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ESTIMATES OF SOLUTIONS

FOR PARABOLIC DIFFERENTIAL

AND DIFFERENCE FUNCTIONAL EQUATIONS

AND APPLICATIONS

Lucjan Sapa

Abstract. The theorems on the estimates of solutions for nonlinear second-order partial
differential functional equations of parabolic type with Dirichlet’s condition and for suitable
implicit finite difference functional schemes are proved. The proofs are based on the com-
parison technique. The convergent and stable difference method is considered without the
assumption of the global generalized Perron condition posed on the functional variable but
with the local one only. It is a consequence of our estimates theorems. In particular, these
results cover quasi-linear equations. However, such equations are also treated separately. The
functional dependence is of the Volterra type.
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1. INTRODUCTION

The aim of the paper is to prove theorems on the estimates of solutions for non-
linear second-order partial differential functional equations of parabolic type with
Dirichlet’s condition and for generated by them implicit finite difference functional
schemes. We also give the applications of the results. More precisely, we prove the
theorem on the convergence of a difference method to a classical solution for the
differential functional problem, which by the given estimates, may be treated in the
subspace C (Ω, R) ⊂ C (Ω,R), where R ⊂ R is an interval. It is a new idea in area of
nonlinear implicit difference methods which was studied for explicit methods by K.
Kropielnicka and L. Sapa [14]. This considerably extends the class of problems which
are solvable by the described method. Therefore, the Lipschitz, Perron or generalized
Perron conditions posed on f with respect to z need not be global, in C (Ω,R), as in the
papers due to M. Malec, Cz. Mączka, W. Voigt, M. Rosati and L. Sapa [15–19,24,25],
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Z. Kamont, H. Leszczyński and K. Kropielnicka [9–13], but in C (Ω, R) only. In par-
ticular, equations with the polynomial right-hand side are admitted (see the examples
in Section 8). Our results can be extended to weakly coupled systems. Let us stress
that unlike [14, 25], the Courant-Friedrichs-Levy condition on the steps of a mesh is
omitted (see Remark 6.4).

We now formulate the differential functional problem. Let functions f : ∆ → R

and ϕ : E0∪∂0E → R be given (the relevant sets are defined in Section 2.1). Consider
a nonlinear second-order partial differential functional equation of parabolic type of
the form

∂tz (t, x) = f (t, x, z, ∂xz (t, x) , ∂xxz (t, x)) (1.1)

with the initial condition and the boundary condition of the Dirichlet type

z (t, x) = ϕ (t, x) on E0 ∪ ∂0E, (1.2)

where ∂xz = (∂x1z, . . . , ∂xn
z), ∂xxz =

[
∂xixj

z
]n
i,j=1

. The equation may be nonlinear

with respect to second derivatives. Such an equation is called strongly nonlinear. The
functional dependence is of the Volterra type (e.g., delays or Volterra type integrals).

Let aij : ∆A → R and F : ∆F → R, i, j = 1, . . . , n, be given functions (see
Section 2.1). If we assume that each aij is non-positive or non-negative in ∆A, then
our results, in particular, cover a quasi-linear differential functional equation of the
form

∂tz (t, x) =

n∑

i,j=1

aij (t, x, z)∂xixj
z (t, x) + F (t, x, z, ∂xz (t, x)) . (1.3)

To omit this condition, another scheme is also studied.
We assume the existence of a classical solution of problems (1.1), (1.2) and (1.3),

(1.2). Theorems on the existence and uniqueness of such solutions for some special
parabolic differential functional equations with different boundary conditions can be
found in [3–5,7, 21, 29] and the references therein.

The equation

∂tz (t, x) =

n∑

i=1

∂xixi
a (z (t, x)) +

n∑

i=1

∂xi
b (z (t, x)) + c (z (t, x)) , (1.4)

where a, b, c : R → R are given functions, is a special case of (1.1) and (1.3). In
applications, the second-order term on the right-hand side of (1.4) corresponds to a
diffusive or dispersive process, the first-order term represents a convective or advective
phenomenon, while the last term corresponds to a reactive process, sorption, source
or sink. The unknown usually represents a nonnegative biological, medical, physical
or chemical variable such as density, saturation or concentration. A lot of equations
of type (1.4) with the polynomial right-hand side is described in [1, 6, 8, 20]. It is for
example the generalized Fisher equation

∂tz (t, x) = ∂x1x1z (t, x) + βz (t, x)
[
1− (z (t, x))

δ
]
, (1.5)
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n = 1, β ∈ R, δ > 0, and the reaction-diffusion equation

∂tz (t, x) =

n∑

i=1

∂xixi
(z (t, x))

m − β (z (t, x))
δ
, (1.6)

m > 0, δ > 0, β ∈ R (see Examples 8.1, 8.2). Equation (1.5) for β = δ = 1 (the
Fisher equation) is the archetypical deterministic model for the spread of an ad-
vantageous gene in a population of diploid individuals living in a one-dimensional
habitat. Equation (1.6) is a simple and widely used model for various physical, chem-
ical and biological problems involving diffusion with a source or with absorption, as
for instance in modelling filtration in porous media, transport of thermal energy in
a plasma, flow of a chemically reacting fluid from a flat surface, evolution of popula-
tions, etc. Equations of type (1.4) which can be also covered by our theorems are the
Newell-Whitehead equation, the Zeldovich equation, the KPP equation, the Nagumo
equation, the Huxley equation and others considered in [6, 20].

The results concerning numerical methods, differential functional and difference
functional inequalities or the uniqueness theory, appearing in the papers of P. Besala,
G. Paszek [2], C.V. Pao [22], R. Redheffer, W. Walter [23, 28], J. Szarski [26, 27] and
numerous others, do not apply to nonlinear equations and quasi-linear equations with
such a general functional dependence as in our paper.

The paper is organized in the following way. In Section 2 notation is introduced
and some definitions are formulated. Section 3 deals with the estimates of solutions
for problems (1.1), (1.2) and (1.3), (1.2). Two next sections are concerned with the
estimates of solutions for some auxiliaries discrete functional equations and for im-
plicit difference functional schemes generated by problem (1.1), (1.2), respectively.
In Section 6 the convergence of the difference method for (1.1), (1.2) is studied. In
Section 7 the modified difference method for (1.3), (1.2) is considered. Finally, in the
last section examples illustrating our results and numerical experiments are presented.

2. NOTATION AND DEFINITIONS

2.1. SETS AND FUNCTION SPACES, PARABOLICITY

Let T > 0, X = (X1, . . . , Xn), τ0 ≥ 0, τ = (τ1, . . . , τn), where Xi > 0, τi ≥ 0 for
i = 1, . . . , n, be given. Define

E = [0, T ]× (−X,X) ⊂ R
1+n, (2.1)

E0 = [−τ0, 0]× [−X − τ,X + τ ] ⊂ R
1+n,

∂0E = [0, T ]× ([−X − τ,X + τ ] \ (−X,X)) ⊂ R
1+n.

Let, moreover,
Ω = E ∪ E0 ∪ ∂0E, (2.2)

Ωt = Ω ∩ ([−τ0, t]× R
n) , t ∈ [0, T ] .
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Denote by Mn×n the class of all n× n symmetric real matrices. Define the sets

∆ = E × C (Ω,R)× R
n ×Mn×n, (2.3)

∆A = E × C (Ω,R) , ∆F = E × C (Ω,R)× R
n,

∆∗ = E × C (Ω, R)× R
n ×Mn×n,

∆A∗ = E × C (Ω, R) , ∆F∗ = E × C (Ω, R)× R
n,

where R ⊂ R is a fixed interval and C (Ω, R) = {z : Ω → R} ∩ C (Ω,R).
Equation (1.1) is said to be parabolic in Walter’s sense if for any two matrices

q, q̃ ∈Mn×n there is

q ≤ q̃ ⇒ f (t, x, z, p, q) ≤ f (t, x, z, p, q̃)

for (t, x) ∈ E, z ∈ C (Ω,R), p ∈ R
n, where the inequality q ≤ q̃ means that the matrix

q̃ − q is positive defined (see [28, §23]). To adopt this definition to equation (1.3) it
is enough to replace the right-hand side of the above implication by the inequality∑n

i,j=1 aij (t, x, z) (qij − q̃ij) ≤ 0.
The maximum norms in R

n and Mn×n are denoted by ‖ · ‖, while in the space of

continuous functions C (A,R), A ⊂ Ω a compact subset, by ‖ · ‖A.
For a fixed t ∈ [0, T ],

‖z‖Ωt
= max

{∣∣z
(
t̃, x

)∣∣ :
(
t̃, x

)
∈ Ωt

}
(2.4)

is a seminorm in C (Ω,R), where z ∈ C (Ω,R).

2.2. DISCRETIZATION, DIFFERENCE AND INTERPOLATING OPERATORS

We use vectorial inequalities to mean that the same inequalities hold between the cor-
responding components. We write x ⋄ y = (x1y1, . . . , xnyn) for x = (x1, . . . , xn) , y =
(y1, . . . , yn) ∈ R

n. Define a mesh on the set Ω in the following way. Let (h0, h
′) = h,

h′ = (h1, . . . , hn), stand for the steps of the mesh. Denote by H the set of all
h such that there exist N0 ∈ Z and N = (N1, . . . , Nn) ∈ N

n with the proper-
ties: N0h0 = τ0, N ⋄ h′ = X + τ . Obviously, H 6= ∅ and there are K0 ∈ N and
K = (K1, . . . ,Kn) ∈ Z

n such thatK0h0 ≤ T < (K0 + 1)h0,K⋄h′ < X ≤ (K + 1)⋄h′.
For h ∈ H and (µ,m) ∈ Z

1+n, m = (m1, . . . ,mn), we define nodal points
(
t(µ), x(m)

)
,

x(m) =
(
x
(m1)
1 , . . . , x

(mn)
n

)
, in the following way

t(µ) = µh0, x(m) = m ⋄ h′.

For h ∈ H , we put

R1+n
h =

{(
t(µ), x(m)

)
: (µ,m) ∈ Z

1+n
}
. (2.5)

Define the discrete sets
Eh = E ∩R1+n

h , (2.6)
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E0.h = E0 ∩R
1+n
h , ∂0Eh = ∂0E ∩R1+n

h ,

Ωh = Eh ∪E0.h ∪ ∂0Eh,

Ωh.µ = Ωh ∩
([

−τ0, t
(µ)

]
× R

n
)
, µ = 0, . . . ,K0.

Let, moreover,

E+
h =

{(
t(µ), x(m)

)
∈ Eh : 0 ≤ µ ≤ K0 − 1

}
, (2.7)

Ih =
{
t(µ) : 0 ≤ µ ≤ K0

}
, I+h =

{
t(µ) : 0 ≤ µ ≤ K0 − 1

}
. (2.8)

Write χ = 1 + 2n2 and

Λ = {λ = (λ1, . . . , λn) : λi ∈ {−1, 0, 1}, i = 1, . . . , n, |λ| ≤ 2}, (2.9)

Λ′ = Λ\{0},

where |λ| = |λ1|+ . . .+ |λn|.
Note that χ is the number of elements of Λ. Let ψ : Λ → {1, . . . , χ} be a function

such that ψ (λ) 6= ψ
(
λ
)

for λ 6= λ. We assume that ≺ is an order in Λ defined in

the following way: λ ≺ λ if ψ (λ) ≤ ψ
(
λ
)
. Elements of the space R

χ we denote by

ξ =
(
ξ(λ)

)
λ∈Λ

. For a function z ∈ F (Ωh,R) and a point
(
t(µ), x(m)

)
∈ Eh we put

z〈µ,m〉 =
(
z(µ,m+λ)

)
λ∈Λ

.

For a mesh function z : Ωh ⊃ Ah → R and a point
(
t(µ), x(m)

)
∈ Ah, we put

z(µ,m) = z
(
t(µ), x(m)

)
, |z|(µ,m) = |z(µ,m)|. We denote the space of all such functions

by F (Ah,R) and call it the space of mesh functions. In F (Ah,R), we introduce the
maximum norm

‖z‖Ah
= max

{∣∣∣z(µ,m)
∣∣∣ :

(
t(µ), x(m)

)
∈ Ah

}
, (2.10)

where z ∈ F (Ah,R). The symbol z|Ah
stands for the restriction of z to Ah. Analo-

gously, F (Ah, R) = {z : Ah → R} ∩ F (Ah,R), where R ⊂ R is a fixed interval.
For a fixed µ ∈ {0, 1, . . . ,K0},

‖z‖Ωh.µ
= max

{∣∣∣z(µ̃,m)
∣∣∣ :

(
t(µ̃), x(m)

)
∈ Ωh.µ

}
(2.11)

is a seminorm in the space F (Ωh,R), where z ∈ F (Ωh,R).
For a function z : Ih ⊃ Ah → R+, we put z(µ) = z

(
t(µ)

)
, t(µ) ∈ Ah, where

R+ = [0,+∞).
Write

Γ = {(i, j) : 1 ≤ i, j ≤ n, i 6= j}

and suppose that Γ+,Γ− ⊂ Γ are such that Γ+ ∪Γ− = Γ, Γ+ ∩Γ− = ∅ (in particular,
it may happen that Γ+ = ∅ or Γ− = ∅). We assume that (i, j) ∈ Γ+ when (j, i) ∈ Γ+

and (i, j) ∈ Γ− when (j, i) ∈ Γ−.
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Let z ∈ F (Ωh,R) and
(
t(µ), x(m)

)
∈ Eh. Set

δ+i z
(µ,m) =

1

hi

[
z(µ,m+ei) − z(µ,m)

]
, (2.12)

δ−i z
(µ,m) =

1

hi

[
z(µ,m) − z(µ,m−ei)

]
,

where ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith entry, i = 1, . . . , n. We apply the
difference quotients δ0, δ = (δ1, . . . , δn), δ

(2) = [δij ]
n

i,j=1 given by

δ0z
(µ,m) =

1

h0

[
z(µ+1,m) − z(µ,m)

]
, (2.13)

δiz
(µ,m) =

1

2

[
δ+i z

(µ,m) + δ−i z
(µ,m)

]
for i = 1, . . . , n,

δiiz
(µ,m) = δ+i δ

−
i z

(µ,m) for i = 1, . . . , n,

δijz
(µ,m) =

1

2

[
δ+i δ

−
j z

(µ,m) + δ−i δ
+
j z

(µ,m)
]

for (i, j) ∈ Γ−,

δijz
(µ,m) =

1

2

[
δ+i δ

+
j z

(µ,m) + δ−i δ
−
j z

(µ,m)
]

for (i, j) ∈ Γ+.

We use these operators to approximate derivatives in equations (1.1) and (1.3).
We say that an operator Gh : F (Ωh,R) → C (Ω,R) is an interpolating operator if

it has the properties:

(1) for all z ∈ C1,2 (Ω,R)
lim
h→0

‖Gh [Z]− z‖Ω = 0,

where Z := z|Ωh
is the restriction of z to Ωh,

(2) for all z, z ∈ F (Ωh,R)

‖Gh [z]−Gh [z]‖Ω
t(µ)

≤ ‖z − z‖Ωh.µ
, µ = 0, . . . ,K0.

We apply these operators to approximate the functional term in equations (1.1) and
(1.3). An example of Gh is the well-known linear operator Th introduced in [10].

3. ESTIMATES OF SOLUTIONS
FOR THE DIFFERENTIAL FUNCTIONAL PROBLEMS

In this section we give a theorem concerning the estimates of solutions for the differ-
ential functional problems (1.1), (1.2) and (1.3), (1.2).

We need the following assumptions on the functions f , ϕ.

Assumption H[f, ϕ]

(H1) There is a function σ0 : [0, T ] × R+ → R+ for which the following properties
hold:
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(1) σ0 is continuous;
(2) the maximal solution ω̃ of the Cauchy problem

ω
′

(t) = σ0 (t, ω (t)) , ω (0) = ‖ϕ‖E0
is defined on [0, T ] ; (3.1)

(3) for each (t, x) ∈ E and z ∈ C (Ω,R)

|f (t, x, z, 0, 0)| ≤ σ0
(
t, ‖z‖Ωt

)
. (3.2)

Theorem 3.1. Let Assumption H[f, ϕ] be satisfied and let (1.1) be parabolic. If u ∈
C1,2 (Ω,R) is a solution of (1.1), (1.2) and

|ϕ (t, x)| ≤ ω̃ (t) on ∂0E, (3.3)

then

|u (t, x)| ≤ ω̃ (t) on Ω, (3.4)

where ω̃ is the maximal solution of (3.1).

The proof of a more general version of Theorem 3.1 is given in [14]. So called
parabolic solutions of (1.1) are considered there.

Remark 3.2. It follows from the monotonicity of ω̃ that if we put ω (0) = ‖ϕ‖E0∪∂0E

in (3.1), then (3.3) holds. But, by the ordinary differential inequalities, the estimate
in (3.4) is worse than for ω (0) = ‖ϕ‖E0

.

Remark 3.3. Replacing (3.2) by

|F (t, x, z, 0)| ≤ σ0
(
t, ‖z‖Ωt

)
(3.5)

we immediately obtain a version of Theorem 3.1 for problem (1.3), (1.2).

4. DISCRETE FUNCTIONAL EQUATIONS

We consider an implicit discrete functional equation of the Volterra type with the
initial boundary condition. Next we give two theorems on the existence and uniqueness
and on the estimate of a solution of this problem, respectively. They will be applied in
the existence, uniqueness and estimate proofs of a solution for the implicit difference
functional scheme (5.1) generated by the differential functional problem (1.1), (1.2)
in the next section.

Suppose that a functional Fh : E+
h × F (Ωh,R) × R

χ → R is given. For(
t(µ), x(m), z, ξ

)
∈ E+

h × F (Ωh,R)× R
χ, we write Fh [z, ξ]

(µ,m)
= Fh

(
t(µ), x(m), z, ξ

)
.

Given ϕh ∈ F (E0.h ∪ ∂0Eh,R), we consider the discrete functional equation

z(µ+1,m) = Fh

[
z, z〈µ+1,m〉

](µ,m)
(4.1)

with the initial boundary condition

z(µ,m) = ϕ
(µ,m)
h on E0.h ∪ ∂0Eh. (4.2)
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Note that the numbers z(µ+1,m+λ), λ ∈ Λ, appear in z〈µ+1,m〉 so (4.1), (4.2) is an
implicit problem.

We say that the functional Fh satisfies the Volterra condition if
(
t(µ), x(m)

)
∈ E+

h ,

ξ ∈ R
χ, z, z ∈ F (Ωh,R), z|Ωh.µ

= z|Ωh.µ
, then Fh [z, ξ]

(µ,m)
= Fh [z, ξ]

(µ,m)
. Observe

that the Volterra condition states that the value of Fh at
(
t(µ), x(m), z, ξ

)
depends on(

t(µ), x(m), ξ
)

and the restriction of the function z to the set Ωh.µ only. However, this
well-known condition does not imply the existence of a solution for (4.1), (4.2) so we
give a suitable theorem.

The following assumptions on Fh will be needed.

Assumption H[Fh]

(H1) Fh is of the Volterra type, h ∈ H .
(H2) There exist partial derivatives

(
∂ξ(λ)Fh

)
λ∈Λ

on E+
h × F (Ωh,R) × R

χ, and

∂ξ(0)Fh [z, ·]
(µ,m)

is bounded for each
(
t(µ), x(m), z

)
∈ E+

h × F (Ωh,R).
(H3) The conditions

∂ξ(λ)Fh [z, ξ]
(µ,m) ≥ 0, λ ∈ Λ′, (4.3)

∑

λ∈Λ

∂ξ(λ)Fh [z, ξ]
(µ,m) = 0 (4.4)

are satisfied at each
(
t(µ), x(m), z, ξ

)
∈ E+

h × F (Ωh,R)× R
χ.

Theorem 4.1. If Assumption H[Fh] is satisfied, then there exists exactly one solution

v ∈ F (Ωh,R) of problem (4.1), (4.2).

The proof of Theorem 4.1 is given in [24] and is omitted.
Suppose that v ∈ F (Ωh,R) is the solution of (4.1), (4.2). Define m̃ (µ) ∈ Z

n,
µ = 0, . . . ,K0, as follows

|v|(µ,m̃(µ)) = max
{
|v|(µ,m) :

(
t(µ), x(m)

)
∈ Ωh

}
. (4.5)

Theorem 4.2. Suppose that Assumption H[Fh] is satisfied and

(1) σh : I+h × R+ → R+ is nondecreasing with respect to the second variable and if(
t(µ), x(m̃(µ+1))

)
∈ E+

h , then

∣∣∣Fh

[
v, v〈µ+1,m̃(µ+1)〉

](µ,m̃(µ+1))
∣∣∣ ≤ σh

(
t(µ), ‖v‖Ωh.µ

)
, (4.6)

µ = 0, . . . ,K0 − 1, where v ∈ F (Ωh,R) is the solution of (4.1), (4.2),
(2) β : Ih → R+ is nondecreasing and satisfies the recurrent inequality

β(µ+1) ≥ σh

(
t(µ), β(µ)

)
, µ = 0, . . . ,K0 − 1, (4.7)

and β(0) ≥ ‖ϕh‖E0.h∪∂0Eh
.

Then

‖v‖Ωh.µ
≤ β(µ), µ = 0, . . . ,K0. (4.8)
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Proof. We prove assertion (4.8) by induction on µ.
It follows from the initial condition (4.2) that inequality (4.8) is satisfied for µ = 0.
Assume (4.8) for a fixed µ, 0 ≤ µ ≤ K0 − 1, we prove it for µ + 1. Let(

t(µ), x(m̃(µ+1))
)
∈ E+

h . The assumptions of the theorem and the induction assumption
lead to the inequalities

∣∣∣v(µ+1,m̃(µ+1))
∣∣∣ =

∣∣∣Fh

[
v, v〈µ+1,m̃(µ+1)〉

](µ,m̃(µ+1))
∣∣∣ ≤

≤ σh

(
t(µ), ‖v‖Ωh.µ

)
≤ σh

(
t(µ), β(µ)

)
≤ β(µ+1).

(4.9)

In the case
(
t(µ), x(m̃(µ+1))

)
∈ ∂0Eh, the boundary condition (4.2) and the monotonic-

ity of β imply
∣∣∣v(µ+1,m̃(µ+1))

∣∣∣ ≤ ‖ϕh‖E0.h∪∂0Eh
≤ β(0) ≤ β(µ+1). (4.10)

Hence, the proof is complete by induction.

Remark 4.3. Let the assumptions of Theorem 4.2 be satisfied with

σh (t, y) = (1 + Lh0) y, (t, y) ∈ I+h × R+,

where L ≥ 0. Then

‖v‖Ωh.µ
≤ (1 + Lh0)

µ ‖ϕh‖E0.h∪∂0Eh
≤ exp (LT ) ‖ϕh‖E0.h∪∂0Eh

(4.11)

for µ = 0, . . . ,K0. These estimates may be obtained by solving the initial comparison
problem {

β(µ+1) = (1 + Lh0)β
(µ), µ = 0, . . . ,K0 − 1,

β(0) = ‖ϕh‖E0.h∪∂0Eh

(4.12)

(see assumption (2)). Moreover, it follows from the proof of Theorem 4.2 that if
∣∣∣v(µ,m)

∣∣∣ ≤ (1 + Lh0)
µ ‖ϕh‖E0.h

on ∂0Eh, (4.13)

then, by putting β(0) = ‖ϕh‖E0.h
in (4.12), the norm ‖ϕh‖E0.h∪∂0Eh

in (4.11) can be
replaced by ‖ϕh‖E0.h

and the estimate is better.

Remark 4.4. It follows from the proof of Theorem 4.2 that if we assume (4.6) for
any

(
t(µ), x(m)

)
∈ E+

h and z ∈ F (Ωh,R) (see Theorem 4.1 in [14]), then Theorem 4.2
will be also true. But such a version will not be useful in the proof of Theorem 5.3.

5. ESTIMATES OF SOLUTIONS
FOR IMPLICIT DIFFERENCE FUNCTIONAL SCHEMES

We define an implicit finite difference functional scheme which will be applied to
approximate a classical solution of the differential functional problem (1.1), (1.2). It
is the system of algebraic equations

{
δ0z

(µ,m) = f
(
t(µ), x(m), Gh [z] , δz

(µ+1,m), δ(2)z(µ+1,m)
)
,

z(µ,m) = ϕ
(µ,m)
h on E0.h ∪ ∂0Eh,

(5.1)
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where ϕh ∈ F (E0.h ∪ ∂0Eh,R) is a given function, Gh is a given interpolating operator
and z ∈ F (Ωh,R).

We say that f satisfies the Volterra condition if (t, x) ∈ E and z, z ∈ C (Ω,R),
z|Ωt

= z|Ωt
, then f (t, x, z, p, q) = f (t, x, z, p, q) for p ∈ R

n, q ∈ Mn×n. Note that
the Volterra condition states that the value of f at (t, x, z, p, q) depends on (t, x, p, q)
and the restriction of the function z to the set Ωt only. However, this well-known
condition does not imply the existence of a solution for (5.1) and further assumptions
are needed. We give a theorem on the existence, uniqueness and on the estimate of a
solution for (5.1).

We need the following assumptions on the functions f , ϕh, the interpolating op-
erator Gh and the steps h of the mesh Ωh.

Assumption F[f, ϕh, Gh]

(F1) f of variables (t, x, z, p, q) ∈ ∆ is of the Volterra type.
(F2) There exist partial derivatives ∂pf = (∂p1f, . . . , ∂pn

f), ∂qf =
[
∂qijf

]n
i,j=1

on ∆,

and ∂pi
f , ∂qijf , i, j = 1, . . . , n are bounded on ∆.

(F3) The matrix ∂qf is symmetric and

∂qijf (P ) ≥ 0 and ∂qijf (P ) 6≡ 0 for (i, j) ∈ Γ+,

∂qijf (P ) ≤ 0 for (i, j) ∈ Γ−

at each P ∈ ∆.
(F4) There is a function σ : [0, T ]×R+ → R+ for which the following properties hold:

(1) σ is nondecreasing with respect to both variables;
(2) the maximal solution ω̃ (·;h) of the Cauchy problem

ω
′

(t) = σ (t, ω (t)) , ω (0) = ‖ϕh‖E0.h∪∂0Eh
(5.2)

is defined on [0, T ];
(3) for each (t, x) ∈ E and z ∈ C (Ω,R)

|f (t, x, z, 0, 0)| ≤ σ
(
t, ‖z‖Ωt

)
. (5.3)

(F5) For each z, z ∈ F (Ωh,R) if z|Ωh.µ
= z|Ωh.µ

, then Gh [z] |Ω
t(µ)

= Gh [z] |Ω
t(µ)

,

µ = 0, . . . ,K0, and for each z ∈ F (Ωh,R)

‖Gh [z]‖Ω
t(µ)

≤ ‖z‖Ωh.µ
for µ = 0, . . . ,K0. (5.4)

Remark 5.1. It is required in assumption (F3) that for each (i, j) ∈ Γ the function
gij (P ) = sign ∂qijf (P ), P ∈ ∆, is constant on ∆. This assumption can be also
considered as a definition of the sets Γ+ and Γ−. Moreover, simple calculations show
that assumption (F5) is true for Gh = Th.

Assumption S[f, h]

(S1) The steps h =
(
h0, h

′

)
∈ H are such that
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−
hi

2
|∂pi

f (P )|+ ∂qiif (P )− hi

n∑

j=1

j 6=i

1

hj

∣∣∂qijf (P )
∣∣ ≥ 0 (5.5)

at each P ∈ ∆, i = 1, . . . , n.
(S2) There is c0 > 0 such that hih

−1
j ≤ c0 for i, j = 1, . . . , n.

We begin with a useful lemma.
For ξ ∈ R

χ, ξ =
(
ξ(λ)

)
λ∈Λ

, we put

δ+i ξ
(0) =

1

hi

[
ξ(ei) − ξ(0)

]
, δ−i ξ

(0) =
1

hi

[
ξ(0) − ξ(−ei)

]
, (5.6)

i = 1, . . . , n. The expressions

δξ(0) =
(
δ1ξ

(0), . . . , δnξ
(0)

)
, δ(2)ξ(0) =

[
δijξ

(0)
]n
i,j=1

are defined in the following way

δiξ
(0) =

1

2

[
δ+i ξ

(0) + δ−i ξ
(0)

]
for i = 1, . . . , n, (5.7)

δiiξ
(0) = δ+i δ

−
i ξ

(0) for i = 1, . . . , n,

δijξ
(0) =

1

2

[
δ+i δ

−
j ξ

(0) + δ−i δ
+
j ξ

(0)
]

for (i, j) ∈ Γ−,

δijξ
(0) =

1

2

[
δ+i δ

+
j ξ

(0) + δ−i δ
−
j ξ

(0)
]

for (i, j) ∈ Γ+.

Consider the functional Fh : E+
h × F (Ωh,R)× R

χ → R defined by

Fh [z, ξ]
(µ,m)

= z(µ,m) + h0f
(
t(µ), x(m), Gh [z] , δξ

(0), δ(2)ξ(0)
)
. (5.8)

Note that

Fh

[
z, z〈µ+1,m〉

](µ,m)
= z(µ,m) + h0f

(
t(µ), x(m), Gh [z] , δz

(µ+1,m), δ(2)z(µ+1,m)
)
.

Lemma 5.2. Let Assumptions F[f, ϕh, Gh] and S[f, h] hold. Then the functional Fh

defined by (5.8) satisfies Assumption H[Fh].

The proof of the above lemma is analogous to that of Lemma 4.6 in [12] and is
therefore omitted.

Theorem 5.3. If Assumptions F[f, ϕh, Gh], S[f, h] hold, then:

(i) there exists the unique solution v ∈ F (Ωh,R) of (5.1),
(ii) the following estimate

‖v‖Ωh.µ
≤ ω̃

(
t(µ);h

)
≤ ω̃ (T ;h) for 0 ≤ µ ≤ K0 (5.9)

is true, where ω̃ (·;h) is the maximal solution of (5.2).
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Proof. Let Fh : E+
h × F (Ωh,R)× R

χ → R be defined by (5.8).
The existence of the unique solution v ∈ F (Ωh,R) of (5.1) follows from Theorem

4.1 and Lemma 5.2.
To prove (ii) we apply Theorem 4.2 and Lemma 5.2. Obviously, v satisfies problem

(4.1), (4.2). Suppose that
(
t(µ), x(m̃(µ+1))

)
∈ E+

h for some µ = 0, . . . ,K0−1 (see (4.5)).
We prove that

∣∣∣Fh

[
v, v〈µ+1,m̃(µ+1)〉

](µ,m̃(µ+1))
∣∣∣ ≤ ‖v‖Ωh.µ

+ h0σ
(
t(µ), ‖v‖Ωh.µ

)
. (5.10)

Note that

v(µ+1,m̃(µ+1)) = v(µ,m̃(µ+1))+

+ h0f
(
t(µ), x(m̃(µ+1)), Gh [v] , δv

(µ+1,m̃(µ+1)), δ(2)v(µ+1,m̃(µ+1))
)
−

− h0f
(
t(µ), x(m̃(µ+1)), Gh [v] , 0, 0

)
+ h0f

(
t(µ), x(m̃(µ+1)), Gh [v] , 0, 0

)
.

(5.11)

It follows from Assumption F[f, ϕh, Gh] and the mean value theorem that

v(µ+1,m̃(µ+1)) = v(µ,m̃(µ+1)) + h0f
(
t(µ), x(m̃(µ+1)), Gh [v] , 0, 0

)
+

+ h0

n∑

i=1

∂pi
f
(
P (µ,m̃(µ+1))

)
δiv

(µ+1,m̃(µ+1))+

+ h0

n∑

i,j=1

∂qijf
(
P (µ,m̃(µ+1))

)
δijv

(µ+1,m̃(µ+1)),

(5.12)

where P (µ,m̃(µ+1)) is an intermediate point. Write

S(0)
(
P (µ,m̃(µ+1))

)
= −2h0

n∑

i=1

1

h2i
∂qiif

(
P (µ,m̃(µ+1))

)
+

+ h0
∑

(i,j)∈Γ

1

hihj

∣∣∣∂qijf
(
P (µ,m̃(µ+1))

)∣∣∣ ,

S
(i)
+

(
P (µ,m̃(µ+1))

)
=

h0

2hi
∂pi
f
(
P (µ,m̃(µ+1))

)
+
h0

h2i
∂qiif

(
P (µ,m̃(µ+1))

)
−

− h0

n∑

j=1

j 6=i

1

hihj

∣∣∣∂qijf
(
P (µ,m̃(µ+1))

)∣∣∣ ,

S
(i)
−

(
P (µ,m̃(µ+1))

)
= −

h0

2hi
∂pi

f
(
P (µ,m̃(µ+1))

)
+
h0

h2i
∂qiif

(
P (µ,m̃(µ+1))

)
−

− h0

n∑

j=1

j 6=i

1

hihj

∣∣∣∂qijf
(
P (µ,m̃(µ+1))

)∣∣∣ ,
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where i = 1, . . . , n. Note that assumptions (F3) and (S1) imply

S(0)
(
P (µ,m̃(µ+1))

)
≤ 0, S

(i)
+

(
P (µ,m̃(µ+1))

)
≥ 0, S

(i)
−

(
P (µ,m̃(µ+1))

)
≥ 0,

i = 1, . . . , n and

S(0)
(
P (µ,m̃(µ+1))

)
+

n∑

i=1

S
(i)
+

(
P (µ,m̃(µ+1))

)
+

n∑

i=1

S
(i)
−

(
P (µ,m̃(µ+1))

)
+

+h0
∑

(i,j)∈Γ+

1

hihj
∂qijf

(
P (µ,m̃(µ+1))

)
− h0

∑

(i,j)∈Γ−

1

hihj
∂qijf

(
P (µ,m̃(µ+1))

)
= 0.

After grouping the expressions in (5.12) appropriately, in view of assumptions (F3)
(F4), (F5), (S1), the definitions of the difference operators and the relations above,
we get

∣∣∣v(µ+1,m̃(µ+1))
∣∣∣
[
1− S(0)

(
P (µ,m̃(µ+1))

)]
≤ ‖v‖Ωh.µ

+ h0σ
(
t(µ), ‖v‖Ωh.µ

)
+

+
n∑

i=1

S
(i)
+

(
P (µ,m̃(µ+1))

) ∣∣∣v(µ+1,m̃(µ+1)+ei)
∣∣∣+

+

n∑

i=1

S
(i)
−

(
P (µ,m̃(µ+1))

) ∣∣∣v(µ+1,m̃(µ+1)−ei)
∣∣∣+

(5.13)

+h0
∑

(i,j)∈Γ+

1

2hihj
∂qijf

(
P (µ,m̃(µ+1))

)
×

×
[∣∣∣v(µ+1,m̃(µ+1)+ei+ej)

∣∣∣+
∣∣∣v(µ+1,m̃(µ+1)−ei−ej)

∣∣∣
]
−

−h0
∑

(i,j)∈Γ−

1

2hihj
∂qijf

(
P (µ,m̃(µ+1))

)
×

×
[∣∣∣v(µ+1,m̃(µ+1)+ei−ej)

∣∣∣+
∣∣∣v(µ+1,m̃(µ+1)−ei+ej)

∣∣∣
]
.

By (5.13), ∣∣∣v(µ+1,m̃(µ+1))
∣∣∣ ≤ ‖v‖Ωh.µ

+ h0σ
(
t(µ), ‖v‖Ωh.µ

)
(5.14)

and hence (5.10) is true.
Denote by η : Ih → R+ the solution of the initial comparison difference problem

{
η(µ+1) = η(µ) + h0σ

(
t(µ), η(µ)

)
, µ = 0, . . . ,K0 − 1,

η(0) = ‖ϕh‖E0.h∪∂0Eh
.

(5.15)

It follows from Theorem 4.2 that

‖v‖Ωh.µ
≤ η(µ), µ = 0, . . . ,K0. (5.16)
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It can be easily prove by induction that

η(µ) ≤ ω̃
(
t(µ);h

)
≤ ω̃ (T ;h) for µ = 0, . . . ,K0. (5.17)

The proof is complete.

6. DIFFERENCE METHOD

We give a theorem about the convergence of a sequence of solutions for the implicit
finite difference functional schemes (5.1) to a solution for the differential functional
problem (1.1), (1.2).

Let U := u|Ωh
∈ F (Ωh, R) be the restriction of a solution u ∈ C1,2 (Ω, R) for (1.1),

(1.2) to the mesh Ωh and let v ∈ F (Ωh, R) be a solution for (5.1), where R ⊂ R is an
interval independent of h ∈ H . We say that the difference method (5.1) is uniformly

convergent if

lim
h→0

‖U − v‖Ωh
= 0.

An important question is how to assign the interval R. The answer to this question
is the following lemma.

Lemma 6.1. If Assumptions H[f, ϕ], F[f, ϕh, Gh], S[f, h] and condition (3.3) (see
Remark 3.2) are fulfilled and there is a constant A ≥ 0 such that

‖ϕh‖E0.h∪∂0Eh
≤ A, h ∈ H (6.1)

and the maximal solution ω of the Cauchy problem

ω
′

(t) = σ (t, ω (t)) , ω (0) = A (6.2)

is defined on [0, T ], then

R = [−ω∗ (T ) , ω∗ (T )] , (6.3)

where ω∗ (T ) = max{ω̃ (T ) , ω (T )} (see H[f, ϕ], (F4)).

Proof. It follows from (5.2), (6.1), (6.2) and the ordinary differential inequalities that
ω̃ (T ;h) ≤ ω (T ), h ∈ H . Hence, Theorems 3.1 and 5.3 give (6.3).

Assumption F ∗[f, u,Gh]

(F ∗
1 ) There are functions σ1 : [0, T ]× R+ → R+, ρ1 : R2

+ → R+ such that:
(1) σ1 is continuous and nondecreasing with respect to both variables; moreover,

σ1 (t, 0) = 0 for t ∈ [0, T ];
(2) ρ1 is nondecreasing with respect to both variables;
(3) for each c ≥ 0 and ε, ε0 ≥ 0, the maximal solution of the Cauchy problem

ω
′

(t) = cσ1 (t, ω (t)) + ε, ω (0) = ε0 (6.4)
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is defined on [0, T ] and the function ω̃ (t) = 0 for t ∈ [0, T ] is the maximal
solution of (6.4) for each c ≥ 0 and ε, ε0 = 0;

(4) the generalized Perron type estimate

|f (t, x, z, p, q)− f (t, x, z, p, q)| ≤ ρ1 (‖p‖ , ‖q‖)σ1
(
t, ‖z − z‖Ωt

)
(6.5)

holds on ∆∗.
(F ∗

2 ) u ∈ C1,2 (Ω,R) is a solution of (1.1), (1.2).
(F ∗

3 ) Gh[z] ∈ C (Ω, R) for each z ∈ F (Ωh, R).

Remark 6.2. The generalized Perron condition (6.5) is assumed to be satisfied on
∆∗ not on ∆, so it is the local one. Moreover, it follows from simple calculations that
(F ∗

3 ) holds for Gh = Th.

Theorem 6.3. Let the assumptions of Lemma 6.1 and Assumption F∗[f, u,Gh] hold.

Moreover, suppose that there is a function γ0 : H → R+ such that
∣∣∣ϕ(µ,m) − ϕ

(µ,m)
h

∣∣∣ ≤ γ0 (h) on E0.h ∪ ∂0Eh and lim
h→0

γ0 (h) = 0. (6.6)

Under these assumptions there is a function α : H → R+ such that

‖U − v‖Ωh.µ
≤ α (h) for 0 ≤ µ ≤ K0 and lim

h→0
α (h) = 0. (6.7)

Proof. It follows from Lemma 6.1 that u ∈ C1,2 (Ω, R) and v ∈ F (Ωh, R), where R
is given by (6.3). The proof of Theorem 6.3 for R = R is given in [24] (see also [12]).
For our R we have to replace F (Ωh,R) by F (Ωh, R) only in that proof.

Remark 6.4. Observe that we do not assume in Theorem 6.3 the Courant-Friedrichs-
-Levy condition

1− 2h0

n∑

i=1

1

h2i
∂qiif (P ) + h0

∑

(i,j)∈Γ

1

hihj

∣∣∂qijf (P )
∣∣ ≥ 0, (6.8)

P ∈ ∆, which is typical in explicit methods (see [14, 25]).

Remark 6.5. Suppose that the assumptions of Theorem 6.3 hold, f is Lipschitz con-
tinuous with respect to z, p, q and Gh = Th. It follows from the properties of the differ-
ence quotients and Th that if u ∈ C2,3 (Ω,R) and α0 = O (‖h‖), then U−v = O (‖h‖).

But if u ∈ C2,4 (Ω,R) and α0 = O
(
h0 + ‖h

′

‖2
)
, then U − v = O

(
h0 + ‖h

′

‖2
)
.

Remark 6.6. Suppose that the assumptions of Theorem 6.3 are satisfied and, more-
over, there is a constant c > 0 such that

∥∥∥δw(µ,m)
∥∥∥ ,

∥∥∥δ(2)w(µ,m)
∥∥∥ ≤ c on Eh (6.9)

for all solutions w ∈ F (Ωh, R) of perturbed finite difference functional schemes of
(5.1). It follows from an analysis of the proof of this theorem that the presented
difference method is stable. It is enough to replace U by w. If ρ1 = const, then
condition (6.9) can be omitted.
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Remark 6.7. All the results can be extended to weakly coupled differential functional
systems. One part of each system may be strongly nonlinear and the other quasi-linear.
This is a new result even in the case of systems without functional terms. For simplicity
we consider one equation only.

7. QUASI-LINEAR EQUATION

We are interested in the numerical approximation of a classical solution of problem
(1.3), (1.2).

Now, we put

f (t, x, z, p, q) =

n∑

i,j=1

aij (t, x, z) qij + F (t, x, z, p) (7.1)

for (t, x, z, p, q) ∈ ∆, and consider the implicit difference functional scheme (5.1) with
this f for problems (1.3), (1.2). Assuming

|F (t, x, z, p)− F (t, x, z, p)| ≤ ρ2 (‖p‖)σ1
(
t, ‖z − z‖Ωt

)
, (7.2)

|aij (t, x, z)− aij (t, x, z)| ≤ σ1
(
t, ‖z − z‖Ωt

)
, (7.3)

i, j = 1, . . . , n, respectively on ∆F∗ and ∆A∗, we may put ρ1 (y1, y2) = n2y2 + ρ2 (y1)
for y1, y2 ∈ R+ in (F ∗

1 ).
If we apply Theorems 5.3, 6.3 then we need, in particular, the following assumption

on the matrix A = [aij ]
n

i,j=1: for each (i, j) ∈ Γ, the function

ãij (t, x, z) = sign aij (t, x, z) for (t, x, z) ∈ ∆A

is constant (see (F3)). In [24] it is shown, for R = R, that the condition that the
coefficients aij are of the same sign in ∆A can be omitted if we modify the difference
operator δ(2). More precisely, we consider the scheme (5.1) with δ0, δ, δii, i = 1, . . . , n,
given in Section 2, and we define δij , i, j = 1, . . . , n, i 6= j, by

δijz
(µ+1,m) =

1

2

[
δ+i δ

−
j z

(µ+1,m) + δ−i δ
+
j z

(µ+1,m)
]

if aij

(
t(µ), x(m), Gh [z]

)
< 0,

δijz
(µ+1,m) =

1

2

[
δ+i δ

+
j z

(µ+1,m) + δ−i δ
−
j z

(µ+1,m)
]

if aij

(
t(µ), x(m), Gh [z]

)
≥ 0,

(7.4)

where z ∈ F (Ωh,R),
(
t(µ), x(m)

)
∈ Eh. Observe that the finite difference functional

scheme (5.1) with f given by (7.1) and δij by (7.4) depends on the sign of aij at(
t(µ), x(m), Gh [z]

)
and this sign need not be the same in ∆A.

Remark 7.1. It follows from the proofs that Theorems 5.3 and 6.3 are true for the
modified difference method above.
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8. EXAMPLES

To illustrate the class of problems which can be covered by our estimates theorems
and numerical methods, we consider three examples.

Put n = 1. Let E = [0, 1] × (−1, 1), E0 = {0} × [−1, 1], ∂0E = [0, 1] ×
([−1, 1] \ (−1, 1)).

Example 8.1. Consider the Fisher equation

∂tz (t, x) = ∂xxz (t, x) + z (t, x) [1− z (t, x)] (8.1)

with the initial-boundary condition

z (t, x) =
1

2
t2 on E0 ∪ ∂0E. (8.2)

The constant functions u0 (t, x) ≡ 0 and v0 (t, x) ≡ 1 are, respectively, a lower and
an upper solution of problem (8.1), (8.2). It follows from Theorem 4.1 in [5] (see also
Theorem 2.1 in [4]) that this problem has the unique solution u ∈ C1,2 (Ω,R) and
u (t, x) ∈ [0, 1] for (t, x) ∈ Ω. Note that we can put for instance σ0 (t, r) = r(r + 1),
t ∈ [0, 1], r ∈ R+, in Theorem 3.1 (see also Remark 3.2) and obtain |u (t, x)| ≤

et (3− et)
−1

≤ e (3− e)
−1

for (t, x) ∈ Ω. Putting ϕh = ϕ|Ωh
, Gh = Th and σ = σ0 in

Theorem 5.3 we have
∣∣v(µ,m)

∣∣ ≤ et
(µ)

(
3− et

(µ)
)−1

≤ e (3− e)
−1

for
(
t(µ), x(m)

)
∈ Ωh,

where v is the solution of the implicit difference scheme (5.1) for (8.1), (8.2). Hence,

we can put R =
[
−e (3− e)

−1
, e (3− e)

−1
]

in Assumption F∗[f, u,Gh]. Note that this

assumption is not fulfilled for R = R, because f (t, x, z, p, q) = q11+z (t, x) [1− z (t, x)]
does not fulfill the generalized Perron condition on C (Ω,R). Put h0 = h1 = 10−1.
Note that the Courant-Friedrichs-Levy condition (6.8) for such steps is not satisfied.
For each t(µ) we use the method of an inverse matrix to solve the implicit difference
scheme. Let vmin, vmax be the smallest and largest values, respectively, of v at time t(µ)

(Tab. 1).

Table 1. Values of vmin, vmax

t
(µ)

vmin vmax

0.1 4.28 · 10
−4

5.00 · 10
−3

0.2 2.44 · 10
−3

2.00 · 10
−2

0.3 7.61 · 10
−3

4.50 · 10
−2

0.4 1.75 · 10
−2

8.00 · 10
−2

0.5 3.37 · 10
−2

1.25 · 10
−1

0.6 5.76 · 10
−2

1.80 · 10
−1

0.7 9.01 · 10
−2

2.45 · 10
−1

0.8 1.32 · 10
−1

3.20 · 10
−1

0.9 1.84 · 10
−1

4.05 · 10
−1

1.0 2.46 · 10
−1

5.00 · 10
−1
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Put n = 2. Let E = [0, 1] × (−1, 1)
2
, E0 = {0} × [−1, 1]

2
, ∂0E = [0, 1] ×(

[−1, 1]
2 \ (−1, 1)

2
)
.

Example 8.2. Consider the porous media equation with absorption

∂tz (t, x, y) = ∂xxz (t, x, y) + ∂yyz (t, x, y)− [z (t, x, y)]
2

(8.3)

with the initial-boundary condition

z (t, x, y) =
1

2
t2 on E0 ∪ ∂0E. (8.4)

The constant functions u0 (t, x, y) ≡ 0 and v0 (t, x, y) ≡ 1
2 are, respectively,

a lower and an upper solution of problem (8.3), (8.4). It follows from Theorem
4.1 in [5] (see also Theorem 2.1 in [4]) that this problem has the unique solution
u ∈ C1,2 (Ω,R) and u (t, x, y) ∈

[
0, 12

]
for (t, x, y) ∈ Ω. Note that we can put for

instance σ0 (t, r) = r2, t ∈ [0, 1], r ∈ R+, in Theorem 3.1 (see also Remark 3.2) and

obtain |u (t, x, y)| ≤ (2− t)
−1 ≤ 1 for (t, x, y) ∈ Ω. Putting ϕh = ϕ|Ωh

, Gh = Th and

σ = σ0 in Theorem 5.3 we have
∣∣v(µ,m)

∣∣ ≤
(
2− t(µ)

)−1
≤ 1 for

(
t(µ), x(m)

)
∈ Ωh,

where v is the solution of the implicit difference scheme (5.1) for (8.3), (8.4). Hence,
we can put R = [−1, 1] in Assumption F∗[f, u,Gh]. Note that this assumption is not

fulfilled for R = R, because f (t, x, y, z, p, q) = q11 + q22 − [z (t, x, y)]
2

does not fulfill
the generalized Perron condition on C (Ω,R). Put h0 = h1 = h2 = 10−1. Note that
the Courant-Friedrichs-Levy condition (6.8) for such steps is not satisfied. For each
t(µ) we use the method of an inverse matrix to solve the implicit difference scheme. Let
vmin, vmax be the smallest and largest values, respectively, of v at time t(µ) (Tab. 2).

Table 2. Values of vmin, vmax

t
(µ)

vmin vmax

0.1 7.27 · 10
−4

5.00 · 10
−3

0.2 3.93 · 10
−3

2.00 · 10
−2

0.3 1.15 · 10−2 4.50 · 10−2

0.4 2.53 · 10−2 8.00 · 10−2

0.5 4.63 · 10−2 1.25 · 10−1

0.6 7.52 · 10
−2

1.80 · 10
−1

0.7 1.12 · 10
−1

2.45 · 10
−1

0.8 1.58 · 10−1 3.20 · 10−1

0.9 2.12 · 10−1 4.05 · 10−1

1.0 2.74 · 10−1 5.00 · 10−1

Example 8.3. Consider the strongly nonlinear with a quasi-linear term differential
integral equation with deviated variables

∂tz (t, x, y) = arctan [∂xxz (t, x, y) + ∂xyz (t, x, y) + ∂yyz (t, x, y)] +

+ [2 + cos z (t, x, y)] [∂xxz (t, x, y) + ∂xyz (t, x, y)+

+ ∂yyz (t, x, y)] + [sin z (t, x, y)] ∂xz (t, x, y)+

+
1

8

t∫

0

1∫

−1

1∫

−1

z (s, a, b)dbdads+ [z (0.5t, 0, 0)]
2
+ g (t, x, y)

(8.5)
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with the initial-boundary condition

z (t, x, y) = 0.01 sin t cos (x+ y) on E0 ∪ ∂0E, (8.6)

where

g (t, x, y) = arctan [0.03 sin t cos (x+ y)] +

+ 0.01 [cos t+ 6 sin t+ 3 sin t cos (0.01 sin t cos (x+y))] cos (x+y)+

+ 0.01 sin t sin (0.01 sin t cos (x+y)) sin (x+y) + 0.005 sin2 1 (cos t− 1)−

− 0.0001 sin2 0.5t.

The function u (t, x, y) = 0.01 sin t cos (x+ y) is an analytic solution of prob-
lem (8.5), (8.6). Obviously, |u (t, x, y)| ≤ 0.01 for (t, x, y) ∈ Ω. Note that we

can put for instance σ0 (t, r) = 3
(
r + 1

4

)2
, t ∈ [0, 1], r ∈ R+, in Theorem 3.1

(see also Remark 3.2) and obtain |u (t, x, y)| ≤ 1
4

(
4
26 + 3t

) (
100
26 − 3t

)−1
≤ 41

44
for (t, x, y) ∈ Ω. Putting ϕh = ϕ|Ωh

, Gh = Th and σ = σ0 in Theorem

5.3 we have
∣∣v(µ,m)

∣∣ ≤ 1
4

(
4
26 + 3t(µ)

) (
100
26 − 3t(µ)

)−1
≤ 41

44 for
(
t(µ), x(m)

)
∈

Ωh, where v is the solution of the implicit difference functional scheme (5.1)
for (8.5), (8.6). Hence, we can put R =

[
− 41

44 ,
41
44

]
in Assumption F∗[f, u,Gh].

Note that this assumption is not fulfilled for R = R, because f (t, x, y, z, p, q) =
arctan

(
q11 +

1
2q12 +

1
2q21 + q22

)
+ [2 + cos z (t, x, y)]

(
q11 +

1
2q12 +

1
2q21 + q22

)
+

[sin z (t, x, y)] p1 +
1
8

∫ t

0

∫ 1

−1

∫ 1

−1 z (s, a, b)dbdads + [z (0.5t, 0, 0)]
2
+ g (t, x, y) does not

fulfill the generalized Perron condition on C (Ω,R). Put h0 = h1 = h2 = 10−1. For
each t(µ) we use one hundred iterations of the Newton method to solve the implicit
difference functional scheme. Let vmin, vmax be the smallest and largest values, re-
spectively, of v at time t(µ) (Tab. 3). Moreover, let εmax, εmean be the largest and
mean values, respectively, of the errors |U − v| of the difference method (5.1) at time
t(µ) (Tab. 4).

Table 3. Values of vmin, vmax

t
(µ)

vmin vmax

0.1 −4.15 · 10
−4

9.98 · 10
−4

0.2 −8.26 · 10
−4

1.98 · 10
−3

0.3 −1.22 · 10
−3

2.95 · 10
−3

0.4 −1.62 · 10
−3

3.89 · 10
−3

0.5 −1.99 · 10
−3

4.79 · 10
−3

0.6 −2.34 · 10
−3

5.64 · 10
−3

0.7 −2.68 · 10
−3

6.44 · 10
−3

0.8 −2.98 · 10
−3

7.17 · 10
−3

0.9 −3.25 · 10
−3

7.83 · 10
−3

1.0 −3.50 · 10
−3

8.41 · 10
−3

Table 4. Errors of the difference method

t
(µ)

εmax εmean

0.1 4.82 · 10
−4

2.04 · 10
−4

0.2 6.55 · 10
−4

2.69 · 10
−4

0.3 7.04 · 10
−4

2.86 · 10
−4

0.4 7.05 · 10
−4

2.85 · 10
−4

0.5 6.84 · 10
−4

2.75 · 10
−4

0.6 6.50 · 10
−4

2.62 · 10
−4

0.7 6.08 · 10
−4

2.45 · 10
−4

0.8 5.60 · 10
−4

2.25 · 10
−4

0.9 5.06 · 10
−4

2.03 · 10
−4

1.0 4.46 · 10
−4

1.79 · 10
−4

Note that the Courant-Friedrichs-Levy condition (6.8) for such steps is not satisfied
and the explicit method given in [14] is not convergent. In fact, the errors εmax, εmean

of that method exceeded 1011 and 1010, respectively.
The results shown in the tables are consistent with our mathematical analysis.

The tables of errors are typical of difference methods.
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