ON SOME CLASSES OF MEROMORPHIC FUNCTIONS DEFINED BY SUBORDINATION AND SUPERORDINATION

Alina Totoi

Abstract

Let $p \in \mathbb{N}^{*}$ and $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and let Σ_{p} denote the class of meromorphic functions of the form $g(z)=\frac{a_{-p}}{z^{p}}+a_{0}+a_{1} z+\ldots, z \in \dot{U}, a_{-p} \neq 0$.

We consider the integral operator $J_{p, \beta, \gamma}: K_{p, \beta, \gamma} \subset \Sigma_{p} \rightarrow \Sigma_{p}$ defined by $$
J_{p, \beta, \gamma}(g)(z)=\left[\frac{\gamma-p \beta}{z^{\gamma}} \int_{0}^{z} g^{\beta}(t) t^{\gamma-1} d t\right]^{\frac{1}{\beta}}, \quad g \in K_{p, \beta, \gamma}, z \in \dot{U} .
$$

We introduce some new subclasses of the class Σ_{p}, associated with subordination and superordination, such that, in some particular cases, these new subclasses are the well-known classes of meromorphic starlike functions and we study the properties of these subclasses with respect to the operator $J_{p, \beta, \gamma}$.

Keywords: meromorphic functions, integral operators, subordination, superordination.

Mathematics Subject Classification: 30C45

1. INTRODUCTION AND PRELIMINARIES

Let $U=\{z \in \mathbb{C}:|z|<1\}$ be the unit disc in the complex plane, $\dot{U}=U \backslash\{0\}$, $H(U)=\{f: U \rightarrow \mathbb{C}: f$ is holomorphic in $U\}, \mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$.

For $p \in \mathbb{N}^{*}$ let Σ_{p} denote the class of meromorphic functions of the form

$$
g(z)=\frac{a_{-p}}{z^{p}}+a_{0}+a_{1} z+\ldots, \quad z \in \dot{U}, a_{-p} \neq 0 .
$$

We will also use the following notations:
$\Sigma_{p}^{*}(\alpha)=\left\{g \in \Sigma_{p}: \operatorname{Re}\left[-\frac{z g^{\prime}(z)}{g(z)}\right]>\alpha, z \in U\right\}$, where $\alpha<p$,
$\Sigma_{p}^{*}(\alpha, \delta)=\left\{g \in \Sigma_{p}: \alpha<\operatorname{Re}\left[-\frac{z g^{\prime}(z)}{g(z)}\right]<\delta, z \in U\right\}$, where $\alpha<p<\delta$, $H[a, n]=\left\{f \in H(U): f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots\right\}$ for $a \in \mathbb{C}, n \in \mathbb{N}^{*}$, $A_{n}=\left\{f \in H(U): f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\ldots\right\}, n \in \mathbb{N}^{*}$, and for $n=1$ we denote A_{1} by A and this set is called the class of analytic functions normalized at the origin.

We remark that $\Sigma_{1}^{*}(\alpha)$ is the well-known class of meromorphic starlike functions of order α, when $0 \leq \alpha<1$.

Definition 1.1 ([4, p. 4]). Let f and F be members of $H(U)$. The function f is said to be subordinate to F, written $f \prec F$ or $f(z) \prec F(z)$, if there exists a function w analytic in U, with $w(0)=0$ and $|w(z)|<1$, such that $f(z)=F(w(z))$.

Definition $1.2\left(\left[4\right.\right.$, p. 16]). Let $\psi: \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$ and let h be univalent in U. If p is analytic in U and satisfies the (second order) differential subordination

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \prec h(z) \tag{1.1}
\end{equation*}
$$

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the solutions of the differential subordination, or more simply, a dominant, if $p \prec q$ for all p satisfying (1.1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1.1) is said to be the best dominant of (1.1). (Note that the best dominant is unique up to a rotation of U).

If we require the more restrictive condition $p \in H[a, n]$, then p will be called an (a, n)-solution, q an (a, n)-dominant, and \tilde{q} the best (a, n)-dominant.

Definition 1.3 ([?], [1, p. 98]). Let $\varphi: \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$ and let h be analytic in U . If p and $\varphi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right)$ are univalent in U and satisfy the second order differential superordination

$$
\begin{equation*}
h(z) \prec \varphi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right), \quad z \in U, \tag{1.2}
\end{equation*}
$$

then p is called a solution of the differential superordination. An analytic function q is called a subordinant of the solutions of the differential superordination, or more simply, a subordinant, if $q \prec p$ for all p satisfying (1.2). An univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants q of (1.2) is said to be the best subordinant. Note that the best subordinant is unique up to a rotation of U .

Definition 1.4 ([1, p. 99]). We denote by Q the set of functions f that are analytic and injective on $\bar{U} \backslash E(f)$, where

$$
E(f)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and they are such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(f)$. The subclass of Q for which $f(0)=a$, is denoted by $Q(a)$.

Definition 1.5 ([4, p. 46]). Let c be a complex number such that $\operatorname{Re} c>0$, let n be a positive integer, and let

$$
\begin{equation*}
C_{n}=C_{n}(c)=\frac{n}{\operatorname{Re} c}\left[|c| \sqrt{1+\frac{2 \operatorname{Re} c}{n}}+\operatorname{Im} c\right] \tag{1.3}
\end{equation*}
$$

If $R(z)$ is the univalent function defined in U by $R(z)=\frac{2 C_{n} z}{1-z^{2}}$, then the "Open Door" function is defined by

$$
\begin{equation*}
R_{c, n}(z)=R\left(\frac{z+b}{1+\bar{b} z}\right)=2 C_{n} \frac{(z+b)(1+\bar{b} z)}{(1+\bar{b} z)^{2}-(z+b)^{2}} \tag{1.4}
\end{equation*}
$$

where $b=R^{-1}(c)$.
Theorem 1.6 ([4, p. 83]). Let $\beta, \gamma \in \mathbb{C}$ and let h be convex in U, with $h(0)=$ a. Let n be a positive integer. Suppose that the differential equation

$$
\begin{equation*}
q(z)+\frac{n z q^{\prime}(z)}{\beta q(z)+\gamma}=h(z) \tag{1.5}
\end{equation*}
$$

has a univalent solution q that satisfies $q(z) \prec h(z)$. If $p \in H[a, n]$ satisfies

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z), \tag{1.6}
\end{equation*}
$$

then $p(z) \prec q(z)$, and q is the best (a, n)-dominant of (1.6).
Corollary 1.7 ([4, p. 84]). Let h be convex in U, with $h(0)=a$, and let m and n be positive integers. Let q_{m} and q_{n} be univalent solutions of the differential equation (1.5) for $n=m$ and n respectively, with $q_{n} \prec h$. If $m>n$, then $q_{m} \prec q_{n}$.

Theorem 1.8 ([5], [1, p. 114]). Let $\beta, \gamma \in \mathbb{C}$ and let h be convex in U with $h(0)=a$. Suppose that the differential equation

$$
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=h(z), \quad z \in U
$$

has the univalent solution q with $q(0)=a$, and $q(z) \prec h(z)$. If $p \in H[a, 1] \cap Q$ and $p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma}$ is univalent in U, then

$$
h(z) \prec p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \Rightarrow q(z) \prec p(z) .
$$

The function q is the best subordinant.

Theorem 1.9 ([4, p. 86]). Let $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$, and let n be a positive integer. Let $R_{\beta a+\gamma, n}$ be as given in (1.4), let h be analytic in U with $h(0)=a$, and let $\operatorname{Re}[\beta a+\gamma]>0$. If

$$
\beta h(z)+\gamma \prec R_{\beta a+\gamma, n}(z),
$$

then the solution q of

$$
\begin{equation*}
q(z)+\frac{n z q^{\prime}(z)}{\beta q(z)+\gamma}=h(z) \tag{1.7}
\end{equation*}
$$

with $q(0)=a$, is analytic in U and satisfies $\operatorname{Re}[\beta q(z)+\gamma]>0$.
If $a \neq 0$, then the solution for (1.7) is given by

$$
\begin{align*}
q(z)= & z^{\frac{\gamma}{n}} H^{\frac{\beta a}{n}}(z)\left[\frac{\beta}{n} \int_{0}^{z} H^{\frac{\beta a}{n}}(t) t^{\frac{\gamma}{n}-1} d t\right]^{-1}-\frac{\gamma}{\beta}= \tag{1.8}\\
& =\left[\frac{\beta}{n} \int_{0}^{1}\left[\frac{H(t z)}{H(z)}\right]^{\frac{\beta a}{n}} t^{\frac{\gamma}{n}-1} d t\right]^{-1}-\frac{\gamma}{\beta}
\end{align*}
$$

where

$$
H(z)=z \exp \int_{0}^{z} \frac{h(t)-a}{a t} d t
$$

If $a=0$, then the solution is given by

$$
\begin{aligned}
q(z) & =H^{\frac{\gamma}{n}}(z)\left[\frac{\beta}{n} \int_{0}^{z} H^{\frac{\gamma}{n}}(t) t^{-1} d t\right]^{-1}-\frac{\gamma}{\beta}= \\
& =\left[\frac{\beta}{n} \int_{0}^{1}\left[\frac{H(t z)}{H(z)}\right]^{\frac{\gamma}{n}} t^{-1} d t\right]^{-1}-\frac{\gamma}{\beta}
\end{aligned}
$$

where

$$
H(z)=z \exp \frac{\beta}{\gamma} \int_{0}^{z} \frac{h(t)}{t} d t
$$

Theorem 1.10 ([4, p. 97]). Let $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$, and let n be a positive integer. Let $R_{\beta a+\gamma, n}$ be as given in (1.4), let h be analytic in U, with $h(0)=a$, $\operatorname{Re}[\beta a+\gamma]>0$ and

$$
\text { (i) } \beta h(z)+\gamma \prec R_{\beta a+\gamma, n}(z)
$$

If q is the analytic solution of the Briot-Bouquet differential equation

$$
q(z)+\frac{n z q^{\prime}(z)}{\beta q(z)+\gamma}=h(z)
$$

as given in (1.8), and if

$$
\text { (ii) } h \text { is convex or } Q(z)=\frac{z q^{\prime}(z)}{\beta q(z)+\gamma} \text { is starlike, }
$$

then q and h are univalent. Furthermore, if $p \in H[a, n]$ satisfies

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z),
$$

then $p \prec q$, and q is the best (a, n)-dominant.
Theorem 1.11 ([3]). Let $\beta, \gamma \in \mathbb{C}$ and let h be a convex function in U, with

$$
\operatorname{Re}[\beta h(z)+\gamma]>0, \quad z \in U
$$

Let q_{m} and q_{k} be the univalent solutions of the Briot-Bouquet differential equation

$$
q(z)+\frac{n z q^{\prime}(z)}{\beta q(z)+\gamma}=h(z), \quad z \in U, \quad q(0)=h(0)
$$

for $n=m$ and $n=k$ respectively. If m / k, then $q_{k}(z) \prec q_{m}(z) \prec h(z)$. So, $q_{k}(z) \prec$ $q_{1}(z) \prec h(z)$.
Theorem 1.12 ([5], [1, p. 117]). Let $\beta, \gamma \in \mathbb{C}$ and let the function $h \in H(U)$ with $h(0)=a$ and $\operatorname{Re} c>0$, where $c=\beta a+\gamma$ and suppose that
(i) $\beta h(z)+\gamma \prec R_{c, 1}(z)$.

Let q be the analytic solution of the Briot-Bouquet differential equation

$$
h(z)=q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}
$$

and suppose that
(ii) $\frac{z q^{\prime}(z)}{\beta q(z)+\gamma} \quad$ is starlike in U.

If $p \in H[a, 1] \cap Q$ and $p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma}$ is univalent in U, then

$$
h(z) \prec p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \Rightarrow q(z) \prec p(z)
$$

and the function q is the best subordinant.
Corollary 1.13 ([8]). Let $p \in \mathbb{N}^{*}, \beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma-p \beta)>0$. If $g \in \Sigma_{p}$ and

$$
\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-p \beta, p}(z)
$$

then

$$
G(z)=J_{p, \beta, \gamma}(g)(z)=\left[\frac{\gamma-p \beta}{z^{\gamma}} \int_{0}^{z} g^{\beta}(t) t^{\gamma-1} d t\right]^{\frac{1}{\beta}} \in \Sigma_{p}
$$

with $z^{p} G(z) \neq 0, z \in U$, and

$$
\operatorname{Re}\left[\beta \frac{z G^{\prime}(z)}{G(z)}+\gamma\right]>0, \quad z \in U
$$

All powers are chosen as principal ones.
We remark that if $p \in \mathbb{N}^{*}, \beta, \gamma \in \mathbb{C}$ with $\beta \neq 0, \operatorname{Re}(\gamma-p \beta)>0$ and $g \in \Sigma_{p}$ with

$$
\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-p \beta, p}(z), \quad z \in U,
$$

we have from Corollary 1.13 that $G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}$ with $z^{p} G(z) \neq 0, z \in U$, so $P(z)=-\frac{z G^{\prime}(z)}{G(z)} \in H[p, p]$. Having these conditions, it is easy to see that from

$$
G(z)=\left[\frac{\gamma-p \beta}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} g^{\beta}(t) d t\right]^{\frac{1}{\beta}}, \quad z \in \dot{U},
$$

we obtain

$$
\begin{equation*}
P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}=-\frac{z g^{\prime}(z)}{g(z)}, \quad \text { where } \quad P(z)=-\frac{z G^{\prime}(z)}{G(z)} . \tag{1.9}
\end{equation*}
$$

2. MAIN RESULTS

In this section we present and prove five theorems and five corollaries concerning the integral operator $J_{p, \beta, \gamma}$. We consider some new subclasses of the class Σ_{p}, associated with superordination and subordination, and we establish the conditions such that when we apply the integral operator $J_{p, \beta, \gamma}$ to a function which belongs to one of these new subclasses, the result remains in a similar class.

The first result is a simple lemma and we will use it latter to present some examples for the results included in this paper. For this lemma we need the next criteria for convexity:

Theorem 2.1 ([6]). If $f \in A_{n}$ and

$$
\left|f^{\prime \prime}(z)\right| \leq \frac{n}{n+1}, \quad z \in U
$$

then

$$
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1, \quad z \in U
$$

hence, f is convex. The result is sharp for the function

$$
f(z)=z+\frac{z^{n+1}}{(n+1)^{2}} .
$$

Lemma 2.2. Let $\alpha, \beta, \gamma \in \mathbb{C}$ with $\gamma \neq 0, \alpha+\gamma \neq 0$ and $|\beta|<|\gamma|$. Let h be the function

$$
h(z)=z+\frac{\alpha z}{\beta z+\gamma}, \quad z \in U
$$

If we have

$$
\begin{equation*}
4\left|\alpha \beta \gamma^{2}\right| \leq(|\gamma|-|\beta|)^{3}|\alpha+\gamma| \tag{2.1}
\end{equation*}
$$

then h is convex in U.
Proof. Since $|\beta|<|\gamma|$ we have $\beta z+\gamma \neq 0, z \in U$, so, $h \in H(U)$. We also have $h^{\prime}(0)=\frac{\alpha+\gamma}{\gamma} \neq 0$, hence $\frac{\gamma}{\alpha+\gamma} h \in A_{1}$.

It is easy to see that

$$
h^{\prime \prime}(z)=-\frac{2 \alpha \beta \gamma}{(\beta z+\gamma)^{3}}, z \in U
$$

hence

$$
\left|\frac{\gamma}{\alpha+\gamma} h^{\prime \prime}(z)\right|=\frac{|\gamma|}{|\alpha+\gamma|} \cdot \frac{2|\alpha \beta \gamma|}{|\beta z+\gamma|^{3}}<\frac{2\left|\alpha \beta \gamma^{2}\right|}{(|\gamma|-|\beta|)^{3}|\alpha+\gamma|} \leq \frac{1}{2}, \quad z \in U
$$

For the last inequality we used the fact that $4\left|\alpha \beta \gamma^{2}\right| \leq(|\gamma|-|\beta|)^{3}|\alpha+\gamma|$.
Using Theorem 2.1, for $n=1$, we obtain that h is convex in U.
Remark 2.3. 1. It is obvious that if h is a convex function in U (with $\left.h^{\prime}(0) \neq 0\right)$, then $\delta_{1}+\delta_{2} h(r z)$ is also a convex function, when $r \in(0,1], \delta_{1}, \delta_{2} \in \mathbb{C}, \delta_{2} \neq 0$.
2. If we consider $\alpha=|\beta|=1$ in the above lemma, then the condition (2.1) becomes

$$
\begin{equation*}
4|\gamma|^{2} \leq|\gamma+1|(|\gamma|-1)^{3} \tag{2.2}
\end{equation*}
$$

It is not difficult to verify that the condition (2.2) holds for each real number $\gamma \geq 3,2$.
In other words, the functions

$$
z+\frac{z}{\gamma+z}, z+\frac{z}{\gamma-z}, \quad z \in U
$$

are convex functions when $\gamma \geq 3,2$.
We mention here that in [7] the authors proved that the function

$$
h(z)=1+z+\frac{z}{z+2}, \quad z \in U
$$

is convex in U, so the function $z+\frac{z}{2+z}$ is also a convex function.

Next, we define some new subclasses of the class Σ_{p}, associated with superordination and subordination, such that, in some particular cases, these new subclasses are the well-known classes of meromorphic starlike functions.

Definition 2.4. Let $p \in \mathbb{N}^{*}$ and $h_{1}, h_{2}, h \in H(U)$ with $h_{1}(0)=h_{2}(0)=h(0)=p$ and $h_{1}(z) \prec h_{2}(z)$. We define:

$$
\begin{gathered}
\Sigma S_{p}\left(h_{1}, h_{2}\right)=\left\{g \in \Sigma_{p}: h_{1}(z) \prec-\frac{z g^{\prime}(z)}{g(z)} \prec h_{2}(z)\right\}, \\
\Sigma S_{p}(h)=\left\{g \in \Sigma_{p}:-\frac{z g^{\prime}(z)}{g(z)} \prec h(z)\right\} .
\end{gathered}
$$

We remark that if we consider $h(z)=h_{p, \alpha}(z)=\frac{p+(p-2 \alpha) z}{1-z}, \quad z \in$ $U, 0 \leq \alpha<p$, since $h_{p, \alpha}(U)=\{z \in \mathbb{C}: \operatorname{Re} z>\alpha\}$, we have $\Sigma S_{p}\left(h_{p, \alpha}\right)=\Sigma_{p}^{*}(\alpha)$.

Theorem 2.5. Let $p \in \mathbb{N}^{*}$ and $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma-p \beta)>0$. Let h_{1} and h_{2} be convex functions in U with $h_{1}(0)=h_{2}(0)=p$ and let $g \in \Sigma S_{p}\left(h_{1}, h_{2}\right)$ such that

$$
\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-\beta p, p}(z), \quad z \in U .
$$

Suppose that the Briot-Bouquet differential equations

$$
q(z)+\frac{z q^{\prime}(z)}{\gamma-\beta q(z)}=h_{1}(z) \quad \text { and } \quad q(z)+\frac{p z q^{\prime}(z)}{\gamma-\beta q(z)}=h_{2}(z), \quad z \in U
$$

have the univalent solutions q_{1}^{1} and, respectively, q_{2}^{p}, with $q_{1}^{1}(0)=q_{2}^{p}(0)=p$ and $q_{1}^{1} \prec h_{1}, q_{2}^{p} \prec h_{2}$.

Let $G=J_{p, \beta, \gamma}(g)$. If $\frac{z g^{\prime}(z)}{g(z)}$ is univalent in U and $\frac{z G^{\prime}(z)}{G(z)} \in Q$, then

$$
G \in \Sigma S_{p}\left(q_{1}^{1}, q_{2}^{p}\right)
$$

The functions q_{1}^{1} and q_{2}^{p} are the best subordinant and, respectively, the best (p, p)-dominant.

Proof. From $g \in \Sigma S_{p}\left(h_{1}, h_{2}\right)$ we have $\frac{z g^{\prime}(z)}{g(z)} \in H(U)$ and

$$
\begin{equation*}
h_{1}(z) \prec-\frac{z g^{\prime}(z)}{g(z)} \prec h_{2}(z), \tag{2.3}
\end{equation*}
$$

with $h_{1} \prec h_{2}$ and $h_{1}(0)=h_{2}(0)=p$.
Let $P(z)=-\frac{z G^{\prime}(z)}{G(z)}, z \in U$. Since $\gamma+\beta \frac{z g^{\prime}(z)}{g(z)} \prec R_{\gamma-\beta p, p}(z), z \in U$, we have from Corollary 1.13 that $G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}$ with $z^{p} G(z) \neq 0, z \in U$. Hence, $P \in H[p, p]$.

From (1.9) and (2.3), we obtain

$$
h_{1}(z) \prec P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)} \prec h_{2}(z), \quad \text { where } \quad P(z)=-\frac{z G^{\prime}(z)}{G(z)}, \quad z \in U .
$$

If we apply Theorem 1.6 (for $a=n=p, h=h_{2}$ and with $-\beta$ instead of β) to the subordination

$$
P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)} \prec h_{2}(z), \quad z \in U
$$

we get

$$
\begin{equation*}
P(z) \prec q_{2}^{p}(z), \quad z \in U . \tag{2.4}
\end{equation*}
$$

Because $P \in H[p, p] \cap Q$ and $P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}$ is univalent in U, we may apply Theorem 1.8 (for $a=p, n=1, h=h_{1}$ and with $-\beta$ instead of β) to

$$
h_{1}(z) \prec P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}, \quad z \in U
$$

and we get

$$
\begin{equation*}
q_{1}^{1}(z) \prec P(z), z \in U . \tag{2.5}
\end{equation*}
$$

From (2.4) and (2.5) we have

$$
q_{1}^{1}(z) \prec P(z) \prec q_{2}^{p}(z), \quad z \in U,
$$

which is equivalent to

$$
\begin{equation*}
q_{1}^{1}(z) \prec-\frac{z G^{\prime}(z)}{G(z)} \prec q_{2}^{p}(z), \quad z \in U . \tag{2.6}
\end{equation*}
$$

Since $G \in \Sigma_{p}$ we have from (2.6) that $G \in \Sigma S_{p}\left(q_{1}^{1}, q_{2}^{p}\right)$.
From Theorem 1.6 and Theorem 1.8 we also have that the functions q_{1}^{1} and q_{2}^{p} are the best subordinant and, respectively, the best (p, p)-dominant.

If we consider in the hypothesis of Theorem 2.5 the condition

$$
\operatorname{Re}\left[\gamma-\beta h_{2}(z)\right]>0, \quad z \in U
$$

instead of

$$
\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-\beta p, p}(z), \quad z \in U
$$

we get the next result.
Theorem 2.6. Let $p \in \mathbb{N}^{*}$ and $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma-p \beta)>0$. Let h_{1} and h_{2} be convex functions in U with $h_{1}(0)=h_{2}(0)=p, h_{1} \prec h_{2}$ and

$$
\operatorname{Re}\left[\gamma-\beta h_{2}(z)\right]>0, \quad z \in U
$$

Let $g \in \Sigma S_{p}\left(h_{1}, h_{2}\right)$ and $G=J_{p, \beta, \gamma}(g)$. If $\frac{z g^{\prime}(z)}{g(z)}$ is univalent in U and $\frac{z G^{\prime}(z)}{G(z)} \in Q$, then

$$
G \in \Sigma S_{p}\left(q_{1}^{1}, q_{2}^{p}\right),
$$

where q_{1}^{1} and q_{2}^{p} are the univalent solutions of the Briot-Bouquet differential equations

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{\gamma-\beta q(z)}=h_{1}(z), \quad z \in U \tag{2.7}
\end{equation*}
$$

and, respectively,

$$
\begin{equation*}
q(z)+\frac{p z q^{\prime}(z)}{\gamma-\beta q(z)}=h_{2}(z), \quad z \in U \tag{2.8}
\end{equation*}
$$

with $q_{1}^{1}(0)=q_{2}^{p}(0)=p$.
The functions q_{1}^{1} and q_{2}^{p} are the best subordinant and, respectively, the best (p, p)-dominant.

Proof. From $g \in \Sigma S_{p}\left(h_{1}, h_{2}\right)$ we have

$$
h_{1}(z) \prec-\frac{z g^{\prime}(z)}{g(z)} \prec h_{2}(z), \quad z \in U,
$$

hence

$$
\begin{equation*}
\gamma-\beta h_{1}(z) \prec \gamma+\beta \frac{z g^{\prime}(z)}{g(z)} \prec \gamma-\beta h_{2}(z), \quad z \in U . \tag{2.9}
\end{equation*}
$$

Since $\operatorname{Re}\left[\gamma-\beta h_{2}(z)\right]>0, z \in U$, we get from (2.9) that

$$
\operatorname{Re}\left[\gamma-\beta h_{1}(z)\right]>0 \quad \text { and } \quad \operatorname{Re}\left[\gamma+\beta \frac{z g^{\prime}(z)}{g(z)}\right]>0, \quad z \in U .
$$

Now, it is obvious that we have

$$
\begin{gathered}
\gamma+\beta \frac{z g^{\prime}(z)}{g(z)} \prec R_{\gamma-\beta p, p}(z), \quad z \in U, \\
\gamma-\beta h_{1}(z) \prec R_{\gamma-p \beta, 1}(z) \quad \text { and } \quad \gamma-\beta h_{2}(z) \prec R_{\gamma-p \beta, p}(z), \quad z \in U .
\end{gathered}
$$

It is easy to see that the conditions from the hypothesis of Theorem 1.9 are fulfilled (for $h=h_{1}, a=p$ and $n=1$) so, the solution q_{1}^{1} of the equation (2.7) with $q_{1}^{1}(0)=p$ is analytic in U. Analogous we have that the solution q_{2}^{p} of the equation (2.8) with $q_{2}^{p}(0)=p$ is analytic in U.

Since h_{1} and h_{2} are convex functions, we have from Theorem 1.10 that the analytic functions q_{1}^{1} and q_{2}^{p} are univalent in U , and from Theorem 1.11 (since $\operatorname{Re}\left[\gamma-\beta h_{1}(z)\right]>0$ and $\left.\operatorname{Re}\left[\gamma-\beta h_{2}(z)\right]>0, z \in U\right)$ we have the subordinations $q_{1}^{1} \prec h_{1}$ and $q_{2}^{p} \prec h_{2}$.

Therefore, the conditions from the hypothesis of Theorem 2.5 are fulfilled and the result follows using this theorem.

Remark 2.7. Let the conditions from the hypothesis of Theorem 2.6 be fulfilled. If we consider, in addition, that q_{1}^{p} and q_{2}^{1} are the univalent solutions of the Briot-Bouquet differential equations

$$
q(z)+\frac{p z q^{\prime}(z)}{\gamma-\beta q(z)}=h_{1}(z), \quad z \in U
$$

and, respectively,

$$
q(z)+\frac{z q^{\prime}(z)}{\gamma-\beta q(z)}=h_{2}(z), \quad z \in U
$$

with $q_{1}^{p}(0)=q_{2}^{1}(0)=p$, we have from the above theorem and Corollary 1.7, that

$$
q_{1}^{p}(z) \prec q_{1}^{1}(z) \prec-\frac{z G^{\prime}(z)}{G(z)} \prec q_{2}^{p}(z) \prec q_{2}^{1}(z), \quad z \in U .
$$

Hence $G \in \Sigma S_{p}\left(q_{1}^{1}, q_{2}^{p}\right)$ is the best choice.
If we consider for Theorem 2.5 only the subordination, we obtain the next result.
Theorem 2.8. Let $p \in \mathbb{N}^{*}$ and $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma-p \beta)>0$. Let h be a convex function in U with $h(0)=p$ and $g \in \Sigma S_{p}(h)$ such that

$$
\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-\beta p, p}(z), \quad z \in U
$$

Suppose that the Briot-Bouquet differential equation

$$
q(z)+\frac{p z q^{\prime}(z)}{\gamma-\beta q(z)}=h(z), \quad z \in U
$$

has the univalent solution q with $q(0)=p$ and $q \prec h$. Then

$$
G=J_{p, \beta, \gamma}(g) \in \Sigma S_{p}(q) .
$$

The function q is the best (p, p)-dominant.
Proof. Let $P(z)=-\frac{z G^{\prime}(z)}{G(z)}, z \in U$. We know from Corollary 1.13 that $G \in \Sigma_{p}$ with $z^{p} G(z) \neq 0, z \in U$, so $P \in H[p, p]$.

Since P is analytic in U, we have from (1.9) that

$$
P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}=-\frac{z g^{\prime}(z)}{g(z)}, \quad z \in U
$$

Because $g \in \Sigma S_{p}(h)$ we have $-\frac{z g^{\prime}(z)}{g(z)} \prec h(z), z \in U$, hence

$$
P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)} \prec h(z), \quad z \in U .
$$

Using Theorem 1.6 (for $a=n=p$ and with $-\beta$ instead of β) we get $P \prec q$, so

$$
\begin{equation*}
-\frac{z G^{\prime}(z)}{G(z)} \prec q(z), \quad z \in U . \tag{2.10}
\end{equation*}
$$

Since $G \in \Sigma_{p}$ we obtain from (2.10) that

$$
G=J_{p, \beta, \gamma}(g) \in \Sigma S_{p}(q)
$$

We also have from Theorem 1.6 that the function q is the best (p, p)-dominant.
Theorem 2.9. Let $p \in \mathbb{N}^{*}$ and $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}[\gamma-p \beta]>0$. Let h_{1} and h_{2} be analytic functions in U with $h_{1}(0)=h_{2}(0)=p, h_{1} \prec h_{2}$ and

$$
\text { (i) } \quad \gamma-\beta h_{2}(z) \prec R_{\gamma-p \beta, 1}(z), \quad z \in U \text {. }
$$

If q_{1} and q_{2} are the analytic solutions of the Briot-Bouquet differential equations

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{\gamma-\beta q(z)}=h_{1}(z), \quad z \in U \tag{2.11}
\end{equation*}
$$

and, respectively,

$$
\begin{equation*}
q(z)+\frac{p z q^{\prime}(z)}{\gamma-\beta q(z)}=h_{2}(z), \quad z \in U \tag{2.12}
\end{equation*}
$$

with $q_{1}(0)=q_{2}(0)=p$ and if

$$
\text { (ii) } \frac{z q_{1}^{\prime}(z)}{\gamma-\beta q_{1}(z)} \quad \text { is starlike in } U \text {, }
$$

(iii) h_{2} is convex or $\frac{z q_{2}^{\prime}(z)}{\gamma-\beta q_{2}(z)}$ is starlike,
then q_{1} and q_{2} are univalent in U.
Moreover, if $g \in \Sigma S_{p}\left(h_{1}, h_{2}\right)$ such that $\frac{z g^{\prime}(z)}{g(z)}$ is univalent in U and $\frac{z G^{\prime}(z)}{G(z)} \in Q$, where $G=J_{p, \beta, \gamma}(g)$, then

$$
G \in \Sigma S_{p}\left(q_{1}, q_{2}\right)
$$

The functions q_{1} and q_{2} are the best subordinant and, respectively, the best (p, p)-dominant.
Proof. From $h_{1} \prec h_{2}$ and (i) we have

$$
\begin{equation*}
\gamma-\beta h_{1}(z) \prec \gamma-\beta h_{2}(z) \prec R_{\gamma-p \beta, 1}(z), \quad z \in U . \tag{2.13}
\end{equation*}
$$

From (2.13), using also the fact that $R_{\gamma-p \beta, 1}(z) \prec R_{\gamma-p \beta, p}(z), z \in U$, we have

$$
\gamma-\beta h_{1}(z) \prec R_{\gamma-p \beta, 1}(z), \quad \gamma-\beta h_{2}(z) \prec R_{\gamma-p \beta, p}(z), \quad z \in U .
$$

Therefore, from Theorem 1.9 (for $n=1$ and $h=h_{1}$, respectively $n=p$ and $h=h_{2}$) we have the existence of the analytic solutions q_{1} and q_{2} of the equation (2.11), respectively (2.12).

Since we have conditions (ii) and (iii) in the hypothesis, we obtain from Theorem 1.10 the univalence of q_{1} and q_{2}.

From $g \in \Sigma S_{p}\left(h_{1}, h_{2}\right)$ and (i) we have

$$
\begin{equation*}
\gamma-\beta h_{1}(z) \prec \gamma+\beta \frac{z g^{\prime}(z)}{g(z)} \prec \gamma-\beta h_{2}(z) \prec R_{\gamma-p \beta, 1}(z), \quad z \in U . \tag{2.14}
\end{equation*}
$$

Since $R_{\gamma-p \beta, 1}(z) \prec R_{\gamma-p \beta, p}(z), z \in U$, we have from (2.14)

$$
\gamma+\beta \frac{z g^{\prime}(z)}{g(z)} \prec R_{\gamma-p \beta, p}(z), \quad z \in U .
$$

Using Corollary 1.13 we have $G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}$ with $z^{p} G(z) \neq 0, z \in U$. Consequently,

$$
P \in H[p, p], \quad \text { where } \quad P(z)=-\frac{z G^{\prime}(z)}{G(z)}, \quad z \in U
$$

From (1.9) and $g \in \Sigma S_{p}\left(h_{1}, h_{2}\right)$ we obtain

$$
\begin{equation*}
h_{1}(z) \prec P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)} \prec h_{2}(z), \quad z \in U . \tag{2.15}
\end{equation*}
$$

It is easy to see that we have $P \in H[p, p] \cap Q$ and $P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}$ univalent in U.
We remark that the conditions from the hypotheses of Theorem 1.10 and Theorem 1.12 are met, so, using these two theorems we get from (2.15) that

$$
\begin{equation*}
q_{1}(z) \prec P(z) \prec q_{2}(z), \quad z \in U . \tag{2.16}
\end{equation*}
$$

Since $P(z)=-\frac{z G^{\prime}(z)}{G(z)}, z \in U$, and $G \in \Sigma_{p}$ we obtain from (2.16) that

$$
G \in \Sigma S_{p}\left(q_{1}, q_{2}\right)
$$

Of course, we also have from Theorem 1.10 and Theorem 1.12, that the functions q_{1} and q_{2} are the best subordinant and, respectively, the best (p, p)-dominant.

From Theorem 1.9, since $p \neq 0$, we have that the solutions q_{1} and q_{2} (from the above theorem) are given by:

$$
\begin{aligned}
q_{1}(z) & =z^{\gamma} H_{1}^{-p \beta}(z)\left[-\beta \int_{0}^{z} H_{1}^{-p \beta}(t) t^{\gamma-1} d t\right]^{-1}+\frac{\gamma}{\beta}= \\
& =\left[-\beta \int_{0}^{1}\left[\frac{H_{1}(t z)}{H_{1}(z)}\right]^{-p \beta} t^{\gamma-1} d t\right]^{-1}+\frac{\gamma}{\beta}
\end{aligned}
$$

$$
\begin{aligned}
q_{2}(z) & =z^{\frac{\gamma}{p}} H_{2}^{-\beta}(z)\left[\frac{-\beta}{p} \int_{0}^{z} H_{2}^{-\beta}(t) t^{\frac{\gamma}{p}-1} d t\right]^{-1}+\frac{\gamma}{\beta}= \\
& =\left[\frac{-\beta}{p} \int_{0}^{1}\left[\frac{H_{2}(t z)}{H_{2}(z)}\right]^{-\beta} t^{\frac{\gamma}{p}-1} d t\right]^{-1}+\frac{\gamma}{\beta},
\end{aligned}
$$

where

$$
H_{k}(z)=z \exp \int_{0}^{z} \frac{h_{k}(t)-p}{p t} d t, \quad k=1,2 .
$$

If we consider only the subordination for Theorem 2.9 we obtain the next result.
Theorem 2.10. Let $p \in \mathbb{N}^{*}$ and $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma-p \beta)>0$. Also let $h \in H(U)$ with $h(0)=p$ such that

$$
\text { (i) } \gamma-\beta h(z) \prec R_{\gamma-\beta p, p}(z), \quad z \in U \text {. }
$$

If q is the analytic solution of the Briot-Bouquet differential equation

$$
q(z)+\frac{p z q^{\prime}(z)}{\gamma-\beta q(z)}=h(z), \quad z \in U
$$

with $q(0)=p$ and if
(ii) h is convex or $\frac{z q^{\prime}(z)}{\gamma-\beta q(z)}$ is starlike,
then q is univalent in U.
Moreover, if $g \in \Sigma S_{p}(h)$ and $G=J_{p, \beta, \gamma}(g)$, then $G \in \Sigma S_{p}(q)$.
The function q is the best (p, p)-dominant.
Proof. The fact that the function q is univalent in U results from Theorem 1.10. Since $g \in \Sigma S_{p}(h)$ we have

$$
\begin{equation*}
-\frac{z g^{\prime}(z)}{g(z)} \prec h(z), \quad z \in U, \tag{2.17}
\end{equation*}
$$

and using (i) we obtain

$$
\gamma+\beta \frac{z g^{\prime}(z)}{g(z)} \prec R_{\gamma-p \beta, p}(z), \quad z \in U .
$$

Using now Corollary 1.13 we get that $G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}$ with $z^{p} G(z) \neq 0, z \in U$.
Hence, $P \in H[p, p]$, where $P(z)=-\frac{z G^{\prime}(z)}{G(z)}, z \in U$. We know that

$$
P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}=-\frac{z g^{\prime}(z)}{g(z)}, \quad z \in U
$$

and using (2.17) we get

$$
P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)} \prec h(z), \quad z \in U .
$$

Using now Theorem 1.10 for $a=n=p$ and with $-\beta$ instead of β, we obtain that $P(z) \prec q(z)$, so

$$
\begin{equation*}
-\frac{z G^{\prime}(z)}{G(z)} \prec q(z), \quad z \in U . \tag{2.18}
\end{equation*}
$$

Since $G \in \Sigma_{p}$ we have from (2.18) that $G \in \Sigma S_{p}(q)$.
It is obvious that the function q is the best (p, p)-dominant.
If we consider, in the above theorem, that the function h is convex we obtain the corollary:

Corollary 2.11. Let $p \in \mathbb{N}^{*}$ and $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma-p \beta)>0$. Also let $g \in \Sigma S_{p}(h)$ with h convex in $U, h(0)=p$. If the function h satisfies the condition

$$
\gamma-\beta h(z) \prec R_{\gamma-\beta p, p}(z), \quad z \in U
$$

then

$$
G=J_{p, \beta, \gamma}(g) \in \Sigma S_{p}(q),
$$

where q is the univalent solution of the Briot-Bouquet differential equation

$$
q(z)+\frac{p z q^{\prime}(z)}{\gamma-\beta q(z)}=h(z), \quad z \in U
$$

with $q(0)=p$.
The function q is the best (p, p)-dominant.
Next, we present an application for the above corollary, when $\beta=1, \gamma \in \mathbb{R}$, for a particular function h. We will use the notation $J_{p, \gamma}$ instead of $J_{p, 1, \gamma}$.
Corollary 2.12. Let $p \in \mathbb{N}^{*}$ and $\gamma \geq p+3$ such that $4 p(\gamma-p)^{2} \leq \gamma(\gamma-p-1)^{3}$.
If $g \in \Sigma S_{p}(h)$ with $h(z)=p+z+\frac{p z}{\gamma-p-z}$, then

$$
G=J_{p, \gamma}(g) \in \Sigma S_{p}(p+z)
$$

which is equivalent to $\left|\frac{z G^{\prime}(z)}{G(z)}+p\right|<1, z \in U$. Therefore,

$$
p-1<\operatorname{Re}\left[-\frac{z G^{\prime}(z)}{G(z)}\right]<p+1, \quad z \in U
$$

this meaning that $G \in \Sigma_{p}^{*}(p-1, p+1)$.

Proof. Considering $\alpha=p, \beta=-1, \gamma \rightarrow \gamma-p$ in Lemma 2.2, we remark that the conditions from this lemma are met in the hypothesis of this corollary, so, the function $h(z)=p+z+\frac{p z}{\gamma-p-z}$ is convex in U .

It is easy to see that the function $q(z)=p+z$ is the univalent solution for the differential equation

$$
q(z)+\frac{p z q^{\prime}(z)}{\gamma-q(z)}=h(z), \quad z \in U, \quad \text { with } \quad q(0)=p
$$

Next we verify that $|\operatorname{Im} h(z)|<C_{p}(\gamma-p), z \in U$, which is equivalent to

$$
\left|\operatorname{Im}\left(z+\frac{p z}{\gamma-p-z}\right)\right|<\sqrt{p^{2}+2 p(\gamma-p)}, \quad z \in U
$$

We have
$\left|\operatorname{Im}\left(z+\frac{p z}{\gamma-p-z}\right)\right|=\left|\operatorname{Im}\left[z-p-\frac{p(\gamma-p)}{z-\gamma+p}\right]\right| \leq|\operatorname{Im} z|+p(\gamma-p)\left|\operatorname{Im} \frac{1}{z-\gamma+p}\right|$.
If we denote $\gamma-p$ with a we have from the hypothesis $a \geq 3$ and

$$
\left|\operatorname{Im} \frac{1}{z-a}\right|=\frac{|\operatorname{Im} z|}{|z-a|^{2}}<\frac{1}{|z-a|^{2}} \leq \frac{1}{(a-\operatorname{Re} z)^{2}} \leq \frac{1}{a}, \quad z \in U, \quad a \geq 3
$$

so

$$
\left|\operatorname{Im} \frac{1}{z-\gamma+p}\right|<\frac{1}{\gamma-p}, \quad z \in U
$$

Therefore, we get $\left|\operatorname{Im}\left(z+\frac{p z}{\gamma-p-z}\right)\right|<p+1, z \in U$, so $|\operatorname{Im} h(z)|<p+1, z \in U$.
Now it is obvious that we have $|\operatorname{Im} h(z)|<\sqrt{p^{2}+2 p(\gamma-p)}=C_{p}(\gamma-p)$, hence $|\operatorname{Im}[\gamma-h(z)]|<C_{p}(\gamma-p), z \in U$, this means that

$$
\gamma-h(z) \prec R_{\gamma-p, p}(z), \quad z \in U .
$$

Therefore, from Corollary 2.11, we obtain

$$
G=J_{p, \gamma}(g) \in \Sigma S_{p}(p+z)
$$

which is equivalent to $\left|\frac{z G^{\prime}(z)}{G(z)}+p\right|<1, z \in U$.
If we consider for Corollary 2.11 the condition $\operatorname{Re}[\gamma-\beta h(z)]>0, z \in U$, instead of $\gamma-\beta h(z) \prec R_{\gamma-\beta p, p}(z), z \in U$, we get:

Corollary 2.13. Let $p \in \mathbb{N}^{*}$ and $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma-p \beta)>0$. Also let $g \in \Sigma S_{p}(h)$ with h convex in U and $h(0)=p$. If

$$
\operatorname{Re}[\gamma-\beta h(z)]>0, \quad z \in U
$$

then

$$
G=J_{p, \beta, \gamma}(g) \in \Sigma S_{p}(q),
$$

where q is the univalent solution of the Briot-Bouquet differential equation

$$
q(z)+\frac{p z q^{\prime}(z)}{\gamma-\beta q(z)}=h(z), \quad z \in U, q(0)=p
$$

The function q is the best (p, p)-dominant.
Proof. The result follows from Corollary 2.11.
Since for Corollary 2.13 we have $q \prec h$ (see Theorem 1.11), we get the next corollary:
Corollary 2.14. Let $p \in \mathbb{N}^{*}$ and $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma-p \beta)>0$. Also let $g \in \Sigma S_{p}(h)$ with h convex in U and $h(0)=p$. If

$$
\operatorname{Re}[\gamma-\beta h(z)]>0, \quad z \in U
$$

then

$$
G=J_{p, \beta, \gamma}(g) \in \Sigma S_{p}(h) .
$$

Furthermore, using Corollary 2.14 for a particular function h, we present a result which was also obtained in [8] but using a different method.

We consider $h(z)=h_{p, \alpha}(z)=\frac{p+(p-2 \alpha) z}{1-z}, z \in U$, where $p \in \mathbb{N}^{*}$ and $0 \leq \alpha<p$. It is not difficult to see that $h_{p, \alpha}(U)=\{z \in \mathbb{C} / \operatorname{Re} z>\alpha\}$ and $h_{p, \alpha}(0)=p$.

Using the notations given at the beginning of this paper we have

$$
g \in \Sigma S_{p}\left(h_{p, \alpha}\right) \Leftrightarrow g \in \Sigma_{p}^{*}(\alpha)
$$

We now get the next result:
Corollary 2.15. [8] Let $p \in \mathbb{N}^{*}, \beta<0, \gamma \in \mathbb{C}$ and $\frac{\operatorname{Re} \gamma}{\beta} \leq \alpha<p$. Then we have

$$
g \in \Sigma_{p}^{*}(\alpha) \Rightarrow G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}^{*}(\alpha)
$$

Proof. From $\frac{\operatorname{Re} \gamma}{\beta} \leq \alpha<p$ and $\beta<0$ we have $\operatorname{Re} \gamma-\beta \alpha \geq 0$ and $\operatorname{Re} \gamma-p \beta>0$.
It is easy to see that

$$
\operatorname{Re} \gamma-\beta \operatorname{Re} h_{p, \alpha}(z)>\operatorname{Re} \gamma-\alpha \beta \geq 0, \quad z \in U
$$

hence $\operatorname{Re}\left[\gamma-\beta h_{p, \alpha}(z)\right]>0, z \in U$.
We know that $g \in \Sigma_{p}^{*}(\alpha) \Leftrightarrow g \in \Sigma S_{p}\left(h_{p, \alpha}\right)$.
Since the conditions from Corollary 2.14 holds, we get $G=J_{p, \beta, \gamma}(g) \in \Sigma S_{p}\left(h_{p, \alpha}\right)$ which is equivalent to $G \in \Sigma_{p}^{*}(\alpha)$.

REFERENCES

[1] T. Bulboacă, Differential subordinations and superordinations. Recent results, Casa Cărţii de Ştiinţa, Cluj-Napoca, 2005.
[2] S.S. Miller, P.T. Mocanu, Briot-Bouquet differential equations and differential subordinations, Complex Variables 33 (1997), 217-237.
[3] S.S. Miller, P.T. Mocanu, Differential subordinations. Theory and applications, Marcel Dekker Inc., New York, Basel, 2000.
[4] S.S. Miller, P.T. Mocanu, Subordinants of differential superordinations, Complex Variables 48 (2003) 10, 815-826.
[5] S.S. Miller, P.T. Mocanu, Briot-Boquet differential superordinations and sandwich theorems, J. Math. Anal. Appl. 329 (2007), 327-335.
[6] P.T. Mocanu, Some simple criteria for starlikeness and convexity, Libertas Mathematica 13 (1993), 27-40.
[7] Gh. Oros, G.I. Oros, An application of Briot-Bouquet differential subordinations, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica 50 (2006), 101-104.
[8] A. Totoi, On integral operators for meromorphic functions, General Mathematics 18 (2010) 3, 91-108.

Alina Totoi
totoialina@yahoo.com
"Lucian Blaga" University of Sibiu
Faculty of Science
Department of Mathematics
Str. Dr. I. Ratiu, no. 5, Sibiu, Romania

Received: July 7, 2010.
Revised: November 12, 2010.
Accepted: November 15, 2010.

