http://dx.doi.org/10.7494/OpMath.2012.32.3.505

RANK-ONE PERTURBATION OF TOEPLITZ OPERATORS AND REFLEXIVITY

Kamila Kliś-Garlicka

Abstract. It was shown that rank-one perturbation of the space of Toeplitz operators preserves 2-hyperreflexivity.

Keywords: Toeplitz operators, reflexivity, hyperreflexivity.

Mathematics Subject Classification: 47A15, 47L99.

1. INTRODUCTION

Let \mathcal{H} be a Hilbert space. By $\mathcal{B}(\mathcal{H})$ we denote the algebra of all bounded linear operators on \mathcal{H} .

It is well known that the space of trace class operators τc is a predual to $\mathcal{B}(\mathcal{H})$ with the dual action $\langle A, f \rangle = tr(Af)$, for $A \in \mathcal{B}(\mathcal{H})$ and $f \in \tau c$. The trace norm in τc will be denoted by $\|\cdot\|_1$. Denote by F_k the set of operators of rank at most k. Every rank-one operator may be written as $x \otimes y$, for $x, y \in \mathcal{H}$, and $(x \otimes y)z = \langle z, y \rangle x$ for $z \in \mathcal{H}$. Moreover, $tr(T(x \otimes y)) = \langle Tx, y \rangle$.

Let $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ be a subspace (when we write subspace we mean a norm closed linear manifold). By $d(T, \mathcal{M})$ we will denote the standard distance from an operator Tto a subspace \mathcal{M} , i.e., $d(T, \mathcal{M}) = \inf\{||T - \mathcal{M}|| : M \in \mathcal{M}\}$. It is known that when \mathcal{M} is weak* closed $d(T, \mathcal{M}) = \sup\{|tr(Tf)| : f \in \mathcal{M}_{\perp}, ||f||_1 \leq 1\}$, where \mathcal{M}_{\perp} denotes the preannihilator of \mathcal{M} .

Recall that the reflexive closure of a subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is given by

ref
$$\mathcal{M} = \{T \in \mathcal{B}(\mathcal{H}) : Tx \in [\mathcal{M}x] \text{ for all } x \in \mathcal{H}\},\$$

where $[\cdot]$ denotes the norm-closure. A subspace \mathcal{M} is called *reflexive* if $\mathcal{M} = \operatorname{ref} \mathcal{M}$. Due to Longstaff [14] we know that when \mathcal{M} is a weak* closed subspace of $\mathcal{B}(\mathcal{H})$, then \mathcal{M} is reflexive if and only if \mathcal{M}_{\perp} is a closed linear span of the set of all operators of rank one contained in \mathcal{M}_{\perp} (i.e., $\mathcal{M}_{\perp} = [\mathcal{M}_{\perp} \cap F_1]$). A subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called *k-reflexive* if $\mathcal{M}^{(k)} = \{\mathcal{M}^{(k)} : \mathcal{M} \in \mathcal{M}\}$ is reflexive in $\mathcal{B}(\mathcal{H}^{(k)})$, where

505

 $M^{(k)} = M \oplus \cdots \oplus M$ and $\mathcal{H}^{(k)} = \mathcal{H} \oplus \cdots \oplus \mathcal{H}$. Kraus and Larson [12, Theorem 2.1] proved that a weak^{*} closed subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is k-reflexive if and only if \mathcal{M}_{\perp} is a closed linear span of rank-k operators contained in \mathcal{M}_{\perp} (i.e., $\mathcal{M}_{\perp} = [\mathcal{M}_{\perp} \cap F_k]$).

In [2] Arveson defines an algebra \mathcal{A} as hyperreflexive if there is a constant a such that $d(T, \mathcal{A}) \leq a \sup\{\|P^{\perp}TP\| : P \in Lat\mathcal{A}\}$ for all $T \in \mathcal{B}(\mathcal{H})$. In [11] this definition was generalized to subspaces of operators. A subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called hyperreflexive if there is a constant a such that

$$d(T, \mathcal{M}) \leq a \sup\{\|Q^{\perp}TP\| : P, Q \text{ are projections and } Q^{\perp}\mathcal{M}P = 0\}$$

for all $T \in \mathcal{B}(\mathcal{H})$. As it was shown in [12] the supremum on the right hand side is equal to $\sup\{|\langle T, g \otimes h \rangle| : g \otimes h \in \mathcal{M}_{\perp}, \|g \otimes h\|_1 \leq 1\}.$

Recall after [10] the definition of k-hyperreflexivity. Let $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ be a subspace. For any $T \in \mathcal{B}(\mathcal{H})$ denote

$$\alpha_k(T, \mathcal{M}) = \sup\{|tr(Tf)| : f \in \mathcal{M}_\perp \cap F_k, \|f\|_1 \le 1\}.$$

A subspace \mathcal{M} is called *k*-hyperreflexive if there is a > 0 such that for any $T \in \mathcal{B}(\mathcal{H})$ the following inequality holds:

$$d(T, \mathcal{M}) \le a \,\alpha_k(T, \mathcal{M}). \tag{1.1}$$

Let $\kappa_k(\mathcal{M})$ be the infimum of the collection of all constants *a* such that inequality (1.1) holds, then $\kappa_k(\mathcal{M})$ is a constant of *k*-hyperreflexivity. Operator *T* is *k*-hyperreflexive if the WOT closed algebra generated by *T* and identity is *k*-hyperreflexive.

When k = 1 the definition above coincides with the definition of hyperreflexivity and the letter k will be omitted.

2. REFLEXIVITY OF PERTURBATED TOEPLITZ OPERATORS

Let \mathbb{T} be the unit circle on the complex plane \mathbb{C} . Denote $L^2 = L^2(\mathbb{T}, m)$ and $L^{\infty} = L^{\infty}(\mathbb{T}, m)$, where m is the normalized Lebesgue measure on \mathbb{T} . Let H^2 be the Hardy space corresponding to L^2 and P_{H^2} be a projection from L^2 onto H^2 . For each $\phi \in L^{\infty}$ we define $T_{\phi} : H^2 \to H^2$ by $T_{\phi}f = P_{H^2}(\phi f)$ for $f \in H^2$. Operator T_{ϕ} is called a *Toeplitz operator* and \mathcal{T} will denote the space of all Toeplitz operators.

The unilateral shift S can be realized as the multiplication operator by independent variable T_z . Moreover, $\mathcal{T} = \{T_\phi : \phi \in L^\infty\} = \{A : T_z^*AT_z = A\}$ ([9, Corollary 1 to Problem 194]). Hence \mathcal{T} is weak* closed.

Let $\{e_j\}_{j\in\mathbb{N}}$ be the usual basis in H^2 . Denote by \mathcal{M}_{lm} the subspace $\mathcal{T} + \mathbb{C}(e_l \otimes e_m)$. In [4, Theorem 3.1] the authors proved that the space of all Toeplitz operators is not reflexive but it is 2-reflexive. We will show that the subspace \mathcal{M}_{lm} has the same properties.

Proposition 2.1. The subspace \mathcal{M}_{lm} is not reflexive but it is 2-reflexive.

Proof. Notice that $(\mathcal{M}_{lm})_{\perp} = \mathcal{T}_{\perp} \cap (e_l \otimes e_m)_{\perp}$. Since \mathcal{T}_{\perp} contains no nonzero rank-one operators, then \mathcal{M}_{lm} is not reflexive.

Notice that

$$\mathcal{T}_{\perp} = \operatorname{span}\{e_i \otimes e_j - Se_i \otimes Se_j : i, j = 1, 2, \dots\},\$$

where S is the unilateral shift. Therefore,

$$(\mathcal{M}_{lm})_{\perp} = \operatorname{span}\{e_i \otimes e_j - Se_i \otimes Se_j : i, j = 1, 2, \dots, (i, j) \neq (l, m) \\ \text{and } (i+1, j+1) \neq (l, m)\}.$$

Hence \mathcal{M}_{lm} is 2-reflexive.

Recall after [5] the following definition.

Definition 2.2. Subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ has property $\mathbb{A}_{1/k}$ if \mathcal{M} is weak* closed and for any weak* continuous functional ϕ on \mathcal{M} there is $g \in F_k$ such that $\phi(M) = tr(Mg)$ for $M \in \mathcal{M}$.

Proposition 2.3. The subspace $\mathcal{M}_{lm} = \mathcal{T} + \mathbb{C}(e_l \otimes e_m)$ has property $\mathbb{A}_{1/4}$.

Proof. Let $t \in \tau c$. Since \mathcal{T} has property $\mathbb{A}_{1/2}$ ([10, Proposition 4.1]), there is $f \in F_2$ such that $(t - f) \in \mathcal{T}_{\perp}$. If $(t - f) \in (\mathbb{C}e_l \otimes e_m)_{\perp}$, then $(t - f) \in (\mathcal{M}_{lm})_{\perp}$. If $(t - f) \notin (\mathbb{C}e_l \otimes e_m)_{\perp}$, then $(t - f - \lambda e_l \otimes e_m + \lambda e_{l+1} \otimes e_{m+1}) \in (\mathcal{M}_{lm})_{\perp}$, where $\lambda = P_{\mathbb{C}e_l}(t - f)P_{\mathbb{C}e_m}$ and $P_{\mathbb{C}e_i}$ denotes the orthogonal projection on $\mathbb{C}e_i$. So \mathcal{M}_{lm} has property $\mathbb{A}_{1/4}$.

In [13] Larson proved that if \mathcal{M} is k-reflexive, then any weak^{*} closed subspace $\mathcal{L} \subset \mathcal{M}$ is k-reflexive if and only if \mathcal{M} has property $\mathbb{A}_{1/k}$. It follows immediately from Proposition 2.1 and Proposition 2.3 that:

Corollary 2.4. Every weak*-closed subspace of $\mathcal{M}_{lm} = \mathcal{T} + \mathbb{C}(e_l \otimes e_m)$ is 4-reflexive.

On the other hand, due to [8] we know that the algebra of analytic Toeplitz operators is hyperreflexive. Moreover, the space of all Toeplitz operators \mathcal{T} is 2-hyperreflexive and $\kappa_2(\mathcal{T}) \leq 2$ (see [10,15]). We will show that the subspace \mathcal{M}_{lm} is 2-hyperreflexive. In the proof we will use the projection $\pi : \mathcal{B}(H^2) \to \mathcal{T}$ constructed by Arveson in [1, Proposition 5.2], which has the property that for any $A \in \mathcal{B}(H^2)$ the operator $\pi(A)$ belongs to the weak* closed convex hull of the set $\{T_{z^n}^* A T_{z^n} : n \in \mathbb{N}\}$.

Proposition 2.5. Subspace $\mathcal{M}_{lm} = \mathcal{T} + \mathbb{C}(e_l \otimes e_m)$ is 2-hyperreflexive with constant $\kappa_2(\mathcal{M}_{lm}) \leq 2$.

Proof. Let $A \in \mathcal{B}(H^2)$. For $\lambda \in \mathbb{C}$ define $A_{\lambda} = A - \lambda e_l \otimes e_m$. Notice that for any $\lambda \in \mathbb{C}$

$$d(A, \mathcal{M}_{lm}) \leq \|A - \pi(A) - \lambda e_l \otimes e_m\| = \|A_\lambda - \pi(A_\lambda)\|.$$

Since the space of Toeplitz operators \mathcal{T} is 2-hyperreflexive with constant at most 2, we have that

$$d(A_{\lambda}, \mathcal{T}) \leq ||A_{\lambda} - \pi(A_{\lambda})|| \leq 2\alpha_2(A_{\lambda}, \mathcal{T})$$
 (for details see [10]).

To complete the proof it is enough to show that for any $A \in \mathcal{B}(H^2)$ there is $\lambda \in \mathbb{C}$ such that

$$\alpha_2(A_\lambda, \mathcal{T}) = \alpha_2(A, \mathcal{M}_{lm}). \tag{2.1}$$

Note that

$$\alpha_2(A_\lambda,\mathcal{T}) = \sup\{|tr(A_\lambda t)| : 2t = e_i \otimes e_j - e_{i+k} \otimes e_{j+k}, k \ge 1, i, j = 0, 1, 2, \dots\}.$$

If this supremum is realized by $2t = e_i \otimes e_j - e_{i+k} \otimes e_{j+k}$ for $(i, j) \neq (l, m)$ and $(i+k, j+k) \neq (l, m)$, then equality (2.1) holds. So, it is enough to consider the case when

$$\alpha_2(A_{\lambda}, \mathcal{T}) = \sup\{|tr(A_{\lambda}t)| : 2t = e_l \otimes e_m - e_{l+k} \otimes e_{m+k}, k \ge \min\{-l, -m\}\} = \\ = \sup\{\frac{1}{2}|a_{lm} - \lambda - a_{l+k,m+k}| : k \ge \min\{-l, -m\}\}.$$

Suppose that $\alpha_2(A, \mathcal{M}_{lm}) = \beta > 0$. Note that for any λ we have $\beta \leq \alpha_2(A_\lambda, \mathcal{T})$. If we choose $\lambda = a_{lm} - a_{l+1,m+1}$, then

$$\alpha_2(A_{\lambda}, \mathcal{T}) = \sup\{\frac{1}{2}|a_{l+1,m+1} - a_{l+k,m+k}| : k \ge \min\{-l, -m\}\} \le \beta.$$

Hence $\alpha_2(A_{\lambda}, \mathcal{T}) = \alpha_2(A, \mathcal{M}_{lm})$, which completes the proof.

Acknowledgements

The author was supported by grant founded by the Rector of the University of Agriculture in Krakow.

REFERENCES

- [1] N.T. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208–233.
- [2] N.T. Arveson, Ten lectures on operator algebras, CBMS Regional Conference Series 55, Amer. Math. Soc., Providence, 1984.
- [3] E.A. Azoff, On finite rank operators and preannihilators, Mem. Amer. Math. Soc. 64 (1986).
- [4] E.A. Azoff, M. Ptak, A dichotomy for linear spaces of Toeplitz operators, J. Funct. Anal. 156 (1998), 411–428.
- [5] H. Bercovici, C. Foias, C. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Reg. Conf. Ser. Math. 56, Amer. Math. Soc., Providence, 1985.
- [6] J. Bourgain, A problem of Douglas and Rudin on factorization, Pacific J. Math. 121 (1986), 47–50.
- [7] J.B. Conway, A course in operator theory, Amer. Math. Soc., Providence, 2000.
- [8] K. Davidson, The distance to the analytic Toeplitz operators. Illinois J. Math 31 (1987) 2, 265–273.

- [9] P.R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, NJ, 1967.
- [10] K. Kliś, M. Ptak, k-hyperreflexive subspaces, Houston J. Math. 32 (2006), 299–313.
- [11] J. Kraus, D. Larson, Some applications of a technique for constructing reflexive operator algebras. J. Operator Theory 13 (1985), 227–236.
- [12] J. Kraus, D. Larson, Reflexivity and distance formulae, Proc. Lond. Math. Soc. 53 (1986), 340–356.
- [13] D. Larson, Annihilators of operator algebras, Operator Theory 6 (1982), 119–130.
- [14] W.E. Longstaff, On the operation Alg Lat in finite dimensions, Linear Algebra Appl. 27 (1979), 27–29.
- [15] H. Mustafayev, On hyper-reflexivity of some operator spaces, Int. J. Math. Math. Sci. 19 (1996), 603–606.

Kamila Kliś-Garlicka rmklis@cyf-kr.edu.pl

University of Agriculture Institute of Mathematics Balicka 253c, 30-198 Kraków, Poland

Received: July 19, 2011. Revised: August 11, 2011. Accepted: August 16, 2011.