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TREES

WHOSE 2-DOMINATION SUBDIVISION NUMBER IS 2

M. Atapour, S.M. Sheikholeslami, and Abdollah Khodkar

Abstract. A set S of vertices in a graph G = (V,E) is a 2-dominating set if every vertex
of V \ S is adjacent to at least two vertices of S. The 2-domination number of a graph
G, denoted by γ2(G), is the minimum size of a 2-dominating set of G. The 2-domination
subdivision number sdγ2(G) is the minimum number of edges that must be subdivided (each
edge in G can be subdivided at most once) in order to increase the 2-domination number.
The authors have recently proved that for any tree T of order at least 3, 1 ≤ sdγ2(T ) ≤ 2.
In this paper we provide a constructive characterization of the trees whose 2-domination
subdivision number is 2.
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1. INTRODUCTION

In this paper, G is a simple graph with vertex set V (G) and edge set E(G) (briefly V
and E). For every vertex v ∈ V , the open neighborhood N(v) is the set {u ∈ V (G) |
uv ∈ E(G)} and the closed neighborhood of v is the set N [v] = N(v)∪ {v}. Similarly,
the open neighborhood of a set S ⊆ V is the set N(S) = ∪v∈SN(v), and the closed

neighborhood of S is the set N [S] = N(S) ∪ S. A leaf of a graph G is a vertex of
degree 1, while a support vertex of G is a vertex adjacent to a leaf. A support vertex
is strong if it is adjacent to at least two leaves. For a vertex v in a rooted tree T , let
D(v) denote the set of descendants of v and D[v] = D(v)∪ {v}. The maximal subtree

at v is the subtree of T induced by D[v], and is denoted by Tv.
A 2-dominating set of a graph G = (V,E) is a subset S of vertices where each

vertex in V \ S is adjacent to at least two vertices of S. The 2-domination number

of a graph G, denoted by γ2(G), is the minimum size of a 2-dominating set of G. A
γ2(G)-set is a 2-dominating set of G with size γ2(G). The 2-domination numbers have
been studied by several authors (see for example [6, 7, 13, 15]).
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The 2-domination subdivision number sdγ2(G) of a graph G is the minimum num-
ber of edges that must be subdivided (where each edge in G can be subdivided at
most once) in order to increase the 2-domination number of G. It is easy to see
that [4] the 2-domination number of a graph cannot decrease when an edge of that
graph is subdivided. For a more thorough treatment of domination parameters and
for terminology not presented here see [12, 16].

Atapour et al. [4] showed the following result.

Theorem 1.1. For any tree T of order n ≥ 3, 1 ≤ sdγ2(T ) ≤ 2.

Hence, trees can be classified as Class 1 or Class 2 depending on whether their
2-domination subdivision numbers are 1 or 2, respectively. In this paper we give
a constructive characterization of trees in Class 2. For recent results on the topic
“constructive characterization of graphs” the reader may consult [1–3, 9, 11, 14].

We make use of the following observations in this paper.

Theorem 1.2 ([7]). Every 2-dominating set of a graph G contains every leaf.

Observation 1.3 ([7]). Let T be a tree obtained from a nontrivial tree T ′ by adding

a star K1,p with the center vertex v attached by an edge vw at a vertex w of T ′. Then

γ2(T
′) + p ≤ γ2(T ), with equality if p ≥ 2 or w is a leaf in T ′.

2. TREES WHOSE 2-DOMINATION SUBDIVISION NUMBER IS 2

In this section we provide a constructive characterization of all trees in Class 2. For
this purpose, we describe a procedure to build a family F of labeled trees that are in
Class 2 as follows. The label of a vertex is also called its status and denoted sta(v).
A labeled P4 is a P4 where the two leaves have status A and the other two vertices
have status B and status C, respectively. Let F be the family of labeled trees that: A
labeled P4 is a tree in F and if T is a tree in F , then the tree T ′ obtained from T by
the following five operations which extend the tree T by attaching a tree to a vertex
y ∈ V (T ), called an attacher, is also a tree in F .
Operation T1. If sta(y) = B (respectively, C) and y is a support vertex, then T1

adds a vertex x and an edge xy to T with sta(x) = A. Moreover, if deg(y) = 2 and
y is adjacent to a vertex z of status C (respectively, B), then this operation changes
the status of z to C′ (respectively, B′).
Operation T2. If sta(y) = B (respectively, C) and y is adjacent to a support vertex
z with deg(z) = 2 and sta(z) = C (respectively, B), then T2 adds a vertex x and an
edge xy to T with sta(x) = A. Moreover, this operation changes the status of z to C′

(respectively, B′).
Operation T3. If sta(y) = A,A′, B′ or C′, then T3 adds a star K1,2 with center x and
two leaves x1, x2 and an edge xy to T with sta(x) = F and sta(x1) = sta(x2) = A.
Moreover, this operation changes the status of y from A to A′.
Operation T4. If sta(y) = A, then we have three cases:
Case 1. y is adjacent to a vertex z of status B or B′. Then T4 adds a path yxu to T
with sta(x) = B, sta(u) = A and changes the status of y from A to C.
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Case 2. y is adjacent to a vertex z of status C or C′. Then T4 adds a path yxu to T
with sta(x) = C, sta(u) = A and changes the status of y from A to B.
Case 3. y is adjacent to a vertex z of status F . Then T4 adds a path yxu to T with
sta(x) = C, sta(u) = A and changes the status of y from A to B.
Operation T5. If sta(y) = F , then T5 adds a vertex x and an edge xy to the tree T
with sta(x) = A.

The five operations are shown in Figure 1. Note that operation 3 adds two leaves
and all the other operations add one leaf to tree T.
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Fig. 1. The five operations

The family F

If T ∈ F , we let A(T ), B(T ), C(T ), F (T ), A′(T ), B′(T ) and C′(T ) be the set of
vertices of status A,B,C, F,A′, B′, and C′, respectively, in T . The following observa-
tion comes from the way in which each tree in the family F is constructed.

Observation 2.1. Let T ∈ F and v ∈ V (T ).

1. The set of vertices with status A is the set of leaves of tree T .
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2. If v is a support vertex, then sta(v) = B,C, F,B′ or C′.

3. If sta(v) = B or B′, then v has at least one neighbor y of status C or C′ and

N(v)− {y} ⊂ A(T ) ∪A′(T ) ∪C(T ) ∪C′(T ) ∪ F (T ). Thus A(T ) ∪A′(T ) ∪C(T )∪
C′(T ) ∪ F (T ) is a 2-dominating set for T .

4. If sta(v) = C, C′ or F , then v has at least two neighbors of status A,A′, B or B′.

Thus A(T ) ∪ A′(T ) ∪B(T ) ∪B′(T ) is a 2-dominating set for T .

We proceed with the following two propositions.

Proposition 2.2. 1. Let T ′ be a tree of order at least 3 and let y be a leaf of T ′. Let

T be a tree obtained from T ′ by adding a path yuv to T ′. Then γ2(T ) = γ2(T
′)+1.

Moreover, sdγ2(T ) ≤ sdγ2(T
′).

2. Let T ′ be a tree of order at least 3 and let y be a strong support vertex of T ′. Let T
be a tree obtained from T ′ by adding a pendant edge yw. Then γ2(T ) = γ2(T

′)+ 1.
Moreover, sdγ2(T ) ≤ sdγ2(T

′).

3. Let T ′ be a tree of order at least 3 and let y be a leaf of T ′. Let T be a tree

obtained from T ′ by adding a path yuv to T ′ and t(≥ 1) pendant edges at y. Then

γ2(T ) = γ2(T
′) + t+ 1. Moreover, sdγ2(T ) ≤ sdγ2(T

′).

Proof. (1) By Observation 1.3, γ2(T ) = γ2(T
′) + 1. Let F be a set of edges in T ′

where subdividing the edges in F increases the 2-domination number of T ′. Let T1

and T2 be the trees obtained from T ′ and T , respectively, by subdividing the edges
in F . Then y is a leaf in T1 and T2 is obtained from T1 by adding a path yuv to T1.
Thus

γ2(T2) = γ2(T1) + 1 > γ2(T
′) + 1 = γ2(T ).

It follows that, sdγ2(T ) ≤ sdγ2(T
′).

(2) Let u, v be the two leaves of T ′ adjacent to y in T ′. Then u, v, w are leaves in
T . It is easy to see that for every γ2(T

′)-set S, S ∪ {w} is a 2-dominating set of T . It
follows that γ2(T ) ≤ γ2(T

′) + 1. Now if S′ is a γ2(T )-set, then {u, v, w} ⊆ S′. Hence,
S′ − {w} is a 2-dominating set of T ′. Thus γ2(T ) = γ2(T

′) + 1.
Let F be a set of edges in T ′ where subdividing the edges in F increases the

2-domination number of T ′. Let T1 and T2 be the trees obtained from T ′ and T ,
respectively, by subdividing the edges in F . Then T2 is obtained from T1 by adding
the pendant edge yw. If F ∩{yu, yv} = ∅, then, as before, we have γ2(T2) = γ2(T1)+1
and so

γ2(T2) = γ2(T1) + 1 > γ2(T
′) + 1 = γ2(T ).

Now suppose that |F ∩ {yu, yv}| ≥ 1. We may assume the edge yu is subdivided by
inserting a vertex x. Obviously, for every γ2(T1)-set S, S ∪ {w} is a 2-dominating set
of T and so γ2(T2) ≤ γ2(T1)+1. Now if D is a γ2(T2)-set, then by Theorem 1.2, w ∈ D
and to dominate x twice we must have x ∈ D or y ∈ D. In each case (D−{x})∪ {y}
is a 2-dominating set for T1. It follows that γ2(T2) = γ2(T1) + 1. As before, we have

γ2(T2) = γ2(T1) + 1 > γ2(T
′) + 1 = γ2(T ).

It follows that, sdγ2(T ) ≤ sdγ2(T
′).

(3) The proof is similar to (1) and (2) and therefore omitted.
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Proposition 2.3. Let T be a tree obtained from a tree T ′ of order at least 3 by

attaching a star K1,t (t ≥ 2) with center x and joining x to a vertex y of T ′. Then

γ2(T ) = γ2(T
′) + t. Moreover, sdγ2(T ) ≤ sdγ2(T

′).

Proof. By Observation 1.3, γ2(T ) = γ2(T
′)+t. An argument similar to that described

in Proposition 2.2 (Part 1) shows that sdγ2(T ) ≤ sdγ2(T
′).

Reordering a set of operations with respect to a subset of {Ti}5i=1

Let T be a tree obtained from a labeled P4 by successive operations T1, . . . ,Tm,
where Ti ∈ {T1,T2,T3,T4,T5} for 1 ≤ i ≤ m. Let J ⊆ {1, 2, 3, 4, 5} and Tj ∈
{T1,T2,T3,T4,T5} for j ∈ J . The following algorithm reorders operations T1, . . . ,Tm

with respect to Tj, j ∈ J . It is easy to see that if we apply operations Ti, 1 ≤ i ≤ m
on a labeled P4, according to the new ordering, we obtain T .

Algorithm

1. Set k = 0.

2. Add one to k. If k > m, stop.

3. If Tk 6∈ {Tj | j ∈ J}, go to Step 2. If Tk = Tj for some j ∈ J , proceed as follows.
Find the smallest ℓ ∈ {1, 2, . . . , k − 1} such that applying Tj before T

ℓ does not
lead to a different tree from T . If such an ℓ does not exist, go to Step 2, otherwise
apply Tj before Tℓ.

Note that for given successive operations T1, . . . ,Tm there exists a unique reorder-
ing with respect to a given subset of {T1,T2,T3,T4,T5}.

Example 2.4. Let T (Figure 2) be obtained by applying the sequence T3, T5, T1,
T4, T1, T4, T3, T5, T4 on the initial path x1x2x3x4. We see that T3 adds the star with
center x5 and the leaves x6 and x7 to x4 (Figure 3), T5 adds x8 to x5 (Figure 4), T1

adds x9 to x2, T4 adds x10x11 to x8, T1 adds x12 to x10 (Figure 5), T4 adds x13x14 to
x11, T3 adds the star with center x15 and the leaves x16 and x17 to x3 (Figure 6), T5

adds x18 to x15 and T4 adds the path x19x20 to x17 (Figure 7). Then T is in Figure 2.
In what follows, we step by step show that how one can find the reordering of

the operations T3,T5,T1,T4,T1,T4,T3,T5,T4 with respect to {T1,T3,T5}. The new
ordering will be T3,T5,T1,T3,T5,T4,T1,T4,T4.
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In order to show that each tree in the family F is in Class 2, we first present three
lemmas.

Lemma 2.5. Let T ∈ F be obtained from a labeled P4 by successive operations

T1, . . . ,Tm, where Ti ∈ {T1,T2,T3,T4,T5} if m ≥ 1 and T = P4 if m = 0. Then

A(T ) ∪ A′(T ) ∪ B(T ) ∪ B′(T ) is a 2-dominating set of T and γ2(T ) = m + k + 3,
where k is the number of operations of type T3.

Proof. By Part (4) of Observation 2.1, the set A(T ) ∪ A′(T ) ∪ B(T ) ∪ B′(T ) is a
2-dominating set of T . This implies that γ2(T ) ≤ m + k + 3. The proof of γ2(T ) =
m+k+3 is by induction on m. If m = 0, then clearly the statement is true. Let m ≥ 1
and that the statement holds for all trees which are obtained from P4 by applying
m − 1 operations T ∈ {T1,T2,T3,T4,T5}. Reorder the operations {T1,T2, . . . ,Tm}
with respect to {T1,T2,T5}. Let Tm−1 be the tree obtained from P4 by the first m−1
operations T1, . . . ,Tm−1. If Tm = T3, then T has been obtained from Tm−1 by adding
a star K1,2 with center x and two leaves x1, x2 and an edge xy to T . By the inductive
hypothesis, γ2(Tm−1) = (m − 1) + (k − 1) + 3 = m + k + 1 and the result follows
by Proposition 2.3. If Tm = T5, then T has been obtained from Tm−1 by adding a
vertex x and an edge xy to the tree Tm−1 where staTm−1(y) = F . Then, by the choice
of reordering, y is a strong support vertex in Tm−1. By the inductive hypothesis,
γ2(Tm−1) = (m − 1) + k + 3 = m + k + 2 and the result follows by Proposition
2.2 (Part 2). If Tm = T4, then the result follows by the inductive hypothesis and
Proposition 2.2 (Part 1). Now consider the two remaining cases.

Case 1. Tm = T1. Then T has been obtained from Tm−1 by adding a vertex x and
an edge xy, where y is a support vertex of Tm−1. Suppose that w is a leaf adjacent to
y and z is a vertex of status B,C,C′ or B′ adjacent to y by Observation 2.1, Parts
(2) and (3). First assume y is in the original P4. Then, by the choice of reordering,
T1 = T2 = . . . = Tm = T1 and each operation adds a pendant edge at y. Therefore
deg(z) = 2. For any γ2(Tm−1)-set S′, S′ ∪ {x} is a 2-dominating set of T and so
γ2(T ) ≤ γ2(Tm−1) + 1. On the other hand, if S is a γ2(T )-set, then clearly x,w ∈ S
and |S ∩ {y, z}| ≥ 1 since deg(z) = 2. Then S − {x} is a 2-dominating set of Tm−1.
This implies that γ2(Tm−1) ≤ γ2(T )− 1 and so γ2(Tm−1)+1 = γ2(T ). Now the result
follows by the inductive hypothesis.

Now assume y is not in the original P4. By the choice of reordering, we may assume
for some positive integer s, Tm = . . . = Ts+1 = T1 and each operation adds a pendant
edge at y and Ts = T4 which adds the path zyw. Therefore, z is a leaf in Ts−1 and so
staTs−1(z) = A and degT (z) = 2. By Proposition 2.3, γ2(Ts−1)+ (m− s)+1 = γ2(T ).
Now the result follows by the inductive hypothesis.

Case 2. Tm = T2. Then T has been obtained from Tm−1 by adding a vertex x and an
edge xy, where y is adjacent to a support vertex z of Tm−1 with deg(z) = 2. For any
γ2(Tm−1)-set S′, S′ ∪ {x} is a 2-dominating set of T and so γ2(T ) ≤ γ2(Tm−1) + 1.
On the other hand, if S is a γ2(T )-set, then clearly x,w ∈ S and |S ∩ {y, z}| ≥ 1
since deg(z) = 2. Then S − {x} is a 2-dominating set of Tm−1. This implies that
γ2(Tm−1) ≤ γ2(T ) − 1 and so γ2(Tm−1) + 1 = γ2(T ). Now the result follows by the
inductive hypothesis.
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Lemma 2.6. Let T ∈ F be obtained from a labeled P4 by successive operations

T1, . . . ,Tm, where Ti ∈ {T1,T2,T3,T4,T5} if m ≥ 1 and T = P4 if m = 0. Then:

1. for every v ∈ V (T ), there exists a γ2(T )-set containing v,
2. if v ∈ A(T ), then there is a γ2(T )-set S containing v and its support vertex.

Therefore, S − {v} is a 2-dominating set of T − {v}.

Proof. The proof is by induction on m. If m = 0, then clearly the statements are true.
Let m ≥ 1 and the statements hold for all trees which are obtained from a labeled P4

by applying at most m− 1 operations T ∈ {T1,T2,T3,T4,T5}. Let Tm−1 be the tree
obtained from P4 by the first m− 1 operations T1, . . . ,Tm−1. Reorder the operations
{T1,T2, . . . ,Tm} with respect to {T3}.

(1) Since by Lemma 2.5, A(T )∪A′(T )∪B(T )∪B′(T ) is a γ2(T )-set, we assume that
v ∈ C(T ) ∪ C′(T ) ∪ F (T ). We consider three cases.

Case 1. T
m = T1,T2 or T5. Then T is obtained from Tm−1 by adding a vertex x and

an edge xy, where y ∈ B(Tm−1)∪C(Tm−1)∪F (Tm−1). Since C(T )∪C′(T )∪F (T ) =
C(Tm−1) ∪C′(Tm−1) ∪ F (Tm−1), by the inductive hypothesis v is contained in some
γ2(Tm−1)-set S. Now S ∪ {x} is a γ2(T )-set containing v by Lemma 2.5.

Case 2. Tm = T3. Then T is obtained from Tm−1 by adding a star K1,2 with center
x and two leaves x1, x2 and an edge xy, where y ∈ A(Tm−1)∪A′(Tm−1)∪B′(Tm−1)∪
C′(Tm−1). We have C(T )∪C′(T )∪F (T ) = (C(Tm−1)∪C′(Tm−1)∪F (Tm−1))∪{x}. If
v ∈ V (Tm−1), then by the inductive hypothesis there is a γ2(Tm−1)-set S containing v
and S ∪{x1, x2} is a γ2(T )-set by Lemma 2.5. Let v = x. By the choice of reordering,
for some integer 0 ≤ s ≤ m − 1, each of Tm,Tm−1, · · · ,Ts+1 adds a star K1,2 and
joins its center to y but Ts does not add a star K1,2 to y. If s < m − 1, then we
may assume Tm−1 adds a star K1,2 with center x′ and leaves x′

1, x
′

2. Obviously, we
can rearrange the order of the operations to have T1, . . . ,Tm−2, Tm,Tm−1. By the
inductive hypothesis, the tree T ′ obtained from P4 by the operations T1, . . . ,Tm−2,
Tm has a γ2(T

′)-set S containing v. Then S ∪ {x′

1, x
′

2} is a γ2(T )-set containing v by
Lemma 2.5. Now we assume s = m − 1. Let first sta(y) = B′ or C′. Then, by the
choice of reordering, we may assume Ts ∈ {T1,T2}. We consider two subcases.

Subcase 2.1. Tm−1 = T1. This forces that y is adjacent to a strong support vertex
z with status B or C and deg(z) = 3. By Lemma 2.5 and the inductive hypothesis, z
is contained in a γ2(Tm−1)-set S. Now obviously (S \ {z})∪ {x, x1, x2} is a γ2(T )-set
containing v.

Subcase 2.2. Tm−1 = T2. Then Tm−1 is obtained from Tm−2 by adding a vertex
u and an edge uz, where z is a vertex of status B or C adjacent to the support
vertex y of status C orB and degree 2 in Tm−2. Thus we have degTm−1

(z) ≥ 3,
staTm−1(z) = B or C and staTm−1(y) = C′ or B′. Let z′ be a vertex adjacent to z
other than y and u. By the inductive hypothesis, z′ is contained in a γ2(Tm−1)-set
say S. Then we have z ∈ S or y ∈ S. By Lemma 2.5, (S \ {z, y}) ∪ {x, x1, x2} is a
γ2(T )-set containing v.
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Now let sta(y) = A. Then y is a leaf in Tm−1, and by the inductive hypotheses there
is a γ2(Tm−1)-set S containing y and its support vertex and so (S \ {y})∪ {x, x1, x2}
is a γ2(T )-set containing v.

Finally, let sta(y) = A′. Then Tm−1 adds a star K1,2 with center x′ and leaves
x′

1, x
′

2 and changes the status of y from A to A′. Thus y is a leaf in Tm−2, and by the
inductive hypothesis there is a γ2(Tm−2)-set S containing y and its support vertex w.
Now obviously (S \ {y}) ∪ {x′

1, x
′

2, x, x1, x2} is a γ2(T )-set containing v.

Case 3. Tm = T4. Then T is obtained from Tm−1 by adding a path yxu to Tm−1,
where y ∈ A(Tm−1). Thus y is a leaf in Tm−1. Suppose that z is the support vertex
of y in Tm−1. If v ∈ Tm−1, then by the inductive hypothesis v is contained in some
γ2(Tm−2)-set S and S ∪ {u} is a γ2(T )-set by Lemma 2.5. Now let v = x. By the
inductive hypothesis, there is a γ2(Tm−1)-set S containing y and its support vertex
and obviously (S − {y}) ∪ {x, u} is a γ2(T )-set containing v.

(2) Let u be the support vertex of v. Then by Part (2) of Observation 2.1, sta(u) =
B,C,B′, C′, or F . Now the result follows by Lemma 2.5, Part (1) of this theorem and
the fact that each γ2(T )-set contains all leaves

Lemma 2.7. Let T ∈ F and let T ∗ be a tree obtained from T by subdividing an edge

of T . Then γ2(T
∗) = γ2(T ).

Proof. Let T ∈ F . First note that γ2(T
∗) ≥ γ2(T ) and that any 2-dominating set

of T ∗ of size γ2(T ) is a γ2(T
∗)-set. Let e ∈ E(T ) and let T ∗ be obtained from T

by subdividing the edge e with vertex u. Let T be obtained from a labeled P4 by
successive operations T1, . . . ,Tm, respectively, where Ti ∈ {T1,T2,T3,T4,T5} for
1 ≤ i ≤ m if m ≥ 1 and T = P4 if m = 0. The proof is by induction on m. If m = 0,
then clearly the statement is true. Assume m ≥ 1 and that the statement holds for
all trees which are obtained from a labeled P4 by applying at most m− 1 operations.
Suppose Tm−1 is a tree obtained by applying the first m−1 operations T1, . . . ,Tm−1.
When e ∈ E(Tm−1), let T ∗

m−1 be obtained from Tm−1 by subdividing the edge e with
vertex u. We consider three cases.

Case 1. Tm = T1,T2 or T5. Then T is obtained from Tm−1 by attaching the path
yx to y ∈ B(Tm−1) ∪ C(Tm−1) ∪ F (Tm−1). If e ∈ E(Tm−1), then by the inductive
hypothesis we have

γ2(T
∗) ≤ γ2(T

∗

m−1) + 1 = γ2(Tm−1) + 1 = γ2(T ).

Let e = xy. By Lemmas 2.5 and 2.6, there exists a γ2(Tm−1)-set S containing y.
Now S ∪ {x} is a 2-dominating set of T ∗ of size γ2(Tm−1) + 1 = γ2(T ). Hence,
γ2(T

∗) = γ2(T ).

Case 2. T
m = T3. Then T is obtained from Tm−1 by attaching a star K1,2 with center

x and two leaves x1, x2 to the attacher y ∈ A(Tm−1)∪A′(Tm−1)∪C′(Tm−1)∪B′(Tm−1).
If e ∈ E(Tm−1), then by Proposition 2.3 and the inductive hypothesis we have

γ2(T
∗) = γ2(T

∗

m−1) + 2 = γ2(Tm−1) + 2 = γ2(T ).
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Let e ∈ E(T ) \ E(Tm−1). By Lemma 2.6, there is a γ2(T )-set S containing x. Now
S is a 2-dominating set of T ∗ of size γ2(T ) if e = xx1 or xx2 and (S − {x}) ∪ {u}
is a 2-dominating set for T ∗ of size γ2(T ) if e = xy. Recall that u is the subdividing
vertex.

Case 3. Tm = T4. Then T is obtained from Tm−1 by attaching the path yxw to the
attacher y ∈ A(Tm−1). If e ∈ E(Tm−1), then by Proposition 2.2 and the inductive
hypothesis γ2(T

∗) = γ2(T
∗

m−1) + 1 = γ2(Tm−1) + 1 = γ2(T ). Let e 6∈ E(Tm−1).
Without loss of generality, we may subdivide e = yx with u. By Lemma 2.6, Tm−1

has a γ2(Tm−1)-set S containing y and its support vertex. Now (S − {y}) ∪ {u,w} is
a γ2(T

∗)-set of size γ2(T ). This completes the proof.

An immediate consequence of Theorem 1.1 and Lemma 2.7 now follows.

Theorem 2.8. Each tree in Family F is in Class 2.

In order to prove that any tree in Class 2 is indeed in F we need the following
lemma.

Lemma 2.9. Let T ∈ F , v ∈ B(T )∪C(T ) ∪ F (T ) and let T ∗ be obtained from T by

adding a star K1,2 and an edge joining the center of the star to v. Then sdγ2(T
∗) = 1.

Proof. Let T ∈ F be obtained from a labeled P4 by successive operations T1, . . . ,Tm,
where Ti ∈ {T1,T2,T3,T4,T5} if m ≥ 1 and T = P4 if m = 0. The proof is by
induction on m. If m = 0, then clearly the statement is true. Assume m ≥ 1 and that
the statement holds for all trees which are obtained from a labeled P4 by applying
at most m − 1 operations. Suppose Tm−1 is the tree obtained by applying the first
m − 1 operations T

1, . . . ,Tm−1. When v ∈ V (Tm−1), let T ∗

m−1 be obtained from
Tm−1 by adding a star K1,2 and an edge joining the center of the star to v. Reorder
the operations {T1,T2, . . . ,Tm} with respect to {T1,T2,T5}. Let z, z1 and z2 be the
center and leaves of the added star to T , respectively. We consider five cases.

Case 1. Tm = T3. Then T is obtained from Tm−1 by adding a star K1,2 and an
edge joining the center x of the star to y ∈ A(Tm−1) ∪ A′(Tm−1) ∪ B′(Tm−1) ∪
C′(Tm−1). If v ∈ V (Tm−1), then by the inductive hypothesis sdγ2(T

∗

m−1) = 1. Since
T ∗ is formed from T ∗

m−1 by adding a star K1,2, by Proposition 2.3 we have sdγ2(T
∗) ≤

sdγ2(T
∗

m−1) = 1. Thus by Theorem 1.1, sdγ2(T
∗) = 1. If v = x, then let T ′ be obtained

from T ∗ by subdividing the edge xz by inserting a vertex t. Since y and z are strong
support vertices, for each γ2(T

∗)-set S we have z /∈ S, for otherwise S − {z} is a
2-dominating set for T ∗, a contradiction. Let D be a γ2(T

′)-set. Then u ∈ D or
y, z ∈ D and hence D − {u} or D − {z} is a 2-dominating set for T ∗. Therefore
sdγ2(T

∗) ≤ 1 and the result follows by Theorem 1.1.

Case 2. Tm = T4. Then T is obtained from Tm−1 by adding a path xw and an
edge joining x to y ∈ A(Tm−1). First let v ∈ V (Tm−1) − {y}. Then by the inductive
hypothesis sdγ2(T

∗

m−1) = 1. Assume e is an edge of T ∗

m−1 such that subdividing e
increases the 2-domination number. Let T ′

m−1 and T ′ be obtained from T ∗

m−1 and
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T ∗ by subdividing the edge e, respectively. By Proposition 2.2 (Part (1)), γ2(T
∗) =

γ2(T
∗

m−1) + 1 and γ2(T
′) = γ2(T

′

m−1) + 1. Now

γ2(T
′) = γ2(T

′

m−1) + 1 ≥ γ2(T
∗

m−1) + 2 = γ2(T
∗) + 1.

Therefore, sdγ2(T
∗) = 1 by Theorem 1.1.

Let v = y. Obviously, deg(x) = 2. Let T ′ be obtained from T ∗ by subdividing
the edge yz by inserting a vertex t. Suppose that S is a γ2(T

′)-set. Since deg(x) = 2,
y ∈ S or x ∈ S. We may assume y ∈ S, otherwise (S−{x})∪{y} is a γ2(T

′)-set. Since
t is a subdividing vertex, deg(t) = 2. To dominate t we must have S ∩{t, z} 6= ∅. Now
obviously S−{t, z} is a 2-dominating set for T ∗ and so sdγ2(T

∗) = 1 by Theorem 1.1.
Now let v = x. Then degT∗(y) = 2. Suppose that w 6= x is adjacent to y. Let

T ′ be obtained from T ∗ by subdividing the edge xz by inserting a vertex t. Suppose
that S is a γ2(T

′)-set. Since degT ′(y) = 2, y ∈ S or {x,w} ⊆ S. To dominate t we
must have S ∩ {t, z} 6= ∅. Now obviously S − {t, z} is a 2-dominating set for T ∗ and
so sdγ2(T

∗) = 1 by Theorem 1.1.

Case 3. Tm = T5. Then T is obtained from Tm−1 by adding a vertex x and an edge
joining x to y ∈ F (Tm−1). By the choice of reordering, we may assume Tm = . . . =
Tk+1 = T5 and Tk = T3 which adds a star K1,2 with center y. Suppose Tk−1 is the
tree obtained by applying the first k − 1 operations T1, . . . ,Tk−1. If v ∈ V (Tk−1),
then Proposition 3 and an argument similar to that described in Case 2 show that
the statement is true. If v = y, then let T ′ be obtained from T ∗ by subdividing the
edge vz by inserting a vertex t. Since y and z are strong support vertices, for each
γ2(T

∗)-set S we have z /∈ S, for otherwise S − {z} is a 2-dominating set for T ∗, a
contradiction. Let D be a γ2(T

′)-set. Then u ∈ D or y, z ∈ D and hence D − {u} or
D − {z} is a 2-dominating set for T ∗. Therefore sdγ2(T

∗) ≤ 1 and the result follows
by Theorem 1.1.

Case 4. Tm = T1. Then T is obtained from Tm−1 by adding a vertex x and an edge
joining x to a support vertex y ∈ B(Tm−1) ∪ C(Tm−1). If y belongs to the original
P4, then obviously T1 = . . . = Tm = T1 and each operation adds a pendant edge
at y. This forces v = y and as Case 3, it is easy to see that subdividing the edge yz
increases the 2-domination number. Suppose y is not contained in the original P4. By
the choice of reordering, we may assume Tm = . . . = Ts+1 = T1 where each operation
adds a pendant edge at y and Ts = T4 which adds a path yw and an edge joining
y to some vertex in Ts−1. Suppose Ts−1 is the tree obtained by applying the first
s− 1 operations T1, . . . ,Ts−1. If v ∈ V (Ts−1), then Proposition 2.3 and an argument
similar to that described in Case 2 show that the statement is true. If v = y then, as
before, we can see that subdividing the edge yz increases the 2-domination number.

Case 5. Tm = T2. Then T is obtained from Tm−1 by adding a vertex x and an edge
that joins x to a vertex y ∈ B(Tm−1) ∪ C(Tm−1), where y is adjacent to a support
vertex z of degree 2 in Tm−1. If y belongs to the original P4, then the result follows
as Case 4. Suppose y is not contained in the original P4. By the choice of reordering,
we may assume Tm = . . . = Ts+1 = T2 where each operation adds a pendant edge
at y and Ts = T4 which adds the path zw and an edge joining z to y in Ts−1.
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Suppose Ts−1 is the tree obtained by applying the first s− 1 operations T1, . . . ,Ts−1.
If v ∈ V (Ts−1), then the result follows by Proposition 2.2 (Part (3)) and the inductive
hypothesis. Let v = y. We show that subdividing the edge zz1, where z1 is a leaf at
z, increases the 2-domination number. Let T ′ be obtained from T ∗ by subdividing
the edge zz1 by inserting a vertex u. Let S be a γ2(T )-set. Since degT (z) = 2, we
may assume y ∈ S. Now to dominate u we must have u ∈ S or z ∈ S. Then clearly
S − {u, z} is a 2-dominating set for T ∗. It follows that sdγ2(T ) = 1. This completes
the proof.

Theorem 2.10. A tree T of order n ≥ 3 is in Class 2 if and only if T ∈ F .

Proof. By Theorem 2.8, we only need to prove that every tree in Class 2 is in F .
We prove this by induction on n. Since sdγ2(T ) = 2, we have n ≥ 4. If n = 4, then
the only tree T of order 4 and sdγ2(T ) = 2 is P4 ∈ F . Let n ≥ 5 and assume the
statement holds for every tree in Class 2 of order less than n. Let T be a tree of
order n and sdγ2(T ) = 2. Assume P = v1v2 . . . vr is the longest path in T . Obviously,
deg(v1) = deg(vr) = 1 and r ≥ 4. Suppose T is rooted at vr.

First let deg(v2) ≥ 3. Then v2 is a strong support vertex. Let v1 = u1, u2, . . . ,
udeg(v2)−1 be the leaves adjacent to v2 and T1 = T − Tv2 . By Proposition 2.3,
sdγ2(T1) = 2 and by the inductive hypothesis, T1 ∈ F . Since sdγ2(T ) = 2, by Lemma
2.9, staT1(v3) = A,A′, B′, or C′, and hence T can be obtained from T1 by applying
operation T3 once and operation T5, deg(v2)− 3 times.

Now let deg(v2) = 2. First let deg(v3) = 2. Then by Proposition 2.2 (Part (1)),
γ2(T ) = γ2(T − Tv2) + 1 and sdγ2(T ) ≤ sdγ2(T − Tv2). Therefore sdγ2(T − Tv2) = 2
and by the inductive hypothesis, T − Tv2 ∈ F . Now T can be obtained from T − Tv2

by operation T4. Now let deg(v3) ≥ 3. First assume that v3 is adjacent to a support
vertex u such that u 6= v2. Let w be a leaf adjacent to u. As before, we may assume
that deg(u) = 2. Let T ′ be obtained from T by subdividing the edge v3u by inserting
a vertex s. For any γ2(T )-set S of T , |S ∩ {v1, v2, v3}| ≥ 2 and |S ∩ {s, u, w}| ≥ 2.
Obviously, (S − {v1, v2, v3, s, u, w}) ∪ {v1, v3, w} is a 2-dominating set for T with
cardinality less than |S|. Therefore, sdγ2(T ) = 1, a contradiction. Thus v3 is adjacent
to deg(v3)−2 leaves. Let u1, . . . , udeg(v3)−2 be the leaves adjacent to v3. Assume T ′ =
T−{u1, . . . , udeg(v3)−2, v1, v2}. By Proposition 2.2 (Part 3) γ2(T ) = γ2(T

′)+deg(v3)−1
and sdγ2(T ) ≤ sdγ2(T

′). Since sdγ2(T ) = 2, by Theorem 1.1 , sdγ2(T
′) = 2. Hence, by

the inductive hypothesis, T ′ ∈ F . Since v3 is a leaf in T ′, staT ′(v3) = A and T can be
obtained from T ′ by applying operation T4 once and operations T1 or T2, deg(v3)− 2
times. Thus T ∈ F and the proof is complete.
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