.1) follows.
Assume now that

lim inf
x→+∞

ϕ(x)

eρx
< +∞.

Since, due to (5.1), we have

0 < lim inf
x→+∞

ϕ(x)

eρx
,

it results from [14, Theorem 2(i)] that u(ρ) ≤ 1. Moreover,

u(ρ) =

∫
S

eρM(s)σ(ds) ≥
∫
S

e−ρmσ(ds) = 1,

i.e., ρ is a root of (1.2).

The following remark shows that in most cases we have (5.2).

Remark 5.3. If σ(S) 6= 1, then ρ is a root of (1.2) if and only if M = −m a.e. (and
in this case ρ is the only real root of (1.2)), and −ρ is a root of (1.2) if and only if
M = m a.e. (and in this case −ρ is the only real root of (1.2)).

From the above theorem we draw two conclusions concerning increasing solutions
as well as solutions which are not integrable on a half-line infinite from the right.

Corollary 5.4. If σ(S) > 1 and ϕ : (a,+∞)∩W → (0,+∞) is an increasing solution
of (1.3), then

ϕ(x)

eρx
≥ 1

σ(S)
sup

{
ϕ(y)

eρy
: y ∈ (a, x] ∩W

}
for x ∈ (a,+∞) ∩W.

Proof. Fix x ∈ (a,+∞) ∩W and y ∈ (a, x] ∩W . Since ϕ|(y,+∞)∩W is a solution of
(1.3) bounded from below by ϕ(y) > 0, then applying the first part of Theorem 5.2
we have

ϕ(x)

eρx
≥ 1

σ(S)

ϕ(y)

eρy
.
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Before passing to solutions which are not integrable we will prove the following
lemma.

Lemma 5.5. If a is a real number, ϕ : (a,+∞)→ R is Lebesgue integrable on every
finite interval contained in (a,+∞), and λ > 0, then

lim sup
x→+∞

ϕ(x)

eλx
≥ λ lim sup

x→+∞

∫ x
a
ϕ(y)dy

eλx
.

Proof. Put

d = lim sup
x→+∞

∫ x
a
ϕ(y)dy

eλx
,

suppose

lim sup
x→+∞

ϕ(x)

eλx
< λd

and choose real numbers D < λd and b ≥ a so that

ϕ(x) ≤ Deλx for x > b.

Then
x∫
b

ϕ(y)dy ≤ D
x∫
b

eλydy =
D

λ

(
eλx − eλb

)
,

i.e., ∫ x
b
ϕ(y)dy

eλx
≤ D

λ

(
1− eλ(b−x)

)
for x > b.

Consequently

d = lim sup
x→+∞

∫ x
b
ϕ(y)dy

eλx
≤ D

λ
< d;

a contradiction.

Corollary 5.6. If σ(S) > 1 and ϕ : (a,+∞) → R is a positive regular solution
of (1.3) which is not integrable on a half-line infinite from the right, then

0 <
ρ

σ(S)
lim sup
x→+∞

∫ x
c
ϕ(y)dy

eρx
≤ lim sup

x→+∞

ϕ(x)

eρx
(5.3)

for any real number c ≥ a and
+∞∫
c

ϕ(x)

eρx
dx = +∞ for c ≥ a; (5.4)

moreover, either ρ is a root of (1.2) or

lim sup
x→+∞

ϕ(x)

eρx
= +∞. (5.5)
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Proof. We can assume that c = a ∈ R. Let ψ denote the function (4.9). Making use
of [13, Lemma 3] it is easy to check that ψ is a solution of (1.3). Obviously ψ is
increasing and has infinite limit at +∞. In particular it is positive on an interval of
the form (b,+∞). Hence, applying Corollary 5.4, we have

0 <
1

σ(S)
sup

{
ψ(x)

eρx
: x ∈ (b,+∞)

}
≤ lim inf

x→+∞

ψ(x)

eρx
,

which together with the definition of ψ implies that

0 <
1

σ(S)
lim sup
x→+∞

∫ x
a
ϕ(y)dy

eρx
≤ lim inf

x→+∞

∫ x
a
ϕ(y)dy

eρx
.

This jointly with Lemma 5.5 gives (5.3).
If ρ is a root of (1.2), then (due to Remark 5.3) M = −m a.e. and applying

Theorem 4.2 we obtain (5.4).
Assume now that ρ is not a root of (1.2). According to Theorem 5.2 we have then

lim
x→+∞

ψ(x)

eρx
= +∞

and, consequently,

lim
x→+∞

∫ x
a
ϕ(y)dy

eρx
= +∞.

Making use of Lemma 5.5 once more we get (5.5), and noting that

ϕ(y)

eρx
≤ ϕ(y)

eρy
for x ≥ y > a,

also (5.4).

It turns out that in Theorem 5.2 as well as in Corollaries 5.4, 5.6 we cannot replace
inequality (1.3) by (1.4), and if σ(S) ≤ 1, then inequality (1.3) can have a solution
tending to infinity more slowly than any exponential function, which show the next
two remarks.

Remark 5.7. If either σ(S) > 1, or σ(S) = 1 and
∫
S
M(s)σ(ds) ≥ 0, then the

identity is an increasing solution of (1.4) on some interval of the form (a,+∞) and

lim
x→+∞

x

eλx
= 0 for λ > 0.

Remark 5.8. If either σ(S) < 1, or σ(S) = 1 and
∫
S
M(s)σ(ds) ≤ 0, then the

identity is a solution of (1.3) on some interval of the form (a,+∞).

Theorem 5.9. If σ(S) < 1 and ϕ : (a,+∞)∩W → (0,+∞) is an increasing solution
of (1.4), then

ϕ(x)

e−ρx
≥ σ(S) sup

{
ϕ(y)

e−ρy
: y ∈ (a, x] ∩W

}
for x ∈ (a,+∞) ∩W ; (5.6)
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moreover, either −ρ is a root of (1.2) or

lim
x→+∞

ϕ(x)

e−ρx
= +∞.

Proof. We show at first by induction that

ϕ(y) ≤ σ(S)nϕ(x) for y ∈ (a,+∞) ∩W, x ∈ (y + nm,+∞) ∩W (5.7)

and n ∈ N ∪ {0}.
To do this fix n ∈ N, y ∈ (a,+∞) ∩ W and x ∈ (y + (n + 1)m,+∞) ∩ W .

If m ∈ M(S), then x − m ∈ W . If m 6∈ M(S), then the group 〈M(S)〉 contains
arbitrarily small elements and thus it is dense. Consequently the invariant set W is
also dense. In both cases the set (y + nm, x−m] ∩W is nonempty. Taking a point z
from this set and making use of the inductive assumption as well as the monotonicity
of ϕ we have

ϕ(y) ≤ σ(S)nϕ(z) ≤ σ(S)n
∫
S

ϕ(z +M(s))σ(ds) ≤ σ(S)n+1ϕ(x).

Passing to the proof of (5.6) fix x ∈ (a,+∞) ∩W and y ∈ (a, x] ∩W . We will
show to complete the proof of (5.6), that

ϕ(x)

e−ρx
≥ σ(S)

ϕ(y)

e−ρy
. (5.8)

Since σ(S) < 1, we can assume that y < x. Let

n := max{k ∈ N ∪ {0} : x > y + km}.

Then
σ(S)−n

e−ρx
= e(

x
m−n) lnσ(S) ≥ e(

y
m+1) lnσ(S) =

σ(S)

e−ρy

and taking into account also (5.7) we get

ϕ(x)

e−ρx
≥ σ(S)−nϕ(y)

e−ρx
≥ σ(S)

ϕ(y)

e−ρy
,

which ends the proof of (5.8).
Assume now that

lim inf
x→+∞

ϕ(x)

e−ρx
< +∞.

Since, due to (5.6), we have

lim inf
x→+∞

ϕ(x)

e−ρx
≥ σ(S) sup

{
ϕ(y)

e−ρy
: y ∈ (a,+∞) ∩W

}
,
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then

0 < σ(S) sup

{
ϕ(x)

e−ρx
: x ∈ (a,+∞) ∩W

}
≤ lim inf

x→+∞

ϕ(x)

e−ρx
≤

≤ lim sup
x→+∞

ϕ(x)

e−ρx
≤ 1

σ(S)
lim inf
x→+∞

ϕ(x)

e−ρx
< +∞

and it follows from [14, Theorem 2(ii)] that u(−ρ) ≥ 1. It is enough now to observe
that

u(−ρ) =

∫
S

e−ρM(s)σ(ds) ≤
∫
S

e−ρmσ(ds) = 1.

From Theorem 5.9 we draw (similarly as we drew Corollary 5.6 from Theorem 5.2)
the following corollary concerning solutions which are not integrable on a half-line
infinite from the right.

Corollary 5.10. If σ(S) < 1 and ϕ : (a,+∞) → R is a positive regular solution
of (1.4) which is not integrable on a half-line infinite from the right, then

0 < −ρσ(S) lim sup
x→+∞

∫ x
c
ϕ(y)dy

e−ρx
≤ lim sup

x→+∞

ϕ(x)

e−ρx

for any real number c ≥ a and
+∞∫
c

ϕ(x)

e−ρx
dx = +∞ for c ≥ a;

moreover, either −ρ is a root of (1.2) or

lim sup
x→+∞

ϕ(x)

e−ρx
= +∞.

Remarks 5.8 and 5.7 show that in Theorem 5.9 as well as in Corollary 5.10 we
cannot replace inequality (1.4) by (1.3), and if σ(S) ≥ 1, then (1.4) can have a solution
tending to infinity more slowly than any exponential function.

As follows from Corollaries 5.6 and 5.10, if σ(S) 6= 1, then any positive regular
solution of (1.1) which is not integrable on a half-line infinite from the right tends
to infinity on some sequence faster than some exponential function. Simultaneously,
according to [13, Theorems 16 and 19] and Theorem 4.6, no such a solution can tend
to infinity faster than eλx with λ > λ2 ≥ 0. Note that similar statements are not true
in the case of inequalities – cf. Remarks 5.7, 5.8 and Theorems 4.15, 4.16.

6. ASYMPTOTIC BEHAVIOUR OF DECREASING SOLUTIONS

Theorem 6.1. If ϕ : (a,+∞) ∩W → [0,+∞) is a decreasing solution of (1.1), then

ϕ(x)e|ρ|x ≤ max

{
σ(S),

1

σ(S)

}
·inf{ϕ(y)e|ρ|y : y ∈ (a, x]∩W} for x ∈ (a,+∞)∩W,
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and, moreover, either −|ρ| is a root of (1.2) or

lim
x→+∞

ϕ(x)e|ρ|x = 0.

This result is an immediate consequence of theorems concerning inequalities given
below.

Theorem 6.2. If σ(S) > 1 and ϕ : (a,+∞) ∩W → [0,+∞) is a decreasing solution
of (1.3), then

ϕ(x)eρx ≤ σ(S) inf{ϕ(y)eρy : y ∈ (a, x] ∩W} for x ∈ (a,+∞) ∩W ;

moreover, either −ρ is a root of (1.2) or

lim
x→+∞

ϕ(x)eρx = 0.

Proof. We argue as in the proof of Theorem 5.9 using now [14, Theorem 2(i)].

From Theorem 6.2 we draw a corollary concerning integrable solutions. In the
proof we will need the following lemma. We omit its proof (being similar to that of
Lemma 5.5).

Lemma 6.3. If ϕ : (a,+∞)→ R is a Lebesgue integrable function and λ > 0, then

lim inf
x→+∞

ϕ(x)eλx ≤ λ lim inf
x→+∞

eλx
+∞∫
x

ϕ(y)dy.

Corollary 6.4. If σ(S) > 1 and ϕ : (a,+∞) → R is a positive regular solution of
(1.3) integrable on a half-line infinite from the right, then

lim inf
x→+∞

ϕ(x)eρx ≤ ρσ(S) inf

{
eρx
∫ +∞

x

ϕ(y)dy : x ∈ (a,+∞)

}
; (6.1)

moreover, either −ρ is a root of (1.2) or

lim inf
x→+∞

ϕ(x)eρx = 0. (6.2)

Proof. According to [13, Lemma 4] the function (4.4) is a decreasing solution of (1.3)
and using Theorem 6.2 we get

lim sup
x→+∞

eρx
+∞∫
x

ϕ(y)dy ≤ σ(S) inf

{
eρx
∫ +∞

x

ϕ(y)dy : x ∈ (a,+∞)

}
,
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which, due to Lemma 6.3, implies (6.1).
If −ρ is not a root of (1.2), then by virtue of Theorem 6.2 we have

lim
x→+∞

eρx
+∞∫
x

ϕ(y)dy = 0

and making use of Lemma 6.3 once more we obtain (6.2).

The next two remarks show that in Theorem 6.2 as well as in Corollary 6.4
we cannot replace inequality (1.3) by (1.4), and if σ(S) < 1 (or σ(S) = 1 and∫
S
M(s)σ(ds) > 0), then for any exponential function there is a decreasing solution

of (1.3) vanishing at infinity more slowly than that function.

Remark 6.5. If either σ(S) > 1, or σ(S) = 1 and
∫
S
M(s)σ(ds) < 0, then eλx is

a solution of (1.4) for any λ from some left-hand-side vicinity of zero; moreover, if
M ≤ 0 a.e. and σ(S) ≥ 1, then the function 1

x2 , x > m, is a decreasing integrable
solution of (1.4) and

lim
x→+∞

1

x2
eλx = +∞ for λ > 0.

Remark 6.6. If either σ(S) < 1, or σ(S) = 1 and
∫
S
M(s)σ(ds) > 0, then eλx is

a solution of (1.3) for any λ from some left-hand-side vicinity of zero; moreover, if
M ≥ 0 a.e. and σ(S) ≤ 1, then the function 1

x2 , x > m, is a decreasing integrable
solution of (1.3) which vanishes at infinity more slowly than any exponential function.

Theorem 6.7. If σ(S) < 1 and ϕ : (a,+∞) ∩W → [0,+∞) is a nonzero solution of
(1.4) bounded from above by a constant C, then a is a real number and

ϕ(x)e−ρx ≤ C

σ(S)
e−ρa for x ∈ (a,+∞) ∩W ;

moreover, either ρ is a root of (1.2) or

lim
x→+∞

ϕ(x)e−ρx = 0.

Proof. We proceed as in the proof of Theorem 5.2 applying now [14, Theorem 2(ii)].

From Theorem 6.7 we can easily draw the following two corollaries.

Corollary 6.8. If σ(S) < 1 and ϕ : (a,+∞)∩W → [0,+∞) is a decreasing solution
of (1.4), then

ϕ(x)e−ρx ≤ 1

σ(S)
inf{ϕ(y)e−ρy : y ∈ (a, x] ∩W} for x ∈ (a,+∞) ∩W.
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Corollary 6.9. If σ(S) < 1 and ϕ : (a,+∞) → R is a positive regular solution of
(1.4) integrable on a half-line infinite from the right, then

lim inf
x→+∞

ϕ(x)e−ρx ≤ − ρ

σ(S)
inf

{
e−ρx

∫ +∞

x

ϕ(y)dy : x ∈ (a,+∞)

}
;

moreover, either ρ is a root of (1.2) or

lim inf
x→+∞

ϕ(x)e−ρx = 0.

Remarks 6.6, 6.5 show that in Theorem 6.7 as well as in Corollaries 6.8, 6.9
we cannot replace inequality (1.4) by (1.3), and if σ(S) > 1 (or σ(S) = 1 and∫
S
M(s)σ(ds) < 0), then for any exponential function there is a decreasing solution

of (1.4) vanishing at infinity more slowly than that function.
Using [13, Theorem 34] and Corollaries 6.4, 6.9 we obtain our last result.

Corollary 6.10. If ϕ : (a,+∞)→ R is a positive regular solution of (1.1) vanishing
at +∞, then

lim inf
x→+∞

ϕ(x)e|ρ|x ≤

≤ |ρ|max

{
σ(S),

1

σ(S)

}
· inf

{
e|ρ|x

∫ +∞

x

ϕ(y)dy : x ∈ (a,+∞)

}
< +∞,

and, moreover, either −|ρ| is a root of (1.2) or

lim inf
x→+∞

ϕ(x)e|ρ|x = 0.

As follows from Corollaries 6.4, 6.9 and 6.10, if σ(S) 6= 1, then any positive regular
solution of (1.1) integrable on a half-line infinite from the right or vanishing at +∞
tends to zero on some sequence faster than some exponential function. Simultaneously,
according to [13, Theorems 27, 29, Corollary 36] and Theorem 4.1, no such solution
can tend to zero faster than eλ1x. Note that similar statements are not true in the
case of inequalities – cf. Remarks 6.5, 6.6 and Theorems 4.12, 4.13.
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