PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

White noise based stochastic calculus associated with a class of Gaussian processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the white noise space setting, we define and study stochastic integrals with respect to a class of stationary increment Gaussian processes. We focus mainly on continuous functions with values in the Kondratiev space of stochastic distributions, where use is made of the topology of nuclear spaces. We also prove an associated Ito formula.
Słowa kluczowe
Rocznik
Strony
401--422
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
autor
autor
  • Ben Gurion University of the Negev, Department of Mathematics, P.O.B. 653, Be’er Sheva 84105, Israel, dany@math.bgu.ac.il
Bibliografia
  • [1] E. Alos, O. Mazet, D. Nualart, Stochastic calculus with respect to gaussian processes, Ann. Probab. 29 (2001) 2, 766–801.
  • [2] D. Alpay, H. Attia, An interpolation problem for functions with values in a commutative ring, Oper. Theory Adv. Appl. 218 (2011), 1–17.
  • [3] D. Alpay, H. Attia, D. Levanony, Une généralisation de l’intégrale stochastique de Wick-Itô, C. R. Math. Acad. Sci. Paris 346 (2008) 5–6, 261–265.
  • [4] D. Alpay, H. Attia, D. Levanony, On the characteristics of a class of Gaussian processes within the white noise space setting, Stochastic Process. Appl. 120 (2010), 1074–1104.
  • [5] D. Alpay, P. Jorgensen, D. Levanony, A class of Gaussian processes with fractional spectral measures, J. Funct. Anal. 261 (2011), 507–541.
  • [6] D. Alpay, D. Levanony, Linear stochastic systems: a white noise approach, Acta Appl. Math. 110 (2010), 545–572.
  • [7] D. Alpay, G. Salomon, A New Family of Topological Rings with Applications in Linear System Theory, ArXiv e-prints, eprint number 1106.5746. 2011.
  • [8] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.
  • [9] C. Bender, An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, Stochastic Process. Appl. 104 (2003), 181–106.
  • [10] C. Bender, An S-transform approach to integration with respect to a fractional Brownian motion, Bernoulli 9 (2003) 6, 955–983.
  • [11] F. Biagini, B. Øksendal, A. Sulem, N. Wallner, An introduction to white-noise theory and Malliavin calculus for fractional Brownian motion, stochastic analysis with applications to mathematical finance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004) 2041, 347–372.
  • [12] N. Bourbaki, Éléments de mathématique. Fasc. XXI. Livre VI: Intégration. Chapitre V: Intégration des mesures, Springer, Paris, 2007.
  • [13] T.E. Duncan, Y. Hu, B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion. I. Theory, SIAM J. Control Optim. 38 (2000) 2, 582–612 (electronic).
  • [14] N. Dunford, J. Schwartz, Linear operators, vol. 1. Interscience, 1957.
  • [15] R.J. Elliott, J. van der Hoek, A general fractional white noise theory and applications to finance, Math. Finance 13 (2003) 2, 301–330.
  • [16] K. Floret, Fréchet-Montel-spaces which are not Schwartz-spaces, Port. Math. 42(1):1–4 (1985), 1983/84.
  • [17] J. Garsoux, Espaces vectoriels topologiques et distributions, Avec la collaboration de Daniel Ribbens; Préface de Pierre Houzeau de Lehaie. Dunod, Paris, 1963.
  • [18] L. Grafakos, Modern Fourier analysis, vol. 250 of Graduate Texts in Mathematics, Springer, New York, 2nd ed., 2009.
  • [19] I.M. Guelfand, G.E. Shilov, Les distributions. Tome 2, Collection Universitaire de Mathématiques, No. 15. Dunod, Paris, 1964.
  • [20] I.M. Guelfand, N.Y. Vilenkin, Les distributions. Tome 4: Applications de l’analyse harmonique, Collection Universitaire de Mathématiques, No. 23. Dunod, Paris, 1967.
  • [21] T. Hida, H. Kuo, J. Potthoff, L. Streit, White noise, volume 253 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993. An infinite-dimensional calculus.
  • [22] T. Hida, Si Si, Lectures on white noise functionals, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
  • [23] H. Holden, B. Øksendal, J. Ubøe, T. Zhang, Stochastic partial differential equations, Probability and Its Applications. Birkhäuser Boston Inc., Boston, MA, 1996.
  • [24] I. Karatzas, S.E. Shreve, Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1988.
  • [25] I. Mitoma, Tightness of probabilities on C([0; 1]; S0) and D([0; 1]; S0), Ann. Probab. 11 (1983) 4, 989–999.
  • [26] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, 1991.
  • [27] V. Wrobel, Generating Fréchet-Montel spaces that are not Schwartz by closed linear operators, Arch. Math. (Basel) 46 (1986) 3, 257–260.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHS-0004-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.