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Abstract. It is shown that in some generic cases the identity component of the group of
leaf preserving diffeomorphisms (with not necessarily compact support) on a foliated open
manifold is perfect. Next, it is proved that it is also bounded, i.e. bounded with respect to
any bi-invariant metric. It follows that the group is uniformly perfect as well.
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1. INTRODUCTION

Let us recall that a group G is called perfect if G = [G,G], where the commutator
subgroup is generated by all commutators [g1, g2] = g1g2g

−1
1 g−12 , g1, g2 ∈ G. In terms

of homology of groups this means that H1(G) = G/[G,G] = 0.
Let (M,F) be a foliated manifold. We say that a diffeomorphism f : M → M is

leaf preserving (resp. foliation preserving) if f(Lx) = Lx (resp. f(Lx) = Lf(x)) for
all x ∈ M , where Lx is the leaf of F passing through x. By Diff∞c (M,F) we denote
the group of leaf preserving diffeomorphisms of M which are isotopic to the identity
through compactly supported isotopies of leaf preserving diffeomorphisms.

The following result is due to Rybicki [13] (and independently Tsuboi [18]).

Theorem 1.1. Let (M,F) be a foliated smooth manifold. Then Diff∞c (M,F) is per-
fect.

The proof of Theorem 1.1 modifies arguments of Herman and Thurston (cf. Rybicki
[13]). If the foliation F is trivial, i.e. F = {M}, then Theorem 1.1 reduces to a classical
result due to Thurston [17] stating that the group Diff∞c (M) of C∞-diffeomorphisms of
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M compactly isotopic to the identity is simple. In the case of Cr-diffeomorphisms with
r large and finite it is very likely that Theorem 1.1 is no longer true. See a discussion
on this problem in [7].

Observe that the group Diff∞c (M,F) is locally contractible (cf. [14]) and, conse-
quently, connected.

For any manifold M let Diffr(M) be the group of all Cr-diffeomorphisms on M
which are isotopic to the identity, r = 0, 1, . . . ,∞. We have the following result by
McDuff [12] on the structure of diffeomorphism or homeomorphism groups of an open
manifold.

Theorem 1.2. Let M be a Cr-smooth manifold such that M = IntQ, where Q is a
compact manifold with boundary, r = 0, 1, . . . ,∞. Then Diffr(M) is a perfect group.

Recently, a complete proof of Theorem 1.2 was presented by Schweitzer in [16].
Obviously the group Diffr(M) is not simple since it admits Diffrc(M) as a non-

trivial normal subgroup. It is worth observing that the proof of McDuff’s theorem is
completely different from those in the compact case (see [3, 5, 8–10, 17]). Especially
the problem of perfectness of the group Diffrc(M) for r = dimM + 1 is still open. But
there are arguments (cf. [7, 11]) that the group Diffn+1

c (M) would not be perfect.
LetM be a connected compact manifold of dimension n ≥ 1. We will deal with the

product (n+k)-dimensional manifoldM (k) = M×Rk endowed with the k-dimensional
product foliation Fk = {{pt} × Rk}, k ≥ 1.

By Gk = Diff∞(M (k),Fk) (resp. Gkc = Diff∞c (M (k),Fk)) we denote the group
of all leaf preserving C∞-diffeomorphisms which can be joined with the identity
by smooth isotopies (resp. compactly supported smooth isotopies) of leaf preserving
C∞-diffeomorphisms.

Our first goal is the following result being an analogue of Theorem 1.1.

Theorem 1.3. LetM be a connected compact manifold. Then the group Gk is perfect.

Of course Gkc is also perfect in view of Theorem 1.1. On the other hand, Theo-
rem 1.3 is probably no longer true for finite r > 0, similarly Theorem 1.1.

The next results are related with the notion of boundedness. Recall that a group
is called bounded if it is bounded with respect to any bi-invariant metric.

Theorem 1.4. The group Gk is bounded.

We will also prove (see Theorem 3.3) that the subgroup Gkc is bounded. On the
other hand, it might be very difficult to prove for an arbitrary smooth foliated mani-
fold that the group Diff∞c (M,F) is bounded. A possible result would depend on the
topology of M and of the leaves of foliation.

The problem of the boundedness of groups of diffeomorphisms is closely related
to the problem of uniform perfectness (cf. [4]). Group G is called uniformly perfect
if G is perfect and there exists a positive integer N such that any g ∈ G can be
expressed as a product of at most N commutators of elements of G. If G is perfect
then clG(g), the commutator length of g ∈ G, is the smallest N such that g can be
represented by a product of N commutators. For any perfect group G denote by cldG
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the commutator length diameter of G, i.e. cldG := supg∈G clG(g). Then G is uniformly
perfect iff cldG <∞.

Recently Burago, Ivanov and Polterovich [4] and, independently, Tsuboi [19]
proved basic results concerning the uniform perfectness of diffeomorphism groups
of many manifolds. In contrast to the problem of perfectness these results depend
essentially on the topology of the underlying manifold. These results generalize older
ones, e.g. [2]. See also Rybicki [15] and Abe-Fukui [1].

The following result is a consequence of Theorem 1.4 and Lemma 2.4.

Corollary 1.5. Groups Gkc and Gk are uniformly perfect. Moreover cldGk
c
≤ 2 and

cldGk ≤ 4.

In this paper we use several ideas from the non-foliated case (see Rybicki [15]).

2. THE PROOF OF THEOREM 1.3

We have the following version of Isotopy Extension Theorem.

Theorem 2.1. Let gt be an isotopy in Gk with g0 = Id and let N ×K ⊂M ×Rk be
a compact set. Then for any open neighbourhood U of

⋃
t∈[0,1] gt(N ×K) there exists

an isotopy ft in Gk such that ft = gt on N × K and supp(ft) ⊂ U . Moreover, if
supp(gt) ⊂ N × Rk then we may choose ft with supp(ft) ⊂ N × Rk.

Proof. The proof is analogous to the usual (non-foliated) case (cf. [6]).

See that the above theorem is still valid for M noncompact.
In the sequel for an open set U we denote by GkU the subgroup of Gk containing

elements which can be joined with the identity through isotopies in Gk compactly
supported in U .

Recall that a subset V ⊆ N of an open manifold N is called a neighbourhood of
infinity if N \ V is compact. We say that N is one-ended if every neighbourhood of
infinity contains connected neighbourhood of infinity. Note that M (k) = M × Rk is
one-ended for k ≥ 2. By a translation system onM (k) we understand a family {Vi}∞i=0

of closed neighbourhoods of infinity such that Vi+1 ⊂ IntVi and
⋂∞
i=0 Vi = ∅.

Fix R > 0 and V = VR = M × {x ∈ Rk : |x| > R}. Then V is a neighbourhood
of infinity of M (k). For 0 < R1 < R2 ≤ ∞ we set Ak(R1, R2) = {x ∈ Rk : R1 < |x| <
R2} and Ak(R1, R2) = Ak(R1, R2).

In the case k = 1 the manifold M (k) has two ends. We will omit the proof in this
case as it is analogous to the case k ≥ 2.

Proposition 2.2. We have the following properties:

1. For any g ∈ Gk there exist f ∈ Gkc and h ∈ GkV such that g = fh.
2. For every g ∈ GkV there is a sequence

R < a1 < ā1 < b̄1 < b1 < a2 < . . . < ai < āi < b̄i < bi < . . .

tending increasingly to infinity and h ∈ GkV such that:
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1) h = g on
∞⋃
i=1

M ×Ak(āi, b̄i),

2) supp(h) ⊂
∞⋃
i=1

M ×Ak(ai, bi),

3) If h = h1h2 . . . such that supp(hi) ⊂M ×Ak(ai, bi) then hi ∈ GkM×Ak(ai,bi)
for

all i ≥ 1,
4) h = Id on VR′ for some R′ > 0 if g has compact support.

3. For any sequence {αi}i∈N with αi ∈ (R,∞) tending increasingly to infinity there
exists a C∞-mapping [0,∞) 3 t 7→ ft ∈ GkV with f0 = Id, fj = (f1)j for j = 2, 3, . . .
such that f1(Vi) = Vi+1, i ∈ N, for the translation system {Vi}i∈N, where Vi =
M × {x ∈ Rk : |x| ≥ αi}, i ∈ N.

Proof. Let g ∈ Gk and let gt be an isotopy from Id to g in Gk. We take U a neigh-
bourhood of

⋃
t∈[0,1] gt(M×C) where C = {x ∈ Rk : |x| ≤ R}. From Theorem 2.1 for

N = M there exists an isotopy ft in Gk with ft = gt onM×C and supp(ft) ⊂ U . We
set f = f1 and h = f−1g. Then f ∈ Gkc and h ∈ GkV since h = Id onM×C = M (k)\V .

To show (2) we proceed by induction. Assume that we have chosen sequence

R < a1 < ā1 < b̄1 < b1 < . . . < ai < āi < b̄i < bi

and isotopies h1t , . . . , hit in Gk with supp(hjt ) ⊂ M × Ak(aj , bj) and hjt = gt on M ×
Ak(āj , b̄j), j = 1, . . . , i. Then we may choose bi < ai+1 < āi+1 < b̄i+1 < bi+1 such
that

⋃
t∈[0,1] gt(M × Ak(āi+1, b̄i+1)) is disjoint with M × Ak(R, bi) and is contained

in M × Ak(ai+1, bi+1). From Theorem 2.1 there exists an isotopy hi+1
t in Gk such

that hi+1
t = gt on M × Ak(āi+1, b̄i+1) and supp(hi+1

t ) ⊂ M × Ak(ai+1, bi+1). Taking
ht =

∏∞
i=1 h

i
t we obtain (2).

Now let {αi}i∈N be as in (3). We take an isotopy τ : [0, 1]→ Diff∞(Ak(R,∞)) with
τ0 = Id and τ1(Ak(αi, αi+1)) = Ak(αi+1, αi+2), i ∈ N. Continuing by induction let
τ : [i, i+ 1]→ Diff∞(Ak(R,∞)) be an isotopy from τj to τj+1 = (τ1)j+1. We get τ =⋃∞
i=0 τ |[j,j+1] : [0,∞)→ Diff∞(Ak(R,∞)) where τ is smoothed on neighbourhoods of

j = 1, 2, . . . if necessary. We set ft = IdM ×τt.

Remark 2.3. The condition hi ∈ GkM×Ak(ai,bi)
in Proposition 2.2 (3) means that the

diffeomorphisms hi do not admit any twistings.

Lemma 2.4. Any g ∈ GkV can be written as a product of two commutators of elements
of GkV .

Proof. Let g ∈ GkV . Choose a sequence

R < a1 < ā1 < b̄1 < b1 < . . . < ai < āi < b̄i < bi < . . .

and h ∈ GkV as in Proposition 2.2 (2).
Put h̄ = h−1g, that is g = hh̄. It suffices to show that h is a commutator of

elements in GkV (by the same way it is true for h̄).
Choose arbitrary α0 ∈ (R, a1) and αi ∈ (bi, ai+1) for i = 1, 2, . . .. In view of

Proposition 2.2 (3) there exists an isotopy [0,∞) 3 t 7→ ft ∈ Gk with f0 = Id,
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fj = (f1)j , j = 1, 2, . . ., and such that f1(Vi) = Vi+1 for i ∈ N, where Vi = M × {x ∈
Rk : |x| ≥ αi}.

Now define h̃ ∈ Gk as follows. Set h̃ = h on M × Ak(R,α1) and h̃ =

h(fhf−1) . . . (fihf
−1
i ) on M × Ak(R,αi+1) for i ≥ 1. Since we have fj = (f1)j

then h̃|[R,αi) is a consistent family of functions, and h̃ =
⋃∞
i=1 h̃|[R,αi) is a local

homeomorphism. It is easily checked that h̃ is a bijection.
By definition we have the equality h̃ = hfh̃f−1. Hence h = [h̃, f ] as claimed.

Remark 2.5. Notice, that decomposition g = hh̄ is necessary in the proof above.
In fact, if we define h̃ directly from g instead from h then we cannot ensure that
the resulting h̃ is surjective. If we define h̃ by using g̃i = (f igf−i) . . . (fgf−1)g on
M×Ak(R,αi), i = 1, 2, . . . then the family g̃i is inconsistent and we cannot glue-up g̃i.

Proof of Theorem 1.3. To show that Gk is perfect it is enough to show that Gk ⊂
[Gk, Gk]. Let g ∈ Gk. In view of Proposition 2.2 (1) g = fh, such that f ∈ Gkc and
h ∈ GkV for a neighbourhood of infinity V .

Due to Theorem 1.1 diffeomorphism f can be expressed as a product of commu-
tators and by Lemma 2.4 we have h = [h1, h2][h3, h4] for some h1, h2, h3, h4 ∈ GkV .
Hence g is a product of commutators of elements from Gk, so g ∈ [Gk, Gk].

Remark 2.6. Let us observe that it is rather hopeless to obtain the above theorem for
any foliated open manifold as it was done in Theorem 1.1 for the compactly supported
case. We conjecture, however, that the compactness assumption on M in Theorem
1.3 can be omitted.

We also have the following theorem.

Theorem 2.7. Let Diff∞[c](M
(k),Fk) be the subgroup of Gk consisting of all ele-

ments f ∈ Gk such that {x ∈M : f |Lx
6= Id} is a compact subset of M . Then

Diff∞[c](M
(k),Fk) is perfect.

Proof. We proceed as in the proof of Theorem 1.3 but we need some modifications of
proofs of Proposition 2.2 and Lemma 2.4.

First, let gt be an isotopy in Diff∞[c](M
(k),Fk) and supp(gt) ⊂ N × Rk. From

Theorem 2.1 we may assume that all constructed mappings in Proposition 2.2 (1),
(2) have supports contained in N × Rk.

Next, to prove (3) we define τ as above and we fix ξ : M → R of class C∞
such that ξ = 1 on N and ξ = 0 over a compact set. Define [0,∞) 3 t 7→ ft ∈
GkV ∩Diff∞[c](M

(k),Fk), where V = M × {x ∈ Rk : |x| > R}, by the formula

ft = IdM ×(ξ · (τt − Id) + Id)

i.e. ft(x, y) = (x, ξ(x) ·(τt(y)−y)+y) for (x, y) ∈M×Rk. Here · means multiplication
in Rk. We get f0 = Id and fj = (f1)j on N ×Ak(R,∞), j ≥ 1.

Now as in the proof of Lemma 2.4 we get for g ∈ GkV ∩ Diff∞[c](M
(k),Fk) with

supp(g) ⊂ N × Rk diffeomorphisms h ∈ GkV and h̄ = h−1g ∈ Gkc such that
supp(h), supp(h̄) ⊂ N × Rk. We will proceed with h.
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Let {αi} be the sequence used in the construction of τ . We define h̃ ∈
Diff∞[c](M

(k),Fk) by setting h̃ = h on N × Ak(R,α1) and h̃ = h(fhf−1) . . . (fihf
−1
i )

on N × Ak(R,αi+1) for i ≥ 1. Since supp(h) ⊂ N × Rk, h̃ is well defined. Moreover,
fj = (f1)j on N ×Ak(R,∞), so h̃ is a homeomorphism.

From definition we have h̃ = hfh̃f−1, so h = [h̃, f ]. Analogouly we obtain h̄.
Hence every g as above may be represented as two commutators. Using Theorem 1.1
we get that Diff∞[c](M

(k),Fk) is perfect.

3. BOUNDEDNESS AND UNIFORM PERFECTNESS OF THE GROUP Gk

The notion of the conjugation-invariant norm is a basic tool in studies of the bound-
edness of groups. Let G be a group. A conjugation-invariant norm on G is a function
ν : G→ [0,∞) which satisfies the following conditions.

For any g, h ∈ G:

1. ν(g) > 0 if and only if g 6= e,
2. ν(g−1) = ν(g),
3. ν(gh) ≤ ν(g) + ν(h),
4. ν(hgh−1) = ν(g).

It is easy to see that if H is a subgroup of G and if ν is a conjugation-invariant
norm on G then ν|H is a conjugation-invariant norm on H. It is also easily seen that
G is bounded if and only if any conjugation-invariant norm on G is bounded. Suppose
that G is perfect. Then the commutator length clG is a conjugation-invariant norm
on G.

In the sequel we will need some algebraic tools. A subgroupH ofG is called strongly
m-displaceable if there is f ∈ G such that the subgroups H, fHf−1, . . . , fmHf−m
pairwise commute. Then we say that f m-displaces H.

Fix a conjugation-invariant norm ν on G and assume that H ⊂ G is strongly
m-displaceable.

By Theorem 2.2 in [4] we have for any h ∈ [H,H] that

clG(h) ≤ 2. (3.1)

Moreover, if there exists g ∈ G which m-displaces H for every m ≥ 1 then for all
h ∈ [H,H]

ν(h) ≤ 14ν(g). (3.2)

Proposition 3.1. If U ,W are open disjoint subsets ofM (k) such that there is f ∈ Gk
with f(U ∪W ) ⊂W then f m-displaces GkU for all m ≥ 1.

Indeed, this follows from fm(U) ⊂ fm−1(W ) \ fm(W ) for every m ≥ 1.

Proposition 3.2. There exists disjoint open subsets U,W ⊂ M (k) and f ∈ Gkc with
f(U ∪W ) ⊂W such that for every g ∈ Gkc there is h ∈ Gkc such that h(supp(g)) ⊂ U .
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Proof. Indeed, let U ′,W ′ ⊂ Rk be open sets. From transitivity of Diff∞c (Rk) there
exists ϕ ∈ Diff∞c (Rk) such that ϕ(U ′ ∪W ′) ⊂ W ′. Put f = IdM ×ϕ, U = M × U ′
and W = M ×W ′.

Now for g ∈ Gkc we may assume that supp(g) ⊂ M × B where B is a ball in
Rk. Then by taking ϕ ∈ Diff∞c (Rk) with ϕ(B) ⊂ U we have h = IdM ×ϕ ∈ Gkc and
h(supp(g)) ⊂ h(M ×B) ⊂ U .

Now we can prove the following theorem.

Theorem 3.3. The group Gkc is bounded.

Proof. Fix U , W and f as in Proposition 3.2. Let ν be any conjugation invariant
norm on Gkc and g ∈ Gkc . By taking h ∈ Gkc such that h(supp(g)) ⊂ U we get
supp(hgh−1) = h(supp(g)) ⊂ U . Then hgh−1 ∈ GkU .

From Proposition 3.1, f m-displaces GkU for every m ≥ 1. From Theorem 1.1 we
get that GkU is perfect and hence inequality (3.2) gives us

ν(g) = ν(hgh−1) ≤ 14ν(f).

This completes the proof.

We will use the following obvious fact.

Proposition 3.4. The group Gk satisfies the following condition: For any sequence
in (R,∞) of the form

R < a1 < b1 < a2 < b2 < . . . < ai < bi < . . .

tending to infinity there exists f ∈ GkV such that

f
(
M × (Ak(a2i−1, b2i−1) ∪Ak(a2i, b2i))

)
⊂M ×Ak(a2i, b2i)

for i = 1, 2, . . .. Moreover, for another sequence

R < ā1 < b̄1 < ā2 < b̄2 < . . . < āi < b̄i < . . .

there exists ϕ ∈ GkV of the form ϕ = IdM ×ϕ̃ with ϕ̃(Ak(ai, bi)) = Ak(āi, b̄i) for
i = 1, 2, . . ..

Proof of Theorem 1.4. Let ν be a conjugation-invariant norm on Gk and let g ∈ Gk.
From Proposition 2.2 (1) we have a decomposition g = fh, f ∈ Gkc , h ∈ GkV . In view
of Theorem 3.3, ν|Gk

c
is bounded and we may assume that ν(f) is bounded for every

g. It suffices to show that ν(h) is also bounded.
Let V be a neighbourhood of infinity such that h ∈ GkV . From Proposition 2.2 (2)

we get a sequence
R < a1 < ā1 < b̄1 < b1 < . . .

and diffeomorphisms h1, h2 ∈ GkV such that h1 = h on a neighbourhood of⋃∞
i=1M × Ak(ā2i−1, b̄2i−1) with supp(h1) ⊆ U1 :=

⋃∞
i=1M × Ak(a2i−1, b2i−1) and
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h2 = h on a neighbourhood of
⋃∞
i=1M × Ak(ā2i, b̄2i) with supp(h2) ⊆ U2 :=⋃∞

i=1M ×Ak(a2i, b2i).
Now we may decompose h into h = h1h2h3h4, where h3 = h on a neighbourhood of⋃∞

i=1M×Ak(b2i−1, a2i), supp(h3) ⊆ U3 :=
⋃∞
i=1M×Ak(b̄2i−1, ā2i), h4 = h on a neigh-

bourhood of
⋃∞
i=1M ×Ak(b2i, a2i+1) and supp(h4) ⊆ U4 :=

⋃∞
i=1M ×Ak(b̄2i, ā2i+1).

On the other hand, for a fixed sequence

R < c1 < d1 < c2 < d2 < . . .

tending to infinity, from Proposition 3.4 there exists f ∈ GkV such that

f
(
M × (Ak(c2i−1, d2i−1) ∪Ak(c2i, d2i))

)
⊂M ×Ak(c2i, d2i)

and we get ϕ1 ∈ GkV with ϕ1fϕ
−1
1 (U1 ∪ U2) ⊂ U2. From Proposition 3.1 diffeomor-

phism ϕ1fϕ
−1
1 m-displaces GkU1

for every m ≥ 1. Since GkU1

∼= Gk is perfect, (3.2)
gives us

ν(h1) ≤ 14ν(ϕ1fϕ
−1
1 ) = 14ν(f).

We may obtain analogous estimations for h2, h3, h4 with some ϕ2, ϕ3, ϕ4 ∈ GkV
and then

ν(h) ≤ ν(h1) + ν(h2) + ν(h3) + ν(h4) ≤ 56ν(f).

Hence ν(g) ≤ ν(f) + ν(h) is bounded for every g ∈ Gk.

As a consequence we have the proof of Corollary 1.5.

Proof of Corollary 1.5. Obviously, as the groups Gkc and Gk are both perfect and
bounded, they are uniformly perfect as well.

We will show estimations of commutator length diameters of Gkc and Gk.
Let U , W and f ∈ Gkc be defined as in Proposition 3.2 and let g̃ ∈ Gkc . There

exists h ∈ Gkc with h(supp(g̃)) ⊂ U . By Proposition 3.1, f m-displaces GkU for any
m ≥ 1.

For hg̃h−1 we have supp(hg̃h−1) = h(supp(g̃)) ⊂ U . Since GkU is perfect and it is
m-displaceable in Gkc , then by (3.1) we get clGk

c
(g̃) = clGk

c
(hg̃h−1) ≤ 2.

Now let g ∈ Gk. According to (1) in Proposition 2.2 there are g̃ ∈ Gkc and h ∈ GkV
such that g = g̃h, where V is a neighbourhood of infinity. Since clGk

c
(g̃) ≤ 2 and

clGk(h) = 2 by Lemma 2.4 then, clGk(g) ≤ 4.
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