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NON SYMMETRIC RANDOM WALK
ON INFINITE GRAPH
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Abstract. We investigate properties of a non symmetric Markov’s chain on an infinite
graph. We show the connection with matrix valued random walk polynomials which satisfy
the orthogonality formula with respect to non a symmetric matrix valued measure.
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1. INTRODUCTION

In the Book of Genesis (cf. Gen 28,12) the biblical patriarch Jacob dreams about a
ladder, set up on earth, and with its top reaching heaven. He sees also the angels of
God ascending and descending on it.

Let us now assume that an angel standing on earth begins to climb the ladder
in a very special way: he tosses a coin, then steps one step forward in the direction
he actually is aiming in case of head, or reverses his direction in case of tail. The
question is to investigate properties of his “random walk”, i.e. what is the probability
he eventually returns is, how much time his return takes or how high he climbs. The
corresponding Markov’s chain can be considered as a random walk on an infinite
graph as in Figure 1.
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Fig. 1.
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2. RANDOM WALK MATRIX POLYNOMIALS

We present a characterization of this specific random walk by properties of the blocks
of the transition matrix

J =


B0 A 0 0 . . .
C B A 0 . . .
0 C B A . . .
...

...
. . . . . . . . .

 ,

where

A =
(

1/2 0
0 0

)
, C =

(
0 0
0 1/2

)
, B =

(
0 1/2

1/2 0

)
, B0 =

(
0 1/2
1 0

)
.

Hence we are going to investigate properties of matrix polynomials satisfying the
following recurrence

xPn(x) = APn+1(x) +BPn(x) + CPn−1, (2.1)

with
AP1(x) =

(
x −1/2
−1 x

)
& P0(x) = I.

The classical case, ie. random walk polynomials on the real line, has been studied ex-
tensively in the literature (see [5,7,8] among many others). But in our case the infinite
Jacobi block matrix J instead is not self-adjoint or even symmetric as an operator
on the Hilbert space `2(N). Moreover the matrix coefficient A is not invertible. Hence
methods from the theory of Matrix Orthogonal Polynomials (cf. [2,4,6,9]) cannot be
used directly. We need a new approach.

Note first that polynomials

P on(x) =
(
un(x) −un−1(x)
un−1(x) −un−2(x)

)
,

where un(x) = cos(nθ) are Tchebyshev polynomials of the first kind and x = cos θ,
satisfy the recurrence (2.1). We recall that xun(x) = 1

2un+1(x) + 1
2un−1(x) for n ≥ 1,

and xu0(x) = u1(x) (it is assumed that u−1 ≡ 0).
Let’s now set

Aε =
(

1/2 0
0 ε

)
and Cε =

(
ε 0
0 1/2

)
.

In [10] it was shown that polynomials P o,εn , which satisfy the recurrence formula

xP o,εn (x) = AεP
o,ε
n+1(x) +BP o,εn (x) + CεP

o,ε
n−1,

fulfill also the following property:

〈〈P o,εn , P 〉〉 =
∫
R

P o,εn (x)Wo,ε(x)P (x)∗ dx = 0 (2.2)
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for any matrix polynomial P of degree lower than n. Matrix measure Wo,ε(x) dx is
given by the inverse Stieltjes-Perron formula

Wo,ε(x) = lim
δ→0+

Fo,ε(x− iδ)− Fo,ε(x+ iδ)
2πi

, (2.3)

where Fo,ε is a Stieltjes transform of Wo,ε and can be obtained by equality (Lemma
2.4 in [10])

Fo,ε(z) = lim
n→∞

P o,εn (z)−1
P o,εn−1(z)A

−1
ε .

The corollary of Theorem 2.7 in [10] states that

Fo,ε(z) =
1

z −B0 −Aε
1

z −B −Aε 1
z−B− ...

Cε
Cε

(2.4)

for Im z > 0.
Polynomials P on are the limit case of P o,εn as ε tends to 0. It is not difficult to see

that then equation (2.2), (2.3) and (2.4) still hold, which leads to∫
R

P on(x)Wo(x)P (x)∗ dx = 0,

where
Wo(x) = lim

δ→0+

1
π
ImFo(x− iδ) (2.5)

and
Fo(z) =

1

z −B0 −A
1

z −B −A 1
z−B− ...

C
C

for Im z > 0. So the function Fo is given by equality

Fo(z)
(
z −B0 −AGo(z)C

)
= I,

where
Go(z)

(
z −B −AGo(z)C

)
= I.

Thus the question is to solve

X(z)
(
z −B −AX(z)C

)
= I

with the additional condition lim
z→∞

X(z) = 0.
The exact solution is

X(z) =

2(z −
√
z2 − 1 ) 2(z − z

√
z2 − 1 )2

z−
√
z2−1
z 2(z −

√
z2 − 1 )

 ,
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so we get

Fo(z) = [z −B0 −AX(z)C]−1 =

 1√
z2−1

z√
z2−1

− 1

1
z
√
z2−1

1√
z2−1

 .

The matrix of functions Wo(x) can be uniquely determined by the formula (2.5),
hence

Wo(x) =
1

2π
√

1− x2

1 x

1
x 1

 .

Polynomials P on are not MOP, but they satisfy∫
R

P on(x)Wo(x)P (x)∗ dx = 0

for any polynomial P of degree lower then the degree of P on . Thus P on could be con-
sidered as orthogonal but with respect to a non positive definite matrix of measures
(exactly non-symmetric).

Now we can return to the random walk on “Jacob’s ladder”. The probability that
an angel eventually returns to the ground is equal to

f00 = lim
z→1

p00(z)− 1
p00(z)

,

where

p00(z) = (0, 1)Fo(z)
(

1
0

)
=

1
2π

1
z
√
z2 − 1

.

This shows that the random walk considered in this section is recurrent (f00 = 1).
The quantity p00(1) is equal to the average number of visits at the starting point (we
refer the reader to [1] in case of a random walk on graphs, or to [7] in general case).

3. CASE OF AN UNFAIR COIN

What happens if the coin the angel tosses is unfair, ie. head and tail occur with
probability p and 1 − p respectively, with 0 < p < 1 and p 6= 1

2? In that case we
should consider the following relation

xPp,n(x) = ApPp,n+1(x) +BpPp,n(x) + CpPp,n−1 (3.1)

for n ≥ 1 where

Ap =
(
p 0
0 0

)
, Cp =

(
0 0
0 p

)
, Bp =

(
0 1− p

1− p 0

)
, B0,p =

(
0 1− p
1 0

)
.



Non symmetric random walk on infinite graph 673

The corresponding function Fp satisfies

Fp(z)
(
z −B0,p −ApGp(z)Cp

)
= I,

with
Gp(z)

(
z −Bp −ApGp(z)Cp

)
= I.

The solution is given then by

Fp(z) =
1

wp(z)

2(1− p)z z2 + (1− 2p)−
√

(z2 − 1)(z2 − (1− 2p)2)

2(1− p) 2(1− p)z

 ,

where
wp(z) = (z2 − 1)(1− 2p) +

√
(z2 − 1)(z2 − (1− 2p)2) .

This shows that the corresponding random walk is still recurrent.
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