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STEPANOV-LIKE C(n)-PSEUDO ALMOST AUTOMORPHY
AND APPLICATIONS

TO SOME NONAUTONOMOUS HIGHER-ORDER
DIFFERENTIAL EQUATIONS
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Abstract. In this paper we introduce and study a new concept called Stepanov-like
C(n)-pseudo almost automorphy, which generalizes in a natural fashion both the notions
of C(n)-pseudo almost periodicity and that of C(n)-pseudo almost automorphy recently
introduced in the literature by the authors. Basic properties of these new functions are
investigated. Furthermore, we study and obtain the existence of C(N+m)-pseudo almost au-
tomorphic solutions to some nonautonomous higher-order systems of differential equations
with Stepanov-like C(m)-pseudo almost automorphic coefficients.

Keywords: pseudo almost automorphic C(n)-pseudo almost automorphy, Stepanov-like
C(n)-pseudo almost automorphy, exponential dichotomy.

Mathematics Subject Classification: 35B15, 34D09, 58D25, 42A75, 37L05.

1. INTRODUCTION

A few years ago, following a suggestion by N’Guérékata [39, p. 40], Xiao et al. [34,40,
41] introduced the concept of pseudo almost automorphy in the literature, which in
fact is a very interesting generalization of the notions of periodicity, almost periodicity,
almost automorphy, and that of the pseudo almost periodicity. Since then, the concept
of pseudo almost automorphy has generated several developments, see, e.g., [12,18,22,
25,26], and [34]. More recently, such a notion has been utilized to study the existence
of pseudo almost automorphic solutions to various types of differential equations, see
for instance [6, 12,15,17,18,21,22,25,26,30,32,34], and [40].

In Adamczak [1], the concept of C(n)-almost periodicity for real-valued functions
was introduced and studied. Next, Bugajewski and N’Guérékata [7] extended such a
notion to Banach spaces and then introduced the concept of asymptotic C(n)-almost
periodicity, which is a natural generalization of the notion of C(n)-almost periodicity.
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For recent developments on the notion of C(n)-almost periodicity and related issues,
we refer the reader to for instance [2, 4, 7, 24, 28], and [33] and the references therein.
Similarly, in [29] Ezzinbi et al., introduced and studied the notion of C(n)-almost
automorphy. Recent developments on the concept of C(n)-almost automorphy and
related issues can be found for instance in [24], and [27].

In a recent paper by Diagana and Nelson [15], the concept of C(n)-pseudo almost
automorphy (respectively, C(n)-pseudo almost periodicity) is introduced. Basic prop-
erties of these new functions such as the stability of the convolution or the primitive for
C(n)-pseudo almost automorphic functions were investigated. Furthermore, Diagana
and Nelson [15] obtained the existence of C(n)-pseudo almost automorphic solutions
to some higher-order systems of differential equations.

The concept of Stepanov-like almost automorphy which is generalization of the
classical almost automorphy was introduced in the literature by N’Guérékata and
Pankov [36]. Such a notion was then, subsequently, utilized to study the existence of
weak Stepanov-like almost automorphic solutions to some parabolic evolution equa-
tions. Recently, such a notion gained lots of attention (see, e.g., [19, 23, 30–32]) and
has also been generalized (see, e.g., [11, 16], and [18]). In this paper it goes back
to introduce and study a new concept called Stepanov-like C(n)-pseudo almost auto-
morphy which generalizes the notion of C(n)-pseudo almost automorphy (respectively,
C(n)-pseudo almost periodicity). Basic properties such as the stability of the convo-
lution of those new functions are investigated. It should also be mentioned that the
space of C(n)-pseudo almost automorphic functions is a subspace of the space of
Stepanov-like C(n)-pseudo almost automorphic functions (Proposition 2.22).

To illustrate the previous outlined results, we study and obtain the existence of
C(m+N)-pseudo almost automorphic solutions solutions to the higher-order differential
equations

w(N)(t) +

N−1∑
k=0

ak(t)w(k)(t) = f(t), t ∈ R, (1.1)

where ak : R 7→ R for k = 0, 1, . . . , N − 1 and the function f : R 7→ R is Stepanov-like
C(m)-pseudo almost automorphic.

2. STEPANOV-LIKE C(n)-PSEUDO ALMOST AUTOMORPHIC FUNCTIONS

Let (X, ‖ · ‖), (Y, ‖ · ‖Y) be Banach spaces. Let C(R,X) stand for the collection of
continuous functions from R into X. Similarly, define C(n)(R,X) as the collection of
functions f : R 7→ X such that f (k) exists and belongs to C(R,X) for k = 0, 1, 2, . . . , n.
(The symbol f (k) being the k-derivative of f with f (0) corresponding to the continuity
of the function f .) Define BC(n)(R,X) as the collection of all functions f ∈ C(n)(R,X)
such that

‖f‖(n) := sup
t∈R

n∑
k=0

‖f (k)(t)‖ <∞.

It is not hard to see that (BC(n)(R,X), ‖ · ‖(n)) is a Banach space.
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In this paper, the symbols f (0), ‖ · ‖p,(0), C(0)(R,X), BS(0)
p (R,X), AS(0)

p (X), and
PAAS

(0)
p (X) stand respectively for f , ‖ · ‖Sp

, C(R,X), BSp(R,X), ASp(X), and
PAASp(X).

Definition 2.1. The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a function
f : R 7→ X, is defined by

f b(t, s) := f(t+ s).

Remark 2.2. Note that a function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform
of a certain function f(t),

ϕ(t, s) = f b(t, s) ,

if and only if ϕ(t+ τ, s− τ) = ϕ(s, t) for all t ∈ R, s ∈ [0, 1] and τ ∈ [s− 1, s].

Definition 2.3 ([36]). Let p ∈ [1,∞). The space BSp(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f on R with values
in X such that f b ∈ L∞

(
R, Lp((0, 1);X)

)
. This is a Banach space with the norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

 t+1∫
t

‖f(τ)‖p dτ

1/p

.

We now introduce the space BS(n)
p (X) as follows.

Definition 2.4. Let p ∈ [1,∞) and let n ∈ N. The space BS(n)
p (X) consists of all

functions f : R 7→ X such that f (k) ∈ BSp(X) for k = 0, 1, . . . , n. We equip the space
BS

(n)
p (X) with the norm defined by

‖f‖p,(n) := sup
t∈R

n∑
k=0

 t+1∫
t

‖f (k)(τ)‖p dτ

1/p

.

Proposition 2.5. The space BS(n)
p (X) equipped with the norm ‖f‖p,(n) is a Banach

space.

Proof. Let (fm)m≥0 ⊂ BS
(n)
p (X) be a Cauchy sequence. It is clear that (f

(k)
m )m≥0 is

a Cauchy sequence in BSp(X) for k = 0, 1, . . . , n. Now since (BSp(X), ‖ · ‖Sp) is a
Banach space it follows that there exists a function g ∈ BSp(X) that is n-differentiable
such that (f

(k)
m )m≥0 converges to g(k) with respect to the norm ‖ · ‖Sp as m → ∞

for k = 0, 1, . . . , n. Clearly, ‖fm − g‖p,(n) → 0 as m → ∞, which yields BS(n)
p (X)

equipped with the norm ‖ · ‖p,(n) is a Banach space.

Definition 2.6. A function f ∈ C(R,X) is said to be almost automorphic if for every
sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N such that

g(t) := lim
n→∞

f(t+ sn)
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is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R.
The collections of almost automorphic functions denoted AA(X), turns out to be

a Banach space when equipped with the sup norm ‖ · ‖∞.

Definition 2.7 ([15,29]). A function f ∈ C(n)(R,X) is said to be C(n)-almost auto-
morphic if f (k) ∈ AA(X) for k = 0, 1, . . . , n. The collection of C(n)-almost automor-
phic functions is denoted by AA(n)(X).

Clearly, the following inclusions hold:

. . . ↪→ AA(n+2)(X) ↪→ AA(n+1)(X) ↪→ AA(n)(X) ↪→ . . . ↪→ AA(1)(X) ↪→ AA(X).

Definition 2.8 ([15,29]). A jointly continuous function F : R×X 7→ Y is said to be
C(n)-almost automorphic in t ∈ R for each x ∈ X if D(k)

t f(t, x) := ∂kf
∂tk

(t, x) is almost
automorphic in t ∈ R for each x ∈ X where k = 0, 1, 2, . . . , n with D(0)

t := ∂0f
∂t0 (t, x) =

f(t, x). The collection of such functions will be denoted by AA(n)(X,Y).

Define

PAP0(X) :=

f ∈ BC(R,X) : lim
r→∞

1

2r

r∫
−r

∥∥f(s)
∥∥ds = 0

 .

Similarly, PAP0(Y,X) will denote the collection of all bounded continuous func-
tions F : R× Y 7→ X such that

lim
r→∞

1

2r

r∫
−r

∥∥F (s, x)
∥∥ds = 0

uniformly in x ∈ K, where K ⊂ Y is any bounded subset.
Define

PAP
(n)
0 (X) :=

{
f ∈ BC(n)(R,X) : f (k) ∈ PAP0(X) for k = 0, 1, . . . , n

}
and

PAP
(n)
0 (X,Y) :=

{
f ∈ BC(n)(X,Y) : D

(k)
t f ∈ PAP0(X,Y) for k = 0, 1, . . . , n

}
.

Definition 2.9 ([15]). A function f ∈ BC(n)(R,X) is called C(n)-pseudo almost
automorphic if it can be expressed as f = g + φ, where g ∈ AA(n)(X) and φ ∈
PAP

(n)
0 (X). The collection of such functions will be denoted by PAA(n)(X).
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Definition 2.10 ([15]). A bounded continuous function F : R × X 7→ Y belongs to
PAA(n)(X,Y) whenever it can be expressed as F = G+Φ, whereG ∈ AA(n)(X,Y) and
Φ ∈ PAP (n)

0 (X,Y). The collection of such functions will be denoted by PAA(n)(X,Y).

Theorem 2.11 ([15]). The space PAA(n)(X) equipped with the norm
∥∥ · ∥∥

(n)
is a

Banach space.

Given two functions f, g : R 7→ R, their convolution f ∗ g, if it exists, is defined by

(f ∗ g)(t) :=

∞∫
−∞

f(s)g(t− s)ds.

Theorem 2.12 ([15]). If f ∈ PAA(n)(R) and if g ∈ L1(R), then their convolution
f ∗ g ∈ PAA(n)(R).

Proposition 2.13 ([15]). If (fn)n∈N ⊂ PAA(X) converges uniformly to f on R, then
f ∈ PAA(X).

Theorem 2.14 ([15]). If f ∈ PAA(n)(X) such that f (n+1) is uniformly continuous,
then f ∈ PAA(n+1)(X).

Definition 2.15 ([36]). The space ASp(X) of Stepanov-like almost automorphic
functions (or Sp-almost automorphic) consists of all f ∈ BSp(X) such that f b ∈
AA
(
Lp((0, 1);X)

)
.

In other words, a function f ∈ Lploc(R;X) is said to be Sp-almost automorphic if
its Bochner transform f b : R→ Lp((0, 1);X) is almost automorphic in the sense that
for every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N and
a function g ∈ Lploc(R;X) such that t+1∫

t

‖f(sn + s)− g(s)‖pds

1/p

→ 0, and

 t+1∫
t

‖g(s− sn)− f(s)‖pds

1/p

→ 0

as n→∞ pointwise on R.
We now introduce the following definition.

Definition 2.16. The space AS
(n)
p (X) of Stepanov-like C(n)-almost automorphic

functions (or S
(n)
p -almost automorphic) consists of all f ∈ BS

(n)
p (X) such that

(f (k))b ∈ AA
(
Lp((0, 1);X)

)
for k = 0, 1, . . . , n.

In other words, a function f ∈ BS(n)
p (X) is said to be S(n)

p -almost automorphic if
(f (k))b is almost automorphic for k = 0, 1, . . . , n in the sense that for every sequence
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of real numbers (s′m)m∈N, there exists a subsequence (sm)m∈N and a function g ∈
BS

(n)
p (X) such that t+1∫

t

‖f (k)(sm + s)− g(k)(s)‖pds

1/p

→ 0, and

 t+1∫
t

‖g(k)(s− sm)− f (k)(s)‖pds

1/p

→ 0

for k = 0, 1, . . . , n, as m→∞ pointwise on R.

Definition 2.17. A function F : R×X 7→ X, (t, u) 7→ F (t, u) with F (·, u) ∈ AS(n)
p (X)

for each u ∈ X, is said to be S(n)
p -almost automorphic in t ∈ R uniformly in u ∈ X.

The collection of those S(n)
p -almost automorphic functions F : R×X 7→ X will be

denoted by AS(n)
p (R× X,X).

Definition 2.18. The space PAAS(n)
p (X) of Stepanov-like C(n)-pseudo almost auto-

morphic functions (or S(n)
p -pseudo almost automorphic) consists of all f ∈ BS(n)

p (X)
such that (f (k))b ∈ PAA

(
Lp((0, 1);X)

)
for k = 0, 1, . . . , n.

In other words, a function f ∈ BS(n)
p (X) is said to be S(n)

p -pseudo almost auto-
morphic if f = h + ϕ such that for every sequence of real numbers (s′m)m∈N, there
exists a subsequence (sm)m∈N and a function g ∈ BS(n)

p (X) such that t+1∫
t

‖h(k)(sm + s)− g(k)(s)‖pds

1/p

→ 0, and

 t+1∫
t

‖g(k)(s− sm)− h(k)(s)‖pds

1/p

→ 0

for k = 0, 1, . . . , n, as m→∞ pointwise on R, and

lim
r→∞

1

2r

r∫
−r

( t+1∫
t

∥∥ϕ(k)(σ)
∥∥pdσ)1/pdt = 0

for k = 0, 1, . . . , n.

Definition 2.19. A function F : R × X 7→ Y, (t, u) 7→ F (t, u) with F (·, u) ∈
PAAS

(n)
p (Y) for each u ∈ X, is said to be S(n)

p -pseudo almost automorphic in t ∈ R
uniformly in u ∈ X.
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The collection of those S(n)
p -pseudo almost automorphic functions F : R×X 7→ Y

will be denoted by PAAS(n)
p (R× X,Y).

The following inclusions hold:

. . . ↪→ PAAS(n+2)
p (X) ↪→ PAAS(n+1)

p (X) ↪→ PAAS(n)
p (X) ↪→

↪→ . . . ↪→ PAAS(1)
p (X) ↪→ PAASp(X).

Theorem 2.20. If f ∈ PAAS(n)
p (R) and if g ∈ L1(R), then their convolution f ∗ g ∈

PAAS
(n)
p (R).

Proof. Let f ∈ PAAS
(n)
p (R) and let g ∈ L1(R). Let f = h + ϕ such that

(h(k))b = (hb)(k) ∈ AA
(
Lp(0, 1;R)

)
and (ϕ(k))b = (ϕb)(k) ∈ PAP0

(
Lp((0, 1);R)

)
for k = 0, 1, . . . , n. To complete the proof it suffices to show that [(h ∗ g)(k)]b ∈
AA
(
Lp((0, 1);R)

)
and [(ϕ ∗ g)(k)]b ∈ PAP0

(
Lp((0, 1);R)

)
for all k = 0, 1, 2, . . . , n.

Indeed, using the fact [(h ∗ g)(k)]b = [h(k) ∗ g]b = (h(k))b ∗ g and Theorem 2.12,
it follows that [(h ∗ g)(k)]b ∈ AA

(
Lp((0, 1);R)

)
for all k = 0, 1, 2, . . . , n. Similarly,

from [(ϕ ∗ g)(k)]b = [ϕ(k) ∗ g]b = (ϕ(k))b ∗ g and Theorem 2.12 it follows that
[(ϕ ∗ g)(k)]b ∈ PAP0

(
Lp((0, 1);R)

)
for all k = 0, 1, 2, . . . , n. This completes the

proof.

Proposition 2.21. The space PAAS
(n)
p (X) equipped with the norm ‖ · ‖p,(n) is a

Banach space.

Proof. The proof is based upon the fact PAAS(n)
p (X) is a closed subspace of BS(n)

p (X).

Proposition 2.22. If f ∈ PAA(n)(X), then f ∈ PAAS(n)
p (X). That is, PAA(n)(X) ⊂

PAAS
(n)
p (X).

Proof. Let f = h + ϕ where h ∈ AA(n)(X) and ϕ ∈ PAP
(n)
0 (X). Clearly, f (k) ∈

BSp(X) for k = 0, 1, . . . , n and hence f ∈ BS
(n)
p (X). To complete the proof it suf-

fices to show that (h(k))b ∈ AA(Lp((0, 1);X)) and (ϕ(k))b ∈ PAP0(Lp((0, 1);X)) for
k = 0, 1, 2, . . . , n. Using the fact that AA(X) ⊂ ASp(X) for p ∈ [1,∞) (see [36]) it
follows that (h(k))b ∈ AA(Lp((0, 1);X)) for k = 0, 1, 2, . . . , n. Similarly, Diagana [16,
Proposition 2.12] has shown that if k ∈ PAP0(X), then kb ∈ PAP0(Lp((0, 1);X)). Us-
ing that it readily follows that (ϕ(k))b ∈ PAP0(Lp((0, 1);X)) for k = 0, 1, 2, . . . , n.

Example 2.23. Let p = 1 and let ε ∈ AA(3)(R) such that inf
t∈R

ε′′′(t) = δ0 > 0. We

give an example of a function f ∈ PAAS(2)
1 (R) such that f 6∈ PAAS(3)

1 (R). Indeed,
consider the function f defined by

f(t) =

∞∑
k=1

ε(kt)

k4
+

1

1 + t2
.

Setting

ϕ(t) =

∞∑
k=1

ε(kt)

k4
and h(t) =

1

1 + t2
,
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we claim that:

(i) ϕ ∈ AS(2)
1 (R) while ϕ 6∈ AS(3)

1 (R); and
(ii) h ∈ PAP (2)

0 (R).

Indeed,

ϕ′(t) =

∞∑
k=1

ε′(kt)

k3
and ϕ′′(t) =

∞∑
k=1

ε′′(kt)

k2

for all t ∈ R.
Clearly, ϕ ∈ BS(2)

1 (R) as it can be easily shown that ϕ,ϕ′, ϕ′′ ∈ BS1(R). Moreover,
ϕ,ϕ′, ϕ′′ ∈ AA(R). Consequently, ϕ ∈ AS(2)

1 (R).
Now

ϕ′′′(t) =

∞∑
k=1

ε′′′(kt)

k
.

Clearly, ϕ′′′ 6∈ BS1(R). Therefore, ϕ ∈ AS(2)
1 (R) while ϕ 6∈ AS(3)

1 (R).
The fact h ∈ PAP (2)

0 (R) has been shown in Diagana and Nelson [15]. However for
the sake of clarity, we reproduce it here. Indeed, it is readily seen that h belongs to
PAP0(R). Now the functions

h′(t) = − 2t

(1 + t2)2
, h′′(t) =

−2− 10t2

(1 + t2)3

are bounded continuous functions with |h′(t)| ≤ 1 and |h′′(t)| ≤ 12 for all t ∈ R.
Further, it is easily seen that both h′ and h′′ belongs to PAP0(R) and hence h ∈
PAP

(2)
0 (R).

In view of the above it follows that f ∈ PAAS(2)
1 (R) while f 6∈ PAAS(3)

1 (R).

3. EXISTENCE OF C(m)-PSEUDO ALMOST AUTOMORPHIC SOLUTIONS

In this section we study the existence of C(m)-pseudo almost automorphic solutions
to the nonautonomous higher-order differential equations (1.1). For that, we rewrite
it as a first-order differential equation in RN involving an N ×N square matrix A(t).
Indeed, if u is N -times differentiable and setting

z :=



u

u′

u′′

...
u(N−1)

 ∈ RN ,

then (1.1) can be rewritten in the following form:

z′(t) = A(t)z(t) + F (t), t ∈ R, (3.1)
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where A(t) is the N ×N square matrix given by

A(t) =



0 1 0 · · · 0

0 0 1 . . . . 0

...
. . . . . .

−a0(t) −a1(t) · · · · · · −aN−1(t)


(3.2)

and the function F appearing in (1.1) is defined on R by

F (t) :=



0

...
0

0

f(t)

 .

Let {A(t)}t∈R be an N ×N square matrix and consider the differential equation

z′(t) = A(t)z(t) + g(t), t ∈ R, (3.3)

and its corresponding homogeneous equation

z′(t) = A(t)z(t), t ∈ R, (3.4)

where g : R 7→ RN is continuous.

Definition 3.1. The homogeneous equation (3.4) is said to be to have an exponential
dichotomy if there exist a projection P and the constants K, δ > 0 such that:

(i) ‖X(t)PX−1(s)‖ ≤ Ke−δ(t−s) for all t, s ∈ R and t ≥ s; and
(ii) ‖X(t)QX−1(s)‖ ≤ Ke−δ(s−t) for all t, s ∈ R and t ≤ s,

where Q = I − P and X(t) is a fundamental solution to (3.4) satisfying X(0) = I (I
being the identity matrix for RN ).

If (3.4) has an exponential dichotomy, we then define

Γ(t, s) =


X(t)PX−1(s) if t ≥ s,

−X(t)QX−1(s) if s ≥ t.
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Clearly,

‖Γ(t, s)‖ ≤


Ke−δ(t−s) if t ≥ s,

Ke−δ(s−t) if s ≥ t.
We require the following assumptions:

(H1) g is Stepanov-like C(m)-pseudo almost automorphic; and
(H2) Γ(t, s)u ∈ bAA(R,RN ) uniformly for all u in any bounded subset of RN .

Theorem 3.2. If (3.4) has exponential dichotomy and if assumptions (H1)–(H2)
hold, then (3.3) has a unique C(m)-pseudo almost automorphic solution.

Proof. Let X(t) be a fundamental solution to (3.4) satisfying X(0) = I and suppose
there exists a projection P and the constants K, δ > 0 such that

‖X(t)PX−1(s)‖ ≤ Ke−δ(t−s) (3.5)

for all t, s ∈ R and t ≥ s, and

‖X(t)QX−1(s)‖ ≤ Ke−δ(s−t) (3.6)

for all t, s ∈ R and t ≤ s, where Q = I − P .
According to Coppel [13], the only bounded solution to (3.3) is given by

z(t) =

∞∫
−∞

Γ(t, s)g(s)ds.

Let q > 1 such that p−1 + q−1 = 1. Consider for each n ∈ N, the integral

un(t) :=

t−n+1∫
t−n

Γ(t, s)g(s)ds =

n∫
n−1

Γ(t, t− s)g(t− s)ds.

Now

‖un‖ ≤ K
t−n+1∫
t−n

e−ω(t−s)‖g(s)‖ds.

Using the Hölder’s inequality we obtain

‖un‖ ≤ K
( t−n+1∫
t−n

e−qω(t−s)ds
)1/q( t−n+1∫

t−n

‖g(s)‖pds
)1/p

=

= K
[e−nqω
qω

(
eqω − 1

)]1/q
‖g‖Sp ≤

≤ Ke−nω
[eqω + 1

qω

]1/q
‖g‖Sp =

= c(K,ω, q)e−nω‖g‖Sp .
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Since the series c(K,ω, q)
∑∞
n=1 e

−nω is convergent, it follows from the Weierstrass
test that

∞∑
n=1

un(t)

is uniformly convergent on R and set u(t) =

∞∑
n=1

un(t).

Note that

u(t) =

∞∫
−∞

Γ(t, s)g(s)ds.

Moreover, u ∈ C(R,RN ) and for any t ∈ R,

‖u(t)‖ ≤
∞∑
n=1

‖un(t)‖ ≤ c′(K,ω, q)‖g‖Sp

where c′(K,ω, q) is a constant.
Let us show that un is C(m)-pseudo almost automorphic. Since g is Stepanov-like

C(m)-pseudo almost automorphic, let g = g1 + g2 where (g
(r)
1 )b ∈ AA(Lp((0, 1),RN ))

and (g
(r)
2 )b ∈ PAP0(Lp((0, 1),RN )) for r = 0, 1, 2, . . . ,m. Using the fact (g

(r)
1 )b ∈

AA(Lp((0, 1),RN )) for r = 0, 1, 2, . . . ,m it follows that for every sequence of real
numbers (τ ′k)k∈N there exists a subsequence (τk)k∈N and an m-differentiable function
h1 such that

lim
k→∞

1∫
0

‖g(r)1 (t+τk+s)−h(r)1 (t+s)‖pds = lim
k→∞

1∫
0

‖h(r)1 (t−τk+s)−g(r)1 (t+s)ds‖p = 0

for each t ∈ R and for r = 0, 1, 2, . . . ,m.
Similarly, using (H2), we can assume that

Λ(t, s)h = lim
k→∞

Γ(t+ τk, s+ τk)h

is well-defined for each h ∈ RN and t, s ∈ R, and

Γ(t, s)h = lim
k→∞

Λ(t− τk, s− τk)h

is well-defined for each h ∈ RN and t, s ∈ R.
Setting

Ipk(t) :=
( n∫
n−1

‖Γ(t+ τk, t+ τk − s)(g(r)1 (t+ τk − s)− h(r)1 (t− s))‖pds
)1/p
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and

Jpk (t) :=
( n∫
n−1

‖(Γ(t+ τk, t+ τk − s)− Λ(t, t− s))h(r)1 (t− s)‖pds
)1/p

for r = 0, 1, 2, . . . ,m, one can see that

( n∫
n−1

‖Γ(t+ τk, t+ τk − s)g(r)1 (t+ τk − s)− Λ(t, t− s)h(r)1 (t− s)‖pds
)1/p

≤

≤ Ipk(t) + Jpk (t)

for r = 0, 1, 2, . . . ,m.
Using (3.5) and the Lebesgue Dominated Convergence theorem, one can easily see

that
Ipk(t)→ 0 as k →∞, t ∈ R.

Similarly, using (H2) it follows that

Jpk (t)→ 0 as k →∞, t ∈ R.

Consequently,

lim
k→∞

n∫
n−1

‖Γ(t+ τk, t+ τk − s)g(r)1 (t+ τk − s)− Λ(t, t− s)h(r)1 (t− s)‖pds = 0

for r = 0, 1, 2, . . . ,m.
Using similar ideas as the previous ones, one can show that

lim
k→∞

n∫
n−1

‖Λ(t− τk, t− τk − s)h(r)1 (t− τk − s)− Γ(t, t− s)g(r)1 (t− s)‖pds = 0

for r = 0, 1, 2, . . . ,m.
Set

vn(t) :=

t−n+1∫
t−n

Γ(t, s)g
(r)
2 (s)ds =

n∫
n−1

Γ(t, t− s)g(r)2 (t− s)ds

for r = 0, 1, 2, . . . ,m.
Now

‖vn‖ ≤ K
t−n+1∫
t−n

e−ω(t−s)‖g(r)2 (s)‖ds
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for r = 0, 1, 2, . . . ,m. Using the Hölder’s inequality we obtain

‖vn‖ ≤ K
( t−n+1∫
t−n

e−qω(t−s)ds
)1/q( t−n+1∫

t−n

‖g(r)2 (s)‖pds
)1/p

=

= K
[e−nqω
qω

(
eqω − 1

)]1/q( t−n+1∫
t−n

‖g(r)2 (s)‖pds
)1/p

≤

≤ Ke−nω
[eqω + 1

qω

]1/q( t−n+1∫
t−n

‖g(r)2 (s)‖pds
)1/p

=

= c(K,ω, q)e−nω
( t−n+1∫
t−n

‖g(r)2 (s)‖pds
)1/p

and hence vn ∈ PAP0(Rn) as (g
(r)
2 )b ∈ PAP0(Lp((0, 1),RN )) for r = 0, 1, 2, . . . ,m.

Furthermore, since the series c(K,ω, q)
∑∞
n=1 e

−nω is convergent, it follows from the
Weierstrass test that

∞∑
n=1

vn(t)

is uniformly convergent on R and set v(t) =

∞∑
n=1

vn(t).

Now

v(t) =

∞∫
−∞

Γ(t, s)g
(r)
2 (s)ds

for r = 0, 1, 2, . . . ,m. Moreover, v ∈ C(R,RN ) and for any t ∈ R,

‖v(t)‖ ≤
∞∑
n=1

‖vn(t)‖ ≤ c′(K,ω, q)‖g(r)2 ‖Sp

for r = 0, 1, 2, . . . ,m, where c′(K,ω, q) is a constant. Thus the uniform limit v(t) =∑∞
n=1 vn(t) ∈ PAP0(RN ). The proof is complete.

We suppose that

(H3) t→ f(t) is Stepanov-like C(m)-pseudo almost automorphic.

Theorem 3.3. If the homogeneous equation associated with (3.1) has exponential di-
chotomy and if assumptions (H2)–(H3) hold, then (1.1) has a unique C(m+N)-pseudo
almost automorphic solution.
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Proof. Using Theorem 3.2 it follows that (3.1) has a unique C(m)-pseudo almost
automorphic solution given by

t→ z(t) :=



w(t)

w′(t)

w′′(t)
.
.

w(N−1)(t)

 .

Therefore, t → w(t), t → w′(t), . . . , t → w(N)(t) ∈ PAA(R) and hence t → w(t) ∈
PAA(N+m)(R), i.e., (1.1) has a unique C(N+m)-pseudo almost automorphic solution
w.
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