GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE FOCUSING NONLINEAR SCHRÖDINGER EQUATION IN THE NONRADIAL CASE

Pigong Han

Abstract

The energy-critical, focusing nonlinear Schrödinger equation in the nonradial case reads as follows: $$
i \partial_{t} u=-\Delta u-|u|^{\frac{4}{N-2}} u, \quad u(x, 0)=u_{0} \in H^{1}\left(\mathbb{R}^{N}\right), \quad N \geq 3 .
$$

Under a suitable assumption on the maximal strong solution, using a compactness argument and a virial identity, we establish the global well-posedness and scattering in the nonradial case, which gives a positive answer to one open problem proposed by Kenig and Merle [Invent. Math. 166 (2006), 645-675].

Keywords: critical energy, focusing Schrödinger equation, global well-posedness, scattering.

Mathematics Subject Classification: 35Q40, 35Q55.

1. INTRODUCTION AND THE MAIN RESULT

We consider the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{N}(N \geq 3)$:

$$
\begin{cases}i \partial_{t} u=-\Delta u \pm|u|^{\frac{4}{N-2}} u & \text { in } \mathbb{R}^{N} \times \mathbb{R}, \tag{1.1}\\ u(x, 0)=u_{0} & \text { in } \mathbb{R}^{N},\end{cases}
$$

where $u=u(x, t): \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{C}$ denotes the complex-valued wave function, $i=\sqrt{-1}$.
The sign " - " corresponds to the focusing problem, while the sign " + " corresponds to the defocusing problem. Cazenave-Weissler $[6,7]$ showed that if $\left\|\nabla u_{0}\right\|_{2}$ is suitably small, then there exists a unique solution $u \in C\left(\mathbb{R} ; H^{1}\left(\mathbb{R}^{N}\right)\right)$ of (1.1) satisfying $\|u\|_{L} \frac{2(N+2)}{N-2}\left(\mathbb{R}: L^{\frac{2(N+2)}{N-2}}\left(\mathbb{R}^{N}\right)\right)<\infty$. In the defocusing case, if $u_{0} \in H^{1}\left(\mathbb{R}^{N}\right)$ is radial, Bourgain [1] proved the global well-posedness for (1.1) with $N=3,4$, and that for more regular u_{0}, the solution preserves the smoothness for all time. (Another
proof of this last fact is due to Grillakis [13] for $N=3$.) Bourgain's result is then extended to $N \geq 5$ by Tao [29], still under the assumption that u_{0} is radial. Subsequently, Colliander-Keel-Staffilani-Takaoke-Tao [8] obtained the result for general $u_{0} \in H^{1}\left(\mathbb{R}^{3}\right)$. Ryckman-Visan [26] extended this result to $N=4$ and finally to $N \geq 5$ by Visan [30]. In the focusing case, these results do not hold. In fact, the classical virial identity shows that if $E\left(u_{0}\right)<0$ and $|x| u_{0} \in L^{2}\left(\mathbb{R}^{N}\right)$, the corresponding solution breaks down in finite time.

Ginibre-Velo [11] considered a general case:

$$
\begin{cases}i \partial_{t} u=-\Delta u-|u|^{q-1} u & \text { in } \mathbb{R}^{N} \times \mathbb{R} \tag{1.2}\\ u(x, 0)=u_{0} & \text { in } \mathbb{R}^{N}\end{cases}
$$

and established the local well-posedness of the Cauchy problem (1.2) (focusing case) in the energy space $H^{1}\left(\mathbb{R}^{N}\right)$ with $1<q<1+\frac{4}{N-2}$. Furthermore, they proved the global existence for both small and large initial data in the L^{2}-subcritical case: $1<q<1+\frac{4}{N}$. In the L^{2}-supercritical case: $1+\frac{4}{N}<q<1+\frac{4}{N-2}$, Glassey [12], Ogawa-Tsutsumi [24,25] showed that the strong solution of the Cauchy problem (1.2) blows up in finite time for a class of initial data, especially for negative energy initial data. Holmer-Roudenko [15] established sharp conditions on the existence of global solutions of (1.2) with $q=3$. In the L^{2}-critical case: $q=1+\frac{4}{N}$, Weinstein [31] gave a crucial criterion in terms of L^{2}-mass initial data. Relevant work on the above topics of (1.2) is referred to $[2,3,9,14,16,18,20,23,27]$ and the references therein.

Using the concentration compactness, which is obtained by Keraani [18], Kenig-Merle [19] considered problem (1.1) in the focusing case for $N=3,4,5$, and discussed global well-posedness and blow-up for the energy-critical problem (1.1) in the radial case. Moreover, they expected their results could be extended to the case of radial data for $N \geq 6$, and believed that it remained an interesting problem to remove the radial symmetry assumption. Subsequently, Killip-Visan [22] considered the focusing problem (1.1) with dimensions $N \geq 5$, and proved that if a maximal-lifespan solution $u: I \times \mathbb{R}^{N} \rightarrow \mathbb{C}$ obeys $\sup _{t \in I}\|\nabla u(t)\|_{2}<\|\nabla W\|_{2}$, then it is global and scatters both forward and backward in time. Here W denotes the ground state, which is a stationary solution of the equation of the focusing problem (1.1). In particular, if a local strong solution has both energy and kinetic energy less than those of the ground state W at some point in time, then the local strong solution is global and scatters in higher dimensions $N \geq 5$. Further results are referred to [10, 17].

In the present paper, under a suitable assumption on the local strong solution, we establish the global well-posedness and scattering for the focusing problem (1.1) in the nonradial case, which gives a positive answer to one open problem proposed by Kenig-Merle in [19].

In order to state our main result conveniently, we rewrite the focusing problem (1.1) as follows:

$$
\left\{\begin{array}{l}
i \partial_{t} u=-\Delta u-|u|^{\frac{4}{N-2}} u \quad \text { in } \mathbb{R}^{N} \times \mathbb{R}, \tag{1.3}\\
u(x, 0)=u_{0} \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

Through a standard technical process (see [4]), one can easily check that the solution u of (1.3) defined on the maximal interval $\left(-T_{-}\left(u_{0}\right), T_{+}\left(u_{0}\right)\right)$ obeys conservations of charge and energy:

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|u(x, t)|^{2} d x=\int_{\mathbb{R}^{N}}\left|u_{0}(x)\right|^{2} d x, \quad \forall t \in\left(-T_{-}\left(u_{0}\right), T_{+}\left(u_{0}\right)\right), \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
E(u(t))=E\left(u_{0}\right), \quad \forall t \in\left(-T_{-}\left(u_{0}\right), T_{+}\left(u_{0}\right)\right), \tag{1.5}
\end{equation*}
$$

where

$$
E(u(t))=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u(x, t)|^{2} d x-\frac{1}{2^{*}} \int_{\mathbb{R}^{N}}|u(x, t)|^{2^{*}} d x, \quad 2^{*}=\frac{2 N}{N-2} .
$$

Talenti [28] proved that the function

$$
W(x)=\frac{(N(N-2))^{\frac{N-2}{4}}}{\left(1+|x|^{2}\right)^{\frac{N-2}{2}}}
$$

satisfies $|\nabla W| \in L^{2}\left(\mathbb{R}^{N}\right)$ and solves the elliptic equation

$$
-\Delta W=|W|^{\frac{4}{N-2}} W \quad \text { in } \quad \mathbb{R}^{N}
$$

The main result of this paper reads as follows
Theorem 1.1. Assume that $u_{0} \in H^{1}\left(\mathbb{R}^{N}\right), N=3,4,5$. Then there exists a unique solution u of (1.3) defined on the maximum existence of interval $\left(-T_{-}\left(u_{0}\right), T_{+}\left(u_{0}\right)\right)$ with $u \in C\left(\left(-T_{-}\left(u_{0}\right), T_{+}\left(u_{0}\right)\right), H^{1}\left(\mathbb{R}^{N}\right)\right)$, where $0<T_{-}\left(u_{0}\right), T_{+}\left(u_{0}\right) \leq+\infty$.
Let $E\left(u_{0}\right)<E(W),\left\|\nabla u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}<\|\nabla W\|_{L^{2}\left(\mathbb{R}^{N}\right)}$. Assume that there exists a nonnegative real-valued function $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \varphi\left|u_{0}\right|^{2} d x>0 \quad \text { and } \quad \inf _{t \in\left(0, T_{+}\left(u_{0}\right)\right)} f(t) \geq 0 \quad\left(\text { resp. } \sup _{t \in\left(-T_{-}\left(u_{0}\right), 0\right)} f(t) \leq 0\right) \text {, } \tag{1.6}
\end{equation*}
$$

where

$$
f(t) \triangleq \operatorname{Im} \int_{\mathbb{R}^{N}} \bar{u}(x, t) \nabla \varphi(x) \cdot \nabla u(x, t) d x .
$$

Then $T_{-}\left(u_{0}\right)=T_{+}\left(u_{0}\right)=+\infty$, the solution u belongs to $C\left(\mathbb{R}^{1}, H^{1}\left(\mathbb{R}^{N}\right)\right)$, and there exists $u_{0,+}, u_{0,-} \in H^{1}\left(\mathbb{R}^{N}\right)$ such that

$$
\lim _{t \rightarrow+\infty}\left\|u(t)-e^{i t \Delta} u_{0,+}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}=0, \quad \lim _{t \rightarrow-\infty}\left\|u(t)-e^{i t \Delta} u_{0,-}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}=0
$$

Remark 1.2. (i) Let $\varphi_{R} \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ be a cut-off function, which satisfies $\varphi_{R}(x) \equiv 1$ if $|x| \leq R ; \varphi_{R}(x) \equiv 0$ if $|x| \geq 2 R ;\left|\nabla \varphi_{R}(x)\right| \leq \frac{C}{R}$ for any $x \in \mathbb{R}^{N}$. Then it follows from Lemma 2.2 below that

$$
\begin{aligned}
& \sup _{t \in\left(-T_{-}\left(u_{0}\right), T_{+}\left(u_{0}\right)\right)}\left|\operatorname{Im} \int_{\mathbb{R}^{N}} \bar{u}(x, t) \nabla \varphi_{R} \cdot \nabla u(x, t) d x\right| \leq \\
& \leq \sup _{t \in\left(-T_{-}\left(u_{0}\right), T_{+}\left(u_{0}\right)\right)} \frac{C}{R}\|u(t)\|_{L^{2}(R \leq x \mid \leq 2 R)}\|\nabla u(t)\|_{L^{2}(R \leq|x| \leq 2 R)} \leq \\
& \leq \frac{C}{R}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}\left\|\nabla u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \longrightarrow 0 \quad \text { as } \quad R \longrightarrow \infty,
\end{aligned}
$$

which implies that for any $\epsilon>0$, there exists a large number $R>0$ such that

$$
\inf _{t \in\left(0, T_{+}\left(u_{0}\right)\right)} \operatorname{Im} \int_{\mathbb{R}^{N}} \bar{u}(x, t) \nabla \varphi_{R} \cdot \nabla u(x, t) d x \geq-\epsilon
$$

However, this estimate does not work in obtaining (2.26) below because we have to let $t=t_{j} \longrightarrow+\infty$ in (2.26). That is why we need the additional assumption (1.6) in Theorem 1.1.
(ii) If the initial datum $u_{0} \in \dot{H}^{1}\left(\mathbb{R}^{N}\right)(N=3,4,5)$ is radial. The global existence of the strong solution of (1.3) and the scattering in $\dot{H}^{1}\left(\mathbb{R}^{N}\right)$ are proved in [19] without assumption (1.6). Here we do not need the radial symmetry assumption on u_{0}, which is replaced by (1.6). Therefore, our conclusion (i.e., Theorem 1.1) improves the results in [19] in some sense.
(iii) It is well known that if $E\left(u_{0}\right)<0, u_{0} \in H^{1}\left(\mathbb{R}^{N}\right)$ with $|x| u_{0} \in L^{2}\left(\mathbb{R}^{N}\right)$, then the solution u of (1.3) blows up at some finite time. But it does not contradict Theorem 1.1. In fact, under the assumptions in Theorem 1.1, the initial energy $E\left(u_{0}\right) \geq 0$. Indeed, using the assumption $\left\|\nabla u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}<\|\nabla W\|_{L^{2}\left(\mathbb{R}^{N}\right)}$ and the Sobolev inequality, we get

$$
\begin{align*}
E\left(u_{0}\right) & =\frac{1}{2}\left\|\nabla u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}-\frac{1}{2^{*}}\left\|u_{0}\right\|_{L^{2^{*}\left(\mathbb{R}^{N}\right)}}^{2^{*}} \geq \\
& \geq\left(\frac{1}{2}-\frac{N-2}{2 N} C_{N}^{-\frac{N}{N-2}}\left\|\nabla u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{\frac{4}{N-2}}\right)\left\|\nabla u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2} \geq \\
& \geq\left(\frac{1}{2}-\frac{N-2}{2 N} C_{N}^{-\frac{N}{N-2}}\|\nabla W\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{\frac{4}{N-2}}\right)\left\|\nabla u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}= \tag{1.7}\\
& =\frac{1}{N}\left\|\nabla u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2},
\end{align*}
$$

where $C_{N}=\|\nabla W\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{\frac{4}{N}}$ is the best Sobolev constant (see [28] for details).
Throughout this paper, we denote the norm of $H^{1}\left(\mathbb{R}^{N}\right), \dot{H}^{1}\left(\mathbb{R}^{N}\right)$ by $\|u\|_{H^{1}}=$ $\left(\int_{\mathbb{R}^{N}}\left(|\nabla u(x)|^{2}+|u(x)|^{2}\right) d x\right)^{\frac{1}{2}},\|u\|_{\dot{H}^{1}}=\left(\int_{\mathbb{R}^{N}}|\nabla u(x)|^{2} d x\right)^{\frac{1}{2}}$, respectively, and positive constants (possibly different line to line) by C.

2. PROOF OF THE MAIN RESULT

Lemma 2.1. Let $u \in C\left(\left(-T_{-}\left(u_{0}\right), T_{+}\left(u_{0}\right)\right), H^{1}\left(\mathbb{R}^{N}\right)\right)$ be a solution of (1.3), and let $\varphi \in C^{4}([0, \infty))$ with $\varphi(s) \equiv$ const if $s>0$ is large. Then for any $t \in$ $\left(-T_{-}\left(u_{0}\right), T_{+}\left(u_{0}\right)\right)$

$$
\frac{d}{d t} \int_{\mathbb{R}^{N}} \varphi(|x|)|u(x, t)|^{2} d x=2 \operatorname{Im} \int_{\mathbb{R}^{N}} \nabla \varphi(|x|) \cdot \nabla u(x, t) \bar{u}(x, t) d x
$$

and

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} \int_{\mathbb{R}^{N}} \varphi(|x|)|u(x, t)|^{2} d x= & 4 \int_{\mathbb{R}^{N}} \varphi^{\prime \prime}(|x|)|\nabla u(x, t)|^{2} d x-\frac{4}{N} \int_{\mathbb{R}^{N}} \Delta \varphi(|x|)|u(x, t)|^{2^{*}} d x- \\
& -\int_{\mathbb{R}^{N}} \Delta^{2} \varphi(|x|)|u(x, t)|^{2} d x .
\end{aligned}
$$

Proof. Since the proof is similar to those of Lemma in [12] and Lemma 7.6.2 in [5], we omit the details here.

The following variational estimates are Theorem 3.9 and Corollary 3.13 in [19].
Lemma 2.2 ([19]). Suppose that

$$
\int_{\mathbb{R}^{N}}\left|\nabla u_{0}\right|^{2} d x<\int_{\mathbb{R}^{N}}|\nabla W|^{2} d x \quad \text { and } \quad E\left(u_{0}\right)<\left(1-\delta_{0}\right) E(W), \quad \text { where } \quad \delta_{0} \in(0,1) \text {. }
$$

Let $I \ni 0$ be the maximal interval of existence of the solution $u \in C\left(I, H^{1}\left(\mathbb{R}^{N}\right)\right)$ of (1.3). Then there exists $\bar{\delta}=\bar{\delta}\left(\delta_{0}, N\right)>0$ such that for each $t \in I$

$$
\begin{gathered}
\int_{\mathbb{R}^{N}}|\nabla u(x, t)|^{2} d x<(1-\bar{\delta}) \int_{\mathbb{R}^{N}}|\nabla W|^{2} d x, \\
\bar{\delta} \int_{\mathbb{R}^{N}}|\nabla u(x, t)|^{2} d x<\int_{\mathbb{R}^{N}}\left(|\nabla u(x, t)|^{2}-|u(x, t)|^{2^{*}}\right) d x, \\
E(u(t)) \geq 0 .
\end{gathered}
$$

Furthermore, $E(u(t)) \simeq \int_{\mathbb{R}^{N}}|\nabla u(x, t)|^{2} d x \simeq \int_{\mathbb{R}^{N}}\left|\nabla u_{0}\right|^{2} d x$, for all $t \in I$ with comparability constants which depend only on δ_{0}

The following rigidity theorem plays a fundamental role in the proof of Theorem 1.1.

Theorem 2.3. Assume that $u_{0} \in H^{1}\left(\mathbb{R}^{N}\right)$ satisfies

$$
\int_{\mathbb{R}^{N}}\left|\nabla u_{0}\right|^{2} d x<\int_{\mathbb{R}^{N}}|\nabla W|^{2} d x \quad \text { and } \quad E\left(u_{0}\right)<E(W) .
$$

Let u be the solution of (1.3) with the maximal interval of existence $\left(-T_{-}\left(u_{0}\right), T_{+}\left(u_{0}\right)\right)$, and let the assumption (1.6) hold. Suppose that there exists $\lambda(t)>0, x(t) \in \mathbb{R}^{N}$ with the property that

$$
K=\left\{v(x, t)=\frac{1}{\lambda(t)^{\frac{N-2}{2}}} u\left(\frac{x-x(t)}{\lambda(t)}, t\right): t \in\left[0, T_{+}\left(u_{0}\right)\right)\right\}
$$

is such that \bar{K} is compact in $\dot{H}^{1}\left(\mathbb{R}^{N}\right)$. Then $T_{+}\left(u_{0}\right)=+\infty, u_{0} \equiv 0$ in \mathbb{R}^{N}.
Remark 2.4. If $x(t) \equiv 0$ or $\lambda(t) \geq A_{0}>0$ and $|x(t)| \leq C_{0}$, Theorem 2.3 is verified in [19] for $u_{0} \in \dot{H}^{1}\left(\mathbb{R}^{N}\right)$.
Proof of Theorem 2.3. Step 1. $T_{+}\left(u_{0}\right)=+\infty$. If $T_{+}\left(u_{0}\right)<+\infty$, then from Lemma 2.11 in [19], one has

$$
\begin{equation*}
\|u\|_{S\left(0, T_{+}\left(u_{0}\right)\right)}=+\infty, \quad \text { where } \quad\|u\|_{S(I)}=\|u\|_{L^{\frac{2(N+2)}{N-2}}\left(I, L^{\frac{2(N+2)}{N-2}}\left(\mathbb{R}^{N}\right)\right)} \tag{2.1}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
\lambda(t) \longrightarrow+\infty \quad \text { as } \quad t \longrightarrow T_{+}\left(u_{0}\right) \tag{2.2}
\end{equation*}
$$

Indeed if there exists a sequence $\left\{t_{j}\right\}, t_{j} \longrightarrow T_{+}\left(u_{0}\right)$ such that $\lambda\left(t_{j}\right) \longrightarrow A<+\infty$ as $j \longrightarrow+\infty$.

Set $v_{j}(x)=v\left(x, t_{j}\right)=\frac{1}{\lambda\left(t_{j}\right)^{\frac{N-2}{2}}} u\left(\frac{x-x\left(t_{j}\right)}{\lambda\left(t_{j}\right)}, t_{j}\right)$. It follows from the compactness of \bar{K} in $\dot{H}^{1}\left(\mathbb{R}^{N}\right)$ that there is a subsequence (still denoted by $\left.\left\{v_{j}\right\}\right)$ and $v_{0} \in \dot{H}^{1}\left(\mathbb{R}^{N}\right)$ such that

$$
v_{j} \longrightarrow v_{0} \quad \text { in } \quad \dot{H}^{1}\left(\mathbb{R}^{N}\right)
$$

Then it holds

$$
\begin{equation*}
u\left(y-\frac{x\left(t_{j}\right)}{\lambda\left(t_{j}\right)}, t_{j}\right)=\lambda\left(t_{j}\right)^{\frac{N-2}{2}} v_{j}\left(\lambda\left(t_{j}\right) y\right) \longrightarrow A^{\frac{N-2}{2}} v_{0}(A y) \quad \text { in } \quad \dot{H}^{1}\left(\mathbb{R}^{N}\right) \tag{2.3}
\end{equation*}
$$

If $A=0$, it follows from (2.3) that $u\left(y-\frac{x\left(t_{j}\right)}{\lambda\left(t_{j}\right)}, t_{j}\right) \longrightarrow 0$ in $\dot{H}^{1}\left(\mathbb{R}^{N}\right)$. So

$$
\begin{equation*}
\left\|\nabla u\left(t_{j}\right)\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \longrightarrow 0 \quad \text { as } \quad t_{j} \longrightarrow T_{+}\left(u_{0}\right) \tag{2.4}
\end{equation*}
$$

Using the conservation of energy (1.5), one has

$$
\begin{equation*}
E\left(u_{0}\right)=E\left(u\left(t_{j}\right)\right) \longrightarrow 0 \quad \text { as } \quad t_{j} \longrightarrow T_{+}\left(u_{0}\right) \tag{2.5}
\end{equation*}
$$

In addition, (iii) in Remark 1.2 and the assumption: $\left\|\nabla u_{0}\right\|_{L^{2}}<\|\nabla W\|_{L^{2}}$ yield

$$
\begin{equation*}
\left\|\nabla u_{0}\right\|_{L^{2}}^{2} \leq N E\left(u_{0}\right) \tag{2.6}
\end{equation*}
$$

Combining (2.5) and (2.6), we infer $\left\|\nabla u_{0}\right\|_{L^{2}}=0$. So $u_{0} \equiv 0$ in \mathbb{R}^{N}. Using the conservation of charge (1.4), one has for $t \in\left[0, T_{+}\left(u_{0}\right)\right)$

$$
\int_{\mathbb{R}^{N}}|u(t, x)|^{2} d x=\int_{\mathbb{R}^{N}}\left|u_{0}(x)\right|^{2} d x=0
$$

which implies us that $u \equiv 0$ a.e. on $\mathbb{R}^{N} \times\left[0, T_{+}\left(u_{0}\right)\right)$. This is a contradiction with (2.1).

If $\lim _{j \rightarrow \infty} \lambda\left(t_{j}\right)=A \in(0,+\infty)$. Let $h(x, t)$ be the solution of (1.3) (which is guaranteed by Remark 2.8 in [19]) on the interval $I_{\eta}=\left(T_{+}\left(u_{0}\right)-\eta, T_{+}\left(u_{0}\right)+\eta\right)$, $h\left(x, T_{+}\left(u_{0}\right)\right)=A^{\frac{N-2}{2}} v_{0}(A x),\|h\|_{S\left(I_{\eta}\right)}<+\infty$, where $\eta=\eta\left(\left\|\nabla v_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}\right)$.

Let $h_{j}(x, t)$ be the solution of (1.3) with $h_{j}\left(x, T_{+}\left(u_{0}\right)\right)=u\left(x-\frac{x\left(t_{j}\right)}{\lambda\left(t_{j}\right)}, t_{j}\right)$. Then the convergence in (2.3) and the continuous dependence on the initial data (see Remark 2.17 in [19]) imply that

$$
\left\|h_{j}-h\right\|_{S\left(I_{\frac{\eta}{2}}\right)} \longrightarrow 0 \quad \text { as } \quad j \longrightarrow+\infty .
$$

Then

$$
\begin{equation*}
\sup _{j}\left\|h_{j}\right\|_{S\left(I_{\frac{\eta}{2}}\right)}<+\infty . \tag{2.7}
\end{equation*}
$$

In addition, the uniqueness theorem on the strong solution of (1.3) (see Definition 2.10 in [19]) yields

$$
\begin{equation*}
h_{j}(x, t)=u\left(x-\frac{x\left(t_{j}\right)}{\lambda\left(t_{j}\right)}, t+t_{j}-T_{+}\left(u_{0}\right)\right) \quad \text { for every } \quad t \in I_{\frac{n}{2}} . \tag{2.8}
\end{equation*}
$$

Combining (2.7) and (2.8), we get

$$
+\infty>\sup _{j}\left\|h_{j}\right\|_{S\left(I_{\frac{\eta}{2}}\right)} \geq \liminf _{j \longrightarrow \infty}\|u\|_{S\left(t_{j}-\frac{\eta}{2}, t_{j}+\frac{\eta}{2}\right)} \geq\|u\|_{S\left(T_{+}\left(u_{0}\right)-\frac{\eta}{2}, T_{+}\left(u_{0}\right)\right)}=+\infty,
$$

which contradicts (2.1).
From the above arguments, we know that (2.2) holds.
Let $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right), \psi(x)=\psi(|x|), \psi \equiv 1$ for $|x| \leq 1 \psi \equiv 0$ for $|x| \geq 2|\nabla \psi| \leq 2$. Define $\psi_{R}(x)=\psi\left(\frac{x}{R}\right)$ and

$$
y_{R}(t)=\int_{\mathbb{R}^{N}}|u(x, t)|^{2} \psi_{R}(x) d x, \quad \forall t \in\left[0, T_{+}\left(u_{0}\right)\right)
$$

Then from Lemma 2.1 and the conservation of charge (1.4), one has

$$
\begin{align*}
\left|y_{R}^{\prime}(t)\right| & \leq 2\left|I m \int_{\mathbb{R}^{N}} \bar{u} \nabla u \cdot \nabla \psi_{R}(x) d x\right| \leq \\
& \leq \frac{C}{R}\left(\int_{\mathbb{R}^{N}}|\nabla u(x, t)|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{N}}|u(x, t)|^{2} d x\right)^{\frac{1}{2}} \leq \tag{2.9}\\
& \leq \frac{C}{R}\left(\int_{\mathbb{R}^{N}}|\nabla W(x)|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{N}}\left|u_{0}(x)\right|^{2} d x\right)^{\frac{1}{2}} .
\end{align*}
$$

Note that $u(x, t)=\lambda(t)^{\frac{N-2}{2}} v(\lambda(t) x+x(t), t)$, we deduce for any $R>0, \epsilon>0$

$$
\begin{align*}
\int_{|x|<R}|u(x, t)|^{2} d x= & \lambda(t)^{-2} \int_{|y-x(t)|<R \lambda(t)}|v(y, t)|^{2} d y= \\
= & \lambda(t)^{-2} \int_{B(x(t), R \lambda(t)) \cap}|v(y, t)|^{2} d y+ \tag{2.10}\\
& +\lambda(t)^{-2} \int_{B(x(t), \epsilon R \lambda(t))}|v(y, t)|^{2} d y .
\end{align*}
$$

Using Hölder inequality and the compactness property of \bar{K} in $\dot{H}^{1}\left(\mathbb{R}^{N}\right)$, we conclude from (2.2) that

$$
\begin{align*}
\lambda(t)^{-2} \int_{B(x(t), R \lambda(t)) \cap}|v(y, t)|^{2} d y & \leq C R^{2} \epsilon^{2}\left(\int_{\mid(0, \epsilon R \lambda(t))}|v(y, t)|^{2^{*}} d y\right)^{\frac{2}{2^{*}}} \leq \\
& \leq C R^{2} \epsilon^{2} \int_{|y| \leq \epsilon \lambda(t)}|\nabla W|^{2} d x \tag{2.11}
\end{align*}
$$

and

$$
\begin{array}{r}
\lambda(t)^{-2} \int_{B(x(t), R \lambda(t)) \backslash B(0, \epsilon R \lambda(t))}|v(y, t)|^{2} d y \leq C R^{2}\left(\int_{|y| \geq \epsilon R \lambda(t)}|v(y, t)|^{2^{*}} d y\right)^{\frac{2}{2^{*}}} \underset{(2.12)}{\longrightarrow} 0 \tag{2.12}\\
\text { as } t \longrightarrow T_{+}\left(u_{0}\right) .
\end{array}
$$

Combining (2.10), (2.11) and (2.12), we derive for all $R>0$

$$
\int_{|x|<R}|u(x, t)|^{2} d x \longrightarrow 0 \quad \text { as } \quad t \longrightarrow T_{+}\left(u_{0}\right),
$$

and so

$$
\begin{equation*}
y_{R}(t) \longrightarrow 0 \quad \text { as } \quad t \longrightarrow T_{+}\left(u_{0}\right) \tag{2.13}
\end{equation*}
$$

From (2.9), (2.13), we obtain for any $t \in\left[0, T_{+}\left(u_{0}\right)\right)$ and $R>0$

$$
\begin{align*}
y_{R}(t) & =\left|y_{R}(t)-y_{R}\left(T_{+}\left(u_{0}\right)\right)\right| \leq \\
& \leq \frac{C}{R}\left(T_{+}\left(u_{0}\right)-t\right)\left(\int_{\mathbb{R}^{N}}|\nabla W(x)|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{N}}\left|u_{0}(x)\right|^{2} d x\right)^{\frac{1}{2}} . \tag{2.14}
\end{align*}
$$

Let $R \longrightarrow+\infty$ in (2.14), we get

$$
\int_{\mathbb{R}^{N}}|u(t, x)|^{2} d x=0 \quad \text { for each } \quad t \in\left[0, T_{+}\left(u_{0}\right)\right),
$$

and then $u \equiv 0$ a.e. on $\mathbb{R}^{N} \times\left[0, T_{+}\left(u_{0}\right)\right)$, which contradicts (2.1). Therefore, $T_{+}\left(u_{0}\right)=+\infty$.
Step 2. $u_{0} \equiv 0$ in \mathbb{R}^{N}. If $u_{0} \not \equiv 0$ in \mathbb{R}^{N}, it holds true that

$$
\begin{equation*}
\sup _{t \in[0,+\infty)}|x(t)|<+\infty \tag{2.15}
\end{equation*}
$$

In fact, assume that there exists an increasing sequence $\left\{t_{j}\right\}, t_{j} \longrightarrow+\infty\left(=T_{+}\left(u_{0}\right)\right)$ as $j \longrightarrow+\infty$ such that

$$
\begin{equation*}
\left|x\left(t_{j}\right)\right| \longrightarrow+\infty \quad \text { as } \quad j \longrightarrow+\infty . \tag{2.16}
\end{equation*}
$$

It follows from the Hardy inequality and the compactness property of \bar{K} in $\dot{H}^{1}\left(\mathbb{R}^{N}\right)$ that for any $\epsilon>0$, there exists a large number $M(\epsilon)>0$ such that for any $M \geq M(\epsilon)$

$$
\begin{equation*}
\sup _{t \in[0,+\infty)} \int_{|y| \geq M}\left(|\nabla v(y, t)|^{2}+|v(y, t)|^{2^{*}}\right) d y<\epsilon \tag{2.17}
\end{equation*}
$$

Note that for any $Q>R>0$ and $t \in[0,+\infty)$

$$
\begin{equation*}
\int_{R<|x|<Q}|\nabla u(x, t)|^{2} d x=\int_{R \lambda(t)<|y-x(t)|<Q \lambda(t)}|\nabla v(y, t)|^{2} d y . \tag{2.18}
\end{equation*}
$$

In the next discussion, we analyze the three possible cases of the limit of the sequence $\left\{\frac{\lambda\left(t_{j}\right)}{\left|x\left(t_{j}\right)\right|}\right\}$ (select a subsequence if necessary).
(1) If $\lim _{j \rightarrow+\infty} \frac{\lambda\left(t_{j}\right)}{\left|x\left(t_{j}\right)\right|}=0$, then for any $Q>0$

$$
\lim _{j \rightarrow+\infty}\left(\left|x\left(t_{j}\right)\right|-Q \lambda\left(t_{j}\right)\right)=\lim _{j \rightarrow+\infty}\left(\left|x\left(t_{j}\right)\right|\left(1-\frac{Q \lambda\left(t_{j}\right)}{\left|x\left(t_{j}\right)\right|}\right)\right)=+\infty>M(\epsilon) .
$$

From (2.17) and (2.18), one has for any $Q>0$

$$
\begin{align*}
\lim _{j \rightarrow+\infty} \int_{|x|<Q}\left|\nabla u\left(x, t_{j}\right)\right|^{2} d x & \leq \lim _{j \rightarrow+\infty} \int_{|y| \geq\left|x\left(t_{j}\right)\right|-Q \lambda\left(t_{j}\right)}\left|\nabla v\left(y, t_{j}\right)\right|^{2} d y \leq \\
& \leq \sup _{t \in[0,+\infty)} \int_{|y| \geq M(\epsilon)}|\nabla v(y, t)|^{2} d y \leq \epsilon . \tag{2.19}
\end{align*}
$$

Similarly, using the Sobolev inequality, we infer that for any $Q>0$

$$
\begin{equation*}
\lim _{j \rightarrow+\infty} \int_{|x|<Q}\left|u\left(x, t_{j}\right)\right|^{2^{*}} d x \leq \epsilon . \tag{2.20}
\end{equation*}
$$

Combination of (2.19), (2.20) yields that (selecting a subsequence if necessary) for any $Q>0$

$$
\begin{equation*}
u\left(x, t_{j}\right) \longrightarrow 0 \quad \text { a.e. on } \quad\left\{x \in \mathbb{R}^{N} ; \quad|x|<Q\right\} \quad \text { as } \quad j \longrightarrow+\infty . \tag{2.21}
\end{equation*}
$$

On the other hand, it follows from the conservation of charge (1.4) and Lemma 2.2 that

$$
\sup _{j}\left\|u\left(t_{j}\right)\right\|_{H^{1}}<\infty
$$

Up to a subsequence if necessary,

$$
\begin{equation*}
u\left(x, t_{j}\right) \rightharpoonup \widetilde{u} \text { weakly in } H^{1}\left(\mathbb{R}^{N}\right) \text { and } L^{2}\left(\mathbb{R}^{N}\right) \text { as } j \longrightarrow+\infty ; \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
u\left(x, t_{j}\right) \longrightarrow \widetilde{u} \quad \text { a.e. on } \quad \mathbb{R}^{N} \quad \text { as } \quad j \longrightarrow+\infty . \tag{2.23}
\end{equation*}
$$

From (2.21) and (2.23), we infer that

$$
\widetilde{u}=0 \quad \text { a.e. on } \quad\left\{x \in \mathbb{R}^{N}:|x|<Q\right\} \quad \text { as } \quad j \longrightarrow+\infty ;
$$

and so

$$
\begin{equation*}
\widetilde{u}=0 \quad \text { a.e. on } \quad \mathbb{R}^{N} \quad \text { due to the arbitrariness of } Q . \tag{2.24}
\end{equation*}
$$

From (2.21)-(2.24), up to a subsequence if necessary, we derive

$$
\begin{equation*}
u\left(x, t_{j}\right) \longrightarrow 0 \quad \text { strongly in } \quad L_{l o c}^{2}\left(\mathbb{R}^{N}\right) \quad \text { as } \quad j \longrightarrow+\infty \tag{2.25}
\end{equation*}
$$

Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ be the given real-valued function in (1.6). Then it follows from assumption (1.6) and Lemma 2.1 that for any $t>0$

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \varphi(x)|u(x, t)|^{2} d x \geq \int_{\mathbb{R}^{N}} \varphi(x)\left|u_{0}(x)\right|^{2} d x \tag{2.26}
\end{equation*}
$$

Letting $t=t_{j} \longrightarrow+\infty$ in (2.26), together with (2.25), we deduce that

$$
\int_{\mathbb{R}^{N}} \varphi(x)\left|u_{0}(x)\right|^{2} d x \leq 0
$$

which is a contradiction because of the assumption: $\int_{\mathbb{R}^{N}} \varphi(x)\left|u_{0}(x)\right|^{2} d x>0$.
(2) If $\lim _{j \rightarrow+\infty} \frac{\lambda\left(t_{j}\right)}{\left|x\left(t_{j}\right)\right|} \in(0,+\infty)$, there exist $R>0$ (which is independent of j, ϵ) and $j_{1}=j_{1}(\epsilon)>0$ such that $R \frac{\lambda\left(t_{j}\right)}{\left|x\left(t_{j}\right)\right|} \geq 2$ and $\left|x\left(t_{j}\right)\right| \geq M(\epsilon)$ for any $j \geq j_{1}$. Then from (2.17) and (2.18), one gets for any $j \geq j_{1}$,

$$
\begin{align*}
\int_{|x|>R}\left|\nabla u\left(x, t_{j}\right)\right|^{2} d x & \leq \int_{|y| \geq\left(R \frac{\lambda\left(t_{j}\right)}{\left|x\left(t_{j}\right)\right|}-1\right)\left|x\left(t_{j}\right)\right|}\left|\nabla v\left(y, t_{j}\right)\right|^{2} d y \leq \tag{2.27}\\
& \leq \sup _{t \in[0,+\infty)} \int_{|y| \geq M(\epsilon)}|\nabla v(y, t)|^{2} d y \leq \epsilon .
\end{align*}
$$

If $\lim _{j \rightarrow+\infty} \frac{\lambda\left(t_{j}\right)}{\left|x\left(t_{j}\right)\right|}=+\infty$, there exists $j_{2}=j_{2}(\epsilon)>0$ such that $\left(\frac{\lambda\left(t_{j}\right)}{\left|x\left(t_{j}\right)\right|}-1\right)\left|x\left(t_{j}\right)\right| \geq M(\epsilon)$ for any $j \geq j_{2}$. Then from (2.17) and (2.18), we derive for any $j \geq j_{2}$,

$$
\begin{align*}
\int_{|x|>1}\left|\nabla u\left(x, t_{j}\right)\right|^{2} d x & \leq \int_{|y| \geq\left(\frac{\lambda\left(t_{j}\right)}{\left|x\left(t_{j}\right)\right|}-1\right)\left|x\left(t_{j}\right)\right|}\left|\nabla v\left(y, t_{j}\right)\right|^{2} d y \leq \tag{2.28}\\
& \leq \sup _{t \in[0,+\infty)} \int_{|y| \geq M(\epsilon)}|\nabla v(y, t)|^{2} d y \leq \epsilon .
\end{align*}
$$

Set $J=\max \left\{j_{1}, j_{2}\right\}$. From (2.27) and (2.28), we conclude that there exists a positive number R, which is independent of j, ϵ, such that for any $j \geq J$

$$
\begin{equation*}
\int_{|x|>R}\left|\nabla u\left(x, t_{j}\right)\right|^{2} d x \leq \epsilon . \tag{2.29}
\end{equation*}
$$

Using the Sobolev inequality and the Hardy inequality, after a similar argument, we conclude for any $j \geq J$

$$
\begin{equation*}
\int_{|x|>R}\left|u\left(x, t_{j}\right)\right|^{2^{*}} d x \leq C(\epsilon), \quad \text { where } \quad C(\epsilon) \longrightarrow 0 \quad \text { as } \quad \epsilon \longrightarrow 0 . \tag{2.30}
\end{equation*}
$$

Here we take the same symbols R, J in (2.29) and (2.30) for the sake of simplicity.
Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right), \varphi(x)=\varphi(|x|), \varphi \equiv|x|^{2}$ for $|x| \leq 1 ; \varphi \equiv 0$ for $|x| \geq 2$. Define $\varphi_{R}(x)=R^{2} \varphi\left(\frac{x}{R}\right)$ and

$$
z_{R}(t)=\int_{\mathbb{R}^{N}}|u(x, t)|^{2} \varphi_{R}(x) d x, \quad \forall t \in[0,+\infty)
$$

It follows from Lemmas 2.1, 2.2 and the Hardy inequality that for any $t \in[0,+\infty)$

$$
\begin{align*}
\left|z_{R}^{\prime}(t)\right| & \leq 2\left|\operatorname{Im} \int_{\mathbb{R}^{N}} \bar{u} \nabla u \cdot \nabla \varphi_{R}(x) d x\right| \leq \\
& \leq C R^{2}\left(\int_{\mathbb{R}^{N}}|\nabla u(x, t)|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{N}} \frac{|u(x, t)|^{2}}{|x|^{2}} d x\right)^{\frac{1}{2}} C R^{2} \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x . \tag{2.31}
\end{align*}
$$

From (2.29), (2.30) and Lemma 2.2, one has for any $j \geq J$

$$
\begin{equation*}
8 \int_{|x| \leq R}\left(\left|\nabla u\left(x, t_{j}\right)\right|^{2}-\left|u\left(x, t_{j}\right)\right|^{2^{*}}\right) d x \geq C\left(\delta_{0}\right) \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x \tag{2.32}
\end{equation*}
$$

where R is independent of j.

From (2.29), (2.30), (2.32) and Lemmas 2.1, 2.2, we obtain for any $j \geq J$

$$
\begin{align*}
& z_{R}^{\prime \prime}\left(t_{j}\right)= 4 \int_{\mathbb{R}^{N}} \varphi_{R}^{\prime \prime}(|x|)\left|\nabla u\left(x, t_{j}\right)\right|^{2} d x-\frac{4}{N} \int_{\mathbb{R}^{N}} \Delta \varphi_{R}(|x|)\left|u\left(x, t_{j}\right)\right|^{2^{*}} d x- \\
&-\int_{\mathbb{R}^{N}} \Delta^{2} \varphi_{R}(|x|)\left|u\left(x, t_{j}\right)\right|^{2} d x \geq \\
& \geq 8 \int_{|x| \leq R}\left(\left|\nabla u\left(x, t_{j}\right)\right|^{2}-\left|u\left(x, t_{j}\right)\right|^{2^{*}}\right) d x- \tag{2.33}\\
& \quad-C \int_{|x|>R}\left(\left|\nabla u\left(x, t_{j}\right)\right|^{2}+\left|u\left(x, t_{j}\right)\right|^{2^{*}}\right) d x- \\
&-C \int_{R \leq|x| \leq 2 R}\left(\left|u\left(x, t_{j}\right)\right|^{2^{*}}\right)^{\frac{2}{2^{*}}} d x \geq C \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x,
\end{align*}
$$

where R is given in (2.31), and independent of j.
Combining (2.31), (2.32) and (2.33), we conclude for any $j \geq J$

$$
\begin{aligned}
C R^{2} \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x & \geq\left|z_{R}^{\prime}\left(2 t_{j}\right)-z_{R}^{\prime}\left(t_{j}\right)\right|= \\
& =t_{j} \int_{0}^{1} z_{R}^{\prime \prime}\left(2 s t_{j}+(1-s) t_{j}\right) d s \geq C t_{j} \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x
\end{aligned}
$$

from which we get a contradiction if $j \geq J$ is sufficiently large, because $t_{j} \longrightarrow+\infty$ as $j \longrightarrow+\infty$, and R is independent of j. Here we have used the fact: replacing t_{j} by any t with $t \geq t_{j}, j \geq J$, (2.33) still holds. This is not difficult to verify because the sequence $\left\{t_{j}\right\}$ is taken to be increasing on j.

Whence (2.15) holds. Now we claim that there exists a positive number C_{0} (which is independent of t) such that

$$
\begin{equation*}
\lambda(t) \geq C_{0} \quad \text { for any } \quad t \in[0,+\infty) \tag{2.34}
\end{equation*}
$$

We present a proof by contradiction. Assume that there is a sequence $\left\{t_{m}\right\}$, $t_{m} \longrightarrow+\infty$ as $m \longrightarrow+\infty$ such that

$$
\lambda\left(t_{m}\right) \longrightarrow 0 \quad \text { as } \quad m \longrightarrow+\infty
$$

Observe that $u(x, t)=\lambda(t)^{\frac{N-2}{2}} v(\lambda(t) x+x(t), t)$. From the conservation of charge (1.4), one has

$$
\int_{\mathbb{R}^{N}}\left|v\left(x, t_{m}\right)\right|^{2} d x=\lambda\left(t_{m}\right)^{2} \int_{\mathbb{R}^{N}}\left|u\left(x, t_{m}\right)\right|^{2} d x=\lambda\left(t_{m}\right)^{2} \int_{\mathbb{R}^{N}}\left|u_{0}(x)\right|^{2} d x
$$

which implies that

$$
v\left(x, t_{m}\right) \longrightarrow 0 \quad \text { a.e. on } \quad \mathbb{R}^{N} \quad \text { as } \quad m \longrightarrow \infty .
$$

Whence from the compactness property of the set \bar{K} in $\dot{H}^{1}\left(\mathbb{R}^{N}\right)$, we can find a subsequence of $\left\{v\left(x, t_{m}\right)\right\}$ (still denoted by $\left\{v\left(x, t_{m}\right)\right\}$) such that

$$
\begin{equation*}
v\left(x, t_{m}\right) \longrightarrow 0 \quad \text { in } \quad \dot{H}^{1}\left(\mathbb{R}^{N}\right) \quad \text { as } \quad m \longrightarrow \infty . \tag{2.35}
\end{equation*}
$$

However, one gets from Lemma 2.2

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|\nabla v\left(x, t_{m}\right)\right|^{2} d x=\int_{\mathbb{R}^{N}}\left|\nabla u\left(x, t_{m}\right)\right|^{2} d x \simeq \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x>0 . \tag{2.36}
\end{equation*}
$$

This contradicts (2.35) by passing the limit $m \longrightarrow \infty$ in (2.36). Therefore (2.34) holds.
From (2.15) and (2.34), we conclude that for any $t \in\left[0,+T_{+}\left(u_{0}\right)\right)$ and $R>0$

$$
\begin{aligned}
\int_{|x|>R}|\nabla u(x, t)|^{2} d x & =\int_{|y-x(t)|>R \lambda(t)}|\nabla v(y, t)|^{2} d y \leq \\
& \leq \int_{|y|>R \lambda(t)-|x(t)|}|\nabla v(y, t)|^{2} d y \leq \int_{|y|>C R-C}|\nabla v(y, t)|^{2} d y .
\end{aligned}
$$

Whence it follows from (2.34) that for $\epsilon>0$, there exists a large number $R(\epsilon)>0$ such that for any $t \in[0,+\infty)$

$$
\begin{equation*}
\int_{|x|>R(\epsilon)}\left(|\nabla u(x, t)|^{2}+|u(x, t)|^{2^{*}}\right) d x<\epsilon . \tag{2.37}
\end{equation*}
$$

In addition, Lemma 2.2 implies that

$$
\begin{equation*}
8 \int_{\mathbb{R}^{N}}\left(|\nabla u(x, t)|^{2}-|u(x, t)|^{2^{*}}\right) d x \geq \widetilde{C}_{\delta_{0}} \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x \tag{2.38}
\end{equation*}
$$

It follows from (2.37) and (2.38) that there exists a sufficiently large number $M_{0}>0$ such that for all $t \in[0,+\infty)$

$$
\begin{equation*}
8 \int_{|x| \leq M_{0}}\left(|\nabla u(x, t)|^{2}-|u(x, t)|^{2^{*}}\right) d x \geq C \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x, \tag{2.39}
\end{equation*}
$$

where we take $\epsilon=\epsilon_{0} \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x$ in (2.37) with $\epsilon_{0}>0$ suitably small.
Let $z_{R}(t)$ be defined as in the above. From Lemma 2.1, one has for any $t \in[0,+\infty)$

$$
\begin{equation*}
\left|z_{R}^{\prime}(t)-z_{R}^{\prime}(0)\right| \leq C R^{2} \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x \tag{2.40}
\end{equation*}
$$

From (2.40) and Lemmas 2.1, 2.2, we obtain for every $t \in[0,+\infty)$

$$
\begin{align*}
z_{M_{0}}^{\prime \prime}(t)= & 4 \int_{\mathbb{R}^{N}} \varphi_{M_{0}}^{\prime \prime}(|x|)|\nabla u(x, t)|^{2} d x-\frac{4}{N} \int_{\mathbb{R}^{N}} \Delta \varphi_{M_{0}}(|x|)|u(x, t)|^{2^{*}} d x- \\
& -\int_{\mathbb{R}^{N}} \Delta^{2} \varphi_{M_{0}}(|x|)|u(x, t)|^{2} d x \geq \\
\geq & 8 \int_{|x| \leq M_{0}}\left(|\nabla u(x, t)|^{2}-|u(x, t)|^{2^{*}}\right) d x- \tag{2.41}\\
& -C \int_{|x|>M_{0}}\left(|\nabla u(x, t)|^{2}+|u(x, t)|^{2^{*}}\right) d x- \\
& -C \int_{M_{0} \leq|x| \leq 2 M_{0}}\left(|u(x, t)|^{2^{*}}\right)^{\frac{2}{2^{*}}} d x \geq C \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x .
\end{align*}
$$

Combining (2.40) and (2.41), we obtain for every $t \in[0,+\infty)$

$$
C M_{0}^{2} \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x \geq\left|z_{M_{0}}^{\prime}(t)-z_{M_{0}}^{\prime}(0)\right|=\int_{0}^{t} z_{M_{0}}^{\prime \prime}(s) d s \geq C t \int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x
$$

from which we get a contradiction if $t>0$ is large enough unless $\int_{\mathbb{R}^{N}}\left|\nabla u_{0}(x)\right|^{2} d x=0$.
From the above argument of Steps 1, 2, we complete the proof of Theorem 2.3.
Proof of Theorem 1.1. We first introduce notation (see [19]): $(S C)\left(u_{0}\right)$ holds if for the particular function u_{0} with $\int_{\mathbb{R}^{N}}\left|\nabla u_{0}\right|^{2} d x<\int_{\mathbb{R}^{N}}|\nabla W|^{2} d x$ and $E\left(u_{0}\right)<E(W)$. Let u be the corresponding strong solution of problem (1.3) with maximal interval of existence I, then $I=(-\infty,+\infty)$ and $\|u\|_{S((-\infty,+\infty))}<\infty$, where $\|\cdot\|_{S(I)}=$ $\|\cdot\|_{L^{\frac{2(N+2)}{N-2}}\left(I, L^{\frac{2(N+2)}{N-2)}}\left(\mathbb{R}^{N}\right)\right)}$.

Note that if $\left\|\nabla u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leq \delta,(S C)\left(u_{0}\right)$ holds. Whence there exists a number E_{C} with $\delta \leq E_{C} \leq E(W)$ such that if u_{0} is as in $(S C)\left(u_{0}\right)$ and $E\left(u_{0}\right)<E_{C},(S C)\left(u_{0}\right)$ holds and E_{C} is optimal with this property.

From Remark 2.8 in [19] and the uniqueness theory on strong solutions of (1.3) (see Definition 2.10 in [19]), we know that problem (1.3) admits a unique maximal strong solution $u \in\left(\left(-T_{-}\left(u_{0}\right), T_{+}\left(u_{0}\right)\right), H^{1}\left(\mathbb{R}^{N}\right)\right)$. If $T_{+}\left(u_{0}\right)<\infty$ then by Lemma 2.11 in [19], $\|u\|_{S\left(I_{+}\right)}=+\infty$, where $I_{+}=\left[0, T_{+}\left(u_{0}\right)\right]$. By the definition of E_{C}, we infer that $E\left(u_{0}\right) \geq E_{C}$. If $E\left(u_{0}\right)=E_{C}$, then by Proposition 4.2 in [19], there exists $x(t) \in \mathbb{R}^{N}$ and $\lambda(t) \in \mathbb{R}^{+}$such that

$$
K=\left\{v(x, t)=\frac{1}{\lambda(t)^{\frac{N-2}{2}}} u\left(\frac{x-x(t)}{\lambda(t)}, t\right): t \in I_{+}\right\}
$$

has the property that \bar{K} is compact in $\dot{H}^{1}\left(\mathbb{R}^{N}\right)$. Therefore it follows from Theorem 2.3 that $T_{+}\left(u_{0}\right)=+\infty, u_{0} \equiv 0$ in \mathbb{R}^{N}, which is a contradiction (we may always
assume $u_{0} \not \equiv 0$ in \mathbb{R}^{N}. Otherwise, the uniqueness theory on strong solutions of (1.3) in Definition 2.10 in [19] implies that problem (1.3) has only a trivial (global) solution)

If $E\left(u_{0}\right)>E_{C}$. Note that $E\left(s u_{0}\right) \longrightarrow 0$ as $s \longrightarrow 0$, there exists $s_{0} \in(0,1)$ such that $E\left(s_{0} u_{0}\right)=E_{C}$. Repeating the proof in the case $E\left(u_{0}\right)=E_{C}$, we also infer $u_{0} \equiv 0$ in \mathbb{R}^{N}, which is a contradiction. Similarly, a contradiction appears if $T_{-}\left(u_{0}\right)<\infty$.

From the above arguments, we conclude that $(S C)$ holds. That is, $T_{-}\left(u_{0}\right)=$ $T_{-}\left(u_{0}\right)=+\infty$ and $u \in C\left(\mathbb{R}, H^{1}\left(\mathbb{R}^{N}\right)\right)$, $u \in L^{\frac{2(N+2)}{N-2}}\left(\mathbb{R}, L^{\frac{2 N(N+2)}{N^{2}+4}}\right)$. Moreover from Remark 2.8 in [19] and following the proof of Theorem 2.5 in [19], $\nabla u \in$ $L^{\frac{2(N+2)}{N-2}}\left(\mathbb{R}, L^{\frac{2 N(N+2)}{N^{2}+4}}\right)$.

Note that

$$
u(t)=e^{i t \Delta} u_{0}+i \int_{0}^{t} e^{i(t-s) \Delta}|u(s)|^{\frac{4}{N-2}} u(s) d s
$$

Set $\mathcal{F}(t)=e^{i t \Delta}$. Then the solution u can be rewritten as

$$
u(t)=\mathcal{F}(t) u_{0}+i \int_{0}^{t} \mathcal{F}(t-s)|u(s)|^{\frac{4}{N-2}} u(s) d s
$$

Let $v(t)=\mathcal{F}(-t) u(t)$. It follows from the Strichartz estimates (see [4, 21]) that for any $0<\tau<t$

$$
\begin{aligned}
& \|v(t)-v(\tau)\|_{H^{1}}= \\
& =\|\mathcal{F}(t)(v(t)-v(\tau))\|_{H^{1}}=\left\|i \int_{\tau}^{t} \mathcal{F}(t-s)|u(s)|^{\frac{4}{N-2}} u(s) d s\right\|_{H^{1}} \leq \\
& \leq C\left(\left\||u|^{\frac{4}{N-2}} u\right\|_{L^{2}\left((\tau, t), L^{\frac{2 N}{N+2}}\left(\mathbb{R}^{N}\right)\right)}+\left\|\nabla\left(|u|^{\frac{4}{N-2}} u\right)\right\|_{L^{2}\left((\tau, t), L^{\frac{2 N}{N+2}}\left(\mathbb{R}^{N}\right)\right)}\right) \leq \\
& \leq C\|u\|_{S((\tau, t))}^{\frac{4}{N-2}}\left(\|u\|_{W((\tau, t))}+\|\nabla u\|_{W((\tau, t))}\right),
\end{aligned}
$$

where $\|u\|_{S(I)}=\|u\|_{L^{\frac{2(N+2)}{N-2}}\left(I, L \frac{2(N+2)}{N-2)}\right.}^{\left.\left(\mathbb{R}^{N}\right)\right)},\|u\|_{W(I)}=\|u\|_{L^{\frac{2(N+2)}{N-2}}\left(I, L^{\frac{2 N(N+2)}{N^{2}+4}}\left(\mathbb{R}^{N}\right)\right)}$, and the Sobolev inequality is used: $\|u\|_{S(I)} \leq C\|u\|_{W(I)}, \forall I \subseteq \mathbb{R}$.

Whence $\|v(t)-v(\tau)\|_{H^{1}} \longrightarrow 0$ as $\tau, t \longrightarrow+\infty$. Therefore, there exists $u_{+} \in$ $H^{1}\left(\mathbb{R}^{N}\right)$ such that $v(t) \longrightarrow u_{+}$in $H^{1}\left(\mathbb{R}^{N}\right)$ as $t \longrightarrow+\infty$. So

$$
\begin{aligned}
& \left\|u(t)-e^{i t \Delta} u_{+}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}= \\
& =\left\|\mathcal{F}(t)\left(v(t)-u_{+}\right)\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}=\left\|v(t)-u_{+}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \longrightarrow 0 \quad \text { as } \quad t \longrightarrow+\infty .
\end{aligned}
$$

Similarly there exists $u_{-} \in H^{1}\left(\mathbb{R}^{N}\right)$ such that

$$
\left\|u(t)-e^{i t \Delta} u_{-}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \longrightarrow 0 \quad \text { as } \quad t \longrightarrow-\infty .
$$

Here it is not difficult to verify that

$$
u_{+}=u_{0}+i \int_{0}^{+\infty} e^{-i s \Delta}|u(s)|^{\frac{4}{N-2}} u(s) d s, \quad u_{-}=u_{0}-i \int_{-\infty}^{0} e^{-i s \Delta}|u(s)|^{\frac{4}{N-2}} u(s) d s
$$

Acknowledgments

This work was completed with the support in part by the Key Laboratory of Random Complex Structures and Data Science, Chinese Academy of Sciences; National Natural Science Foundation of China under grant No. 11071239.

REFERENCES

[1] J. Bourgain, Global well-posedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc. 12 (1999), 145-171.
[2] D. Cao, P. Han, Inhomogeneous critical nonlinear Schrödinger equations with a harmonic potential, J. Math. Phys. 51 (2010), 043505, 24 pp.
[3] R. Carles, S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equations. II. The L^{2}-critical case, Trans. Amer. Math. Soc. 359 (2007), 33-6.
[4] T. Cazenave, Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10, New York University Courant Institute of Mathematical Sciences, New York, 2003.
[5] T. Cazenave, A. Haraux, An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and Its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.
[6] T. Cazenave, F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in H^{s}, Nonlinear Anal. 14 (1990), 807-836.
[7] T. Cazenave, F.B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), 18-29, Lecture Notes in Math., 1394, Springer, Berlin, (1989).
[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoke, T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R^{3}, Ann. Math. 167 (2008), 767-865.
[9] T. Duyckaerts, J. Holmer, S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett. 15 (2008), 1233-1250.
[10] T. Duyckaerts, F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal. 18 (2009), 1787-1840.
[11] J. Ginibre, G. Velo, On a class of nonlinear Schrödinger equations, J. Funct. Anal. 32 (1979), 1-71.
[12] R.T. Glassey, On the blowup of nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), 1794-1797.
[13] M.G. Grillakis, On nonlinear Schrödinger equations, Commun. Partial Differ. Equations. 25 (2000), 1827-1844.
[14] T. Hmidi, S. Keraani, Remarks on the blowup for the L^{2}-critical nonlinear Schrödinger equations, SIAM J. Math. Anal. 38 (2006), 1035-1047.
[15] J. Holmer, S. Roudenko, On blow-up solutions to the 3D cubic nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX 2007, No. 1, Art. ID abm004, 31 pp.
[16] J. Holmer, S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys. 282 (2008), 435-467.
[17] D. Li, X. Zhang, Dynamics for the energy critical nonlinear Schröinger equation in high dimensions, J. Funct. Anal. 256 (2009), 1928-1961.
[18] S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations. 175 (2001), 353-392.
[19] C.E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), 645-675.
[20] J. Krieger, W. Schlag, Non-generic blow-up solutions for the critical focusing NLS in 1-D, J. Eur. Math. Soc. 11 (2009), 1-125.
[21] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980.
[22] R. Killip, M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, arXiv:0804.1018v1 [math.AP].
[23] F. Merle, Nonexistence of minimal blow-up solutions of equation iut $=-\Delta u-k(x)|u|^{\frac{4}{N}} u$ in R^{N}, Ann. Inst. Henri Poincaré Physique Thérique 64 (1996), 33-85.
[24] T. Ogawa, Y. Tsutsumi, Blow-up of H^{1}-solution for the nonlinear Schrödinger equation, J. Differ. Equations 92 (1991), 317-330.
[25] T. Ogawa, Y. Tsutsumi, Blow-up of H^{1}-solution for the nonlinear Schrödinger equation with critic power nonlinearity, Proc. Amer. Math. Soc. 111 (1991), 487-496.
[26] E. Ryckman, M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in R^{1+4}, Amer. J. Math. 129 (2007), 1-60.
[27] W. Schlag, Stable manifolds for an orbitally unstable nonlinear Schrödinger equation, Ann. Math. 169 (2009), 139-227.
[28] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372.
[29] T. Tao, Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data, New York J. Math. 11 (2005), 57-80.
[30] M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J. 138 (2007), 281-374.
[31] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576.

Pigong Han
pghan@amss.ac.cn
Chinese Academy of Sciences
Academy of Mathematics and Systems Science
Beijing 100190, China
Received: June 8, 2011.
Revised: August 4, 2011.
Accepted: August 4, 2011.

