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FREE PROBABILITY
INDUCED BY ELECTRIC RESISTANCE NETWORKS

ON ENERGY HILBERT SPACES

Ilwoo Cho, Palle E.T. Jorgensen

Abstract. We show that a class of countable weighted graphs arising in the study of electric
resistance networks (ERNs) are naturally associated with groupoids. Starting with a fixed
ERN, it is known that there is a canonical energy form and a derived energy Hilbert space
HE . From HE , one then studies resistance metrics and boundaries of the ERNs. But in earlier
research, there does not appear to be a natural algebra of bounded operators acting on HE .
With the use of our ERN-groupoid, we show that HE may be derived as a representation
Hilbert space of a universal representation of a groupoid algebra AG, and we display other
representations. Among our applications, we identify a free structure of AG in terms of the
energy form.
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1. INTRODUCTION

While the study of weighted infinite graphs G has a long history of interacting with a
host of diverse areas of mathematics as well as applications (see the references cited
below), its symbiotic relationship with the theory of operators in Hilbert space is of a
more recent vintage. A case in point is the paper [11] dealing with sampling of signals
with the sampling taking place on a prescribed but irregular point configuration. By a
weighted graph we mean a pair of sets, vertices V (G) and edges E(G), and a positive
function c defined on E(G). The simplest model described very well by this is an
electrical resistance network. In this case, the function c assigning weights to the edges
is then representing a system of resistors assigned to the edges in G, the value on an
edge of the function c is the reciprocal of the assigned resistance. For every pair (G, c),
we introduce an associated difference operator ∆ and a Hilbert space HE such that
∆ is a Hermitian operator, typically unbounded, with a natural and dense domain
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in HE . The operator ∆ is defined intrinsically from a fixed (G, c), but in a special
case, it is a discretized Laplace operator, so a discretization of a Laplace operator in
classical analysis, in divergence form. Moreover, in this case, the function c is related
to divergence. But we emphasize that not all discrete models with operator ∆ are
discretizations of classical PDE Laplacians. In the discrete models, the operator ∆
plays a number of roles: It allows us to introduce such tools as random walk, spectral
theory, and associated algebras of operators in HE . With this we get an associated
mean value property: the ∆-harmonic functions h on V (G) have the following discrete
mean-value property: For every x in V (G), the value h(x) is computed as a weighted
average of the values h(y), as the vertices y range over the neighbors to x, i.e., the
points y such that (x, y) is in E(G). This idea in turn gives rise to a family of
transfer operators, and radial operators (Definition 5.1). Our main results deal with
the spectral theory of these operators. In Section 6, for a fixed (G, c), we compute a
free probability model for an algebra of operators acting on HE .

Since we address several audiences, operator theory and operator algebras, as well
as readers with interest in discrete analysis, before getting to our main theorems
(Sections 5 and 6) we must first introduce a number of definitions and preliminaries.

Recently, the second named author and E. Pearse have studied electric resistance
networks (ERNs) with the use of bounded and unbounded operators in Hilbert space
(e.g., see [6] through [10]). Independently, the first named author initiated an approach
to graph groupoids based on free probability theory and representations (e.g., see [1]
through [5]).

In this paper, we combine these tools in a study of countable weighted graphs as
they are used in the analysis of electric resistance networks. To do that, we re-establish
electric resistance networks, but now as graph groupoids (intuitively a certain family
of directed graphs). Further, we identify a canonical class of representations (of the
groupoids) as a tool for analysis on electric resistance networks.

As an application, we offer a new energy calculus for groupoid-algebras of electric
resistance networks. We begin with a definition of electric resistance networks as
weighted directed graph G, specifically a system of resisters configured on the edges
in a (typically) infinite graph.

We use this in computations of voltage configurations and current flows. In our
analysis, the resisters in G are represented by weights on the edges of G. Directions
in G in turn are prescribed by induced currents; a direction of an edge is determined
by the sign of current. We then build corresponding graph groupoids from this, called
the ERN-groupoids.

They in turn have groupoid actions, and we are interested in induced algebras of
bounded operators on the energy Hilbert space HE , corresponding ERN-energy forms.

There are several early uses of tools from mathematics in the study of large electric
networks, probability, random walks, harmonic analysis, spectral theory, to mention
only a few (e.g., see [28]). We offer a sample of related problems, but caution the
reader that the list is extensive, and we do not attempt anywhere a complete list.

While weighted graphs and random walks have a multitude of applications, let us
mention one here which illuminates main ideas from our technical discussion. Consider
a large network of resistors arranged on the vertices in a graph G. Here, we will have
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G representing an electrical network. Of main interest to us is the case of models
using an countable graph of vertices and specified weighted edges.

Below we list the precise mathematical axioms which are of relevance both for
the physics (the laws of Ohm and of Kirchhoff) and for the mathematical models.
The following intuitive notions may be helpful. We will be using functions on both of
the set of vertices and of the set of edges: At the out set we have a fixed and given
positive function c defined on the edges of G. This function c is taken to represent the
reciprocal of fixed resistors arranged on each edge of G. One question which can be
resolved with the use of our methods is that of determining induced currents. Consider
for example two vertices, say x and y, in G. If one Amp is inserted at x, and then
extracted at y, what is the induced current in G? What is the voltage drop from x to
y? The latter number is a resistance metric, turning the set of vertices into a metric
space.

For computations, it is useful to be able to evaluate two quadratic forms, one
represents the energy of a voltage function on vertices, and the other the dissipation
of a current, a function on edges.

An early pioneering paper using harmonic analysis in ERNs is [29] by Dole and
Snell (see also [6]); and by now present authors with E. Pearse developed a global
analysis of infinite weighted simplicial graphs (or network) based on a systematic
study of different but related boundaries; we mention [7–9], and [10], and the papers
cited there. However, the study of ERNs has not lent itself to natural algebras of
bounded operators. Our aim here is to adapt tools from the theory of representations
of groupoids to the solution of problems in the study of ERNs.

There is a variety of such problems in the literature, but studied with different
methods, for example [12, 25] on geometry and telecommunications networks, [13]
studying Jacobi matrices on trees, [14, 15] on random directed networks, [16, 24] on
fractal networks and Sierpinski gaskets, [26] in potential theory, [17] on flow conduc-
tance in complex networks, [25] on equilibrium measures, [18] on impedance networks
and resonances. See also [31,32], and [33].

While groupoids have been used in representation theoretic problems (e.g., see
[19]) on inequalities for measured groupoids and [20–23], their use in ERNs has so far
gone unnoticed.

2. DEFINITIONS AND BACKGROUND

Starting with a graph G, for operator theory, we introduce a Hilbert space HG nat-
urally coming from G. Our approach is as follows: From G, pass to an enveloping
groupoid G and an associated involutive algebra AG. We then introduce a condi-
tional expectation E of AG onto the subalgebra DG of diagonal elements. To get a
representation of AG and an associated Hilbert space HG, we then use the Stine-
spring construction on E (e.g., see [5]). In this section, we introduce the concepts and
definitions we use.
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2.1. GRAPH GROUPOIDS

Let G be a directed graph with its vertex set V (G) and its edge set E(G). Let
e ∈ E(G) be an edge connecting a vertex v1 to a vertex v2. Then we write e = v1ev2,
for emphasizing the initial vertex v1 of e and the terminal vertex v2 of e. For a fixed
graph G, we define the oppositely directed graph G−1, with V (G−1) = V (G) and
E(G−1) = {e−1 : e ∈ E(G)}, where each element e−1 of E(G−1) satisfies that

e = v1ev2 in E(G), with v1, v2 ∈ V (G),

if and only if
e−1 = v2e

−1v1, in E(G−1).

This opposite directed edge e−1 ∈ E(G−1) of e ∈ E(G) is called the shadow of e.
Also, this new graph G−1 is said to be the shadow of G. Note that (G−1)−1 = G.

Define the shadowed graph Ĝ of G by a directed graph with its vertex set

V (Ĝ) = V (G) = V (G−1)

and its edge set
E(Ĝ) = E(G) ∪ E(G−1).

We say that two edges e1 = v1e1v
′
1 and e2 = v2e2v

′
2 are admissible, if v′1 = v2,

equivalently, the finite path e1e2 is well-defined on Ĝ. Similarly, if w1 and w2 are finite
paths on Ĝ, then we say w1 and w2 are admissible, if w1w2 is a well-defined finite
path on Ĝ, too. Similar to the edge case, if a finite path w has its initial vertex v and
its terminal vertex v′, then we write w = v1wv2. Notice that every admissible finite
path is a word in E(Ĝ). Denote the set of all finite path by FP (Ĝ). Then FP (Ĝ) is
the subset of the set E(Ĝ)∗, consisting of all finite words in E(Ĝ). Suppose we take
a part

• e3−→ · · ·
↑ e2

· · · −→
e1

•

in a graph G or in the shadowed graph Ĝ, where e1, e2, e3 are edges of G, respectively
of Ĝ. Then the above admissibility shows that the edges e1 and e2 are admissible,
since we obtain a finite path e1e2, however, the edges e1 and e3 are not admissible,
since a finite path e1e3 is undefined.

Construct the free semigroupoid F+(Ĝ) of the shadowed graph Ĝ, as the union of
all vertices in V (Ĝ) = V (G) = V (G−1) and admissible words in FP (Ĝ), equipped
with its binary operation, the admissibility. Naturally, we assume that F+(Ĝ) contains
the empty word ∅, as the representative of all undefined (or non-admissible) finite
words in E(Ĝ).

Remark that some free semigroupoid F+(Ĝ) of Ĝ does not contain the empty word;
for instance, if a graph G is a one-vertex-multi-edge graph, then the shadowed graph
Ĝ of G is also a one-vertex-multi-edge graph too, and hence its free semigroupoid
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F+(Ĝ) does not have the empty word. However, in general, if |V (G)| > 1, then F+(Ĝ)
always contain the empty word. Thus, if there is no confusion, we always assume the
empty word ∅ is contained in the free semigroupoid F+(Ĝ) of Ĝ.

Definition 2.1. By defining the reduction (RR) on F+(Ĝ), we define the graph
groupoid G of a given graph G, by the subset of F+(Ĝ), consisting of all “reduced”
finite paths on Ĝ, with the inherited admissibility on F+(Ĝ) under (RR), where the
reduction (RR) on G is as follows:

(RR) ww−1 = v and w−1w = v′,

for all w = vwv′ ∈ G, with v, v′ ∈ V (Ĝ).

Such a graph groupoid G is indeed a categorial groupoid with its base V (Ĝ).

2.2. GRAPH-GROUPOID ALGEBRAS

Let X be a set and let Y be a subset of X . Assume that each element x of X has
its initial moment y1 and its terminal moment y2, where y1, y2 are contained in Y.
We denote this relation by x = y1xy2. Clearly, every element y in Y is regarded as
an element of X , having its initial and terminal moments identified with itself. i.e.,
y = yyy. Thus, generally, we can conclude that

yn = y, for all y ∈ Y, and n ∈ N,

in X . So, there exist functions
s, r : X → Y

such that
s(x) = y1, and r(x) = y2,

whenever x = y1xy2 in X , with y1, y2 ∈ Y. We call s and r, the source map and the
range map on X .

Definition 2.2. Let X , Y, s, and r be given as above. We say that the algebraic
quadruple X = (X ,Y, s, r) is a (categorial) groupoid, if it satisfies the followings
conditions for binary operation (·):

(1) x1x2 is well-defined only when r(x1) = s(x2), for x1, x2 ∈ X .
(2) (x1x2)x3 = x1(x2x3), for x1, x2, x3 ∈ X .

The subset Y of X is called the base of X .

In our case, we will define the empty element ∅ in X , to represent the case where
the products are undefined. So, if there is no confusion, then we always assume that
the empty element ∅ is contained in groupoids. However, it is possible that certain
groupoids have no empty words.

The merit of the empty element is that we can make the partially defined binary
operation (satisfying (1)) be well-defined. i.e., the condition (1) is the above definition
can be re-written by

x1x2 =

{
x1x2 if r(x1) = s(x2),
∅ otherwise,
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for all x1, x2 ∈ X . Trivially, all our graph groupoids are indeed groupoids with their
bases, the vertex sets, in the above sense. Also, all groups are groupoids having their
bases consisting only of group identities. Here, notice that all groups are the groupoids
without empty word.

Definition 2.3. Let X be a groupoid. The (pure algebraic) algebra A lg (X ), gen-
erated by X , is called the groupoid algebra of X . i.e., A lg (X ) = C[X ], the algebra
consisting of all polynomials in X . However, in this paper, we also consider the pure
algebraic algebra C[[X ]], consisting of all “formal” series in X , too. And we denote
C[[X ]] by AX .

Remember, by definition, the elements of A lg (X ) are finite linear sums of X , but
the elements of AX are either finite or infinite linear sums.

Similarly, for a graph groupoid G, we can construct the corresponding groupoid
algebra AG = C[[G]]. In such a case, we will denote it by AG, to emphasize this
groupoid algebra is induced by a graph G.

Definition 2.4. We call the groupoid algebra AG = C[[G]], generated by the graph
groupoid G of a graph G, the graph-groupoid algebra induced by G.

Precisely, the graph-groupoid algebra AG have its zero element,

∅ = 0AG ,

and its identity element
1AG =

∑
v∈V (G)

v.

Every element a of AG has its expression,

a =
∑
w∈G

tww with tw ∈ C,

where
∑
w∈G

means a finite or infinite sum.

Let a =
∑
w∈G

tww be an element of the graph-groupoid algebra AG. Define the

subset Supp(a) of G by

Supp(a)
def
= {w ∈ G : tw 6= 0 in C}.

This subset Supp(a) is called the support of a. By definition,

|Supp(a)| ≤ ∞.

By the admissibility on the graph groupoid G of a graph G, we obtain the following
multiplication rule:

w1w2 =

{
w1w2 if w1w2 6= ∅ in G,
0AG if w1w2 = ∅ in G,



Free probability induced by electric resistance networks on energy Hilbert spaces 555

for all w1, w2 ∈ G ⊂ AG. Define now the unary operation (∗) on the graph-groupoid
algebra AG by

∗ : w ∈ G ⊂ AG 7−→ w∗
def
= w−1 ∈ AG,

with the linearity,
(t1w1 + t2w2)∗ = t1w

−1
1 + t2w

−1
2 ,

for all w1, w2 ∈ G ⊂ AG, and t1, t2 ∈ C, where t means the complex conjugate of t,
for all t ∈ C. By the uniqueness of the shadow w−1 for a fixed element w in G, the
element w∗ for w in AG is uniquely determined. We will call w∗ = w−1 of w, the
adjoint (or the shadow) of w, for w ∈ G ⊂ AG.

Proposition 2.5. The graph-groupoid algebra AG, generated by the graph groupoid
G of a graph G, is a (pure algebraic) ∗-algebra.

2.3. GROUPOID ACTIONS

Let X = (X ,Y, s, r) be an arbitrary groupoid and let A be a set. We say that X
acts on A, if (i) there exists a function g from X into F(A), such that, for any fixed
groupoid element x ∈ X , g(x) : A → A is a well-defined function on A, where F(A)
means the collection of functions on A, and (ii) the images g(x1) and g(x2) satisfy
that

g(x1) ◦ g(x2) = g(x1x2), on A,

for all x1, x2 ∈ X , where (◦) means the usual functional composition. Sometimes, we
call A, an X - set. Also, we say that the function g : X → F(A) is a groupoid action of
X (acting) on A. As groupoids, our graph groupoids can have their groupoid actions.
Canonical actions induced by graphs are introduced in [1, 2], and [3]. By considering
groupoid elements as multiplication operators on certain Hilbert spaces, they become
natural groupoid actions on Hilbert spaces. Such groupoid actions induce groupoid
dynamical systems (e.g., [3, 4, 4, 6], and [5]).

2.4. UNIONS OF GRAPHS

Let G1 and G2 be countable directed graphs. Define a new graph G by a directed
graph with its vertex set

V (G) = V (G1) ∪ V (G2),

and its edge set
E(G) = E(G1) ∪ E(G2).

Such a new graph G is called the unioned graph of G1 and G2. And we denote G
by G1 ∪G2, to emphasize that the graph G is induced by G1 and G2. By definition,
all “disjoint” unioned graphs are our unioned graph. Recall that the disjoint unioned
graph U , denoted by G1 tG2, of G1 and G2 is the graph with

V (U) = V (G1) t V (G2),
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and
E(U) = E(G1) t E(G2),

where t on the above right-hand sides mean the disjoint union (set-theoretically).
However, if either

V (G1) ∩ V (G2), or E(G1) ∩ E(G2)

is nonempty, then our unioned graph G1∪G2 is completely different from the disjoint
unioned graph G1 tG2. For instance, if

G1 =
•
↓
• → •

, and G2 = •⇒ •,

then the disjoint unioned graph G1 tG2 is clearly,

•
↓
• → •

•⇒ •.

Assume now that the above graphs G1 and G2 satisfy

G1 =

x1•
e ↓
x2• → •

, and G2 =x1 •⇒
e
•x2 .

Then the unioned graph G1 ∪G2 is determined by a “connected” graph

•
↓↓
• → •

.

Therefore, we conclude that all disjoint unioned graphs are unioned graphs, but not
all unioned graphs are disjoint unioned graphs. Another good examples for unioned
graphs would be our shadowed graphs. Indeed, if G is a graph, then the shadowed
graph Ĝ of G is the unioned graph

Ĝ = G ∪G−1

of G, and its shadow G−1. It is shown that the groupoid sum G1 + G2 of two graph
groupoids G1 and G2 is groupoid-isomorphic to the graph groupoid G of the unioned
graph G = G1 ∪ G2 in [5], where Gk are the graph groupoids of Gk, for k = 1, 2.
Equivalently, the study of groupoid sums of graph groupoids is to investigate other
graph groupoids determined by the unioned graphs. Clearly, the groupoid direct sum
G1⊕G2 of G1 and G2 is groupoid-isomorphic to the graph groupoid G of the disjoint
unioned graph G = G1 tG2.
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3. ELECTRIC RESISTANCE NETWORKS (ERNS)

We refer to [7] for the study of electric resistance networks, and to [6] for the study of
operator theory on electric resistance networks. In this section, we re-define electric
resistance networks to apply our graph-groupoidal research (e.g., [1] through [5]).
i.e., we construct graph groupoids induced by electric resistance networks and study
certain operator algebras generated by electric resistance networks.

Remark first that the original electric resistance network theory assumes that elec-
tric resistance networks are weighted “undirected” graphs. However, graph groupoids
are induced by “directed” graphs. We can solve this problem because we can regard
our shadowed graphs of directed graphs as undirected versions of graphs.

3.1. NETWORKS AND NETWORK-GROUPOIDS

Let X be an arbitrary countable discrete set. Define a set V of positive-real-valued
functions on X,

V def
= {v : X → R+ : v is a function} (3.1)

satisfying the additional properties;

v1, v2 ∈ V =⇒ v1 + v2 ∈ V (3.2)

α ∈ R+, and v ∈ V =⇒ αv ∈ V, where R+ def
= {r ∈ R : r > 0}. (3.3)

Definition 3.1. We call a set V, satisfying (3.1), (3.2), and (3.3), a voltage set on X.

For instance, let v0 : X → R+ be an arbitrary function. Then the set,

V0 = {αv0 : α ∈ R+} (3.4)

is a voltage set on X, too, since

nv0 = v0 + . . .+ v0︸ ︷︷ ︸
n-ties

∈ V0,

for all n ∈ N, and
αv0 ∈ V0, for all α ∈ R+.

Definition 3.2. The voltage sets V0 on X, determined only by fixed functions v0
(like (3.4)), are called single-voltage sets (or the v0-voltage sets) on X.

Let X be a countable discrete set and V, a fixed voltage set on X. Define the
collection I by a certain R-valued set of functions on X ×X,

I def=
{
iv : X ×X → R

∣∣∣∣ iv ((x, y)) = v(x)− v(y)
∀v ∈ V, ∀(x, y) ∈ X ×X

}
. (3.5)

Definition 3.3. The set I of (3.5), induced by a set X and a fixed voltage set V on
X, is called the current set on X induced by V. If V is the v0-voltage set on X, where
v0 : X → R+ is a fixed function, then the corresponding current set I is called the v0
-current set on X. Also, in this case, we denote I by Iv0 .
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By definition, we obtain the following fundamental facts.

Proposition 3.4. Let I be the current set on X induced by a voltage set V.
(1) Each element iv ∈ I is skew-symmetric, in the sense that

iv ((x, y)) = −iv ((y, x)) ,

for all (x, y) ∈ X ×X.
(2) If iv1 , iv2 ∈ I, then iv1 + iv2 = iv1+v2 in I.
(3) If α ∈ R \ {0}, and iv ∈ I, then

αiv =

{
iαv if α > 0,
−i|α|v if α < 0,

in I.
Proof. (1) By definition, it is clear. Since

iv ((x, y))
def
= v(x)− v(y),

we have
iv ((x, y)) = v(x)− v(y) = − (v(y)− v(x)) = −iv ((y, x)) ,

for all (x, y) ∈ X ×X. Thus, each element iv in I is skew-symmetric.
(2) Let iv1 , iv2 ∈ I. Then, for any (x, y) ∈ X ×X,

(iv1 + iv2) ((x, y)) = iv1 ((x, y)) + iv2 ((x, y)) =
= v1(x)− v1(y) + v2(x)− v2(y) =
= (v1 + v2) (x)− (v1 + v2)(y) =
= iv1+v2 ((x, y)) .

Notice here that, by definition, if v1, v2 ∈ V, then v1 + v2 ∈ V. And hence iv1+v2
is well-defined in I. (3) Let α > 0 in R. Then

αiv ((x, y)) = α (v(x)− v(y)) =
= αv(x)− αv(y) = iαv ((x, y)) , for all (x, y) ∈ X ×X.

Therefore, if α > 0, then

αiv = iαv, for all v ∈ V.

Recall that, if α ∈ R+, and v ∈ V, then αv ∈ V, too.
Assume that α < 0 in R. Then

αiv ((x, y)) = α (v(x) − v(y)) =
= −α (v(y) − v(x)) = (−αv) (y)− (−αv)(x) =
= i−αv ((y, x)) = −i−αv ((x, y))

by (1)
= −i|α|v ((x, y)) .
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By the statements (2) and (3) of the above proposition, the current set I on X
induced by a fixed voltage set V is a real-vector-space-like set.

Now, we construct graphs determined by a countable discrete setX, a fixed voltage
set V on X, and the current on X. First, fix v in V. Construct a graph Gv as a directed
graph with its vertex set

V (Gv) = X,

and its edge set
E(Gv) = {(x, y) ∈ X ×X : iv ((x, y)) > 0}.

We call Gv, the v-graph on X. The edges of the v-graph Gv represent the current
(or the flow of current) on X when we put the voltage v on X. Recall that we say
two graphs G1 and G2 are graph-isomorphic, if there exists a bijection

g : V (G1) ∪ E(G1)→ V (G2) ∪ E(G2)

such that

(i) g is bijective from V (G1) onto V (G2),
(ii) g is bijective from E(G1) onto E(G2),
(iii) g(e) = g(x1ex2) = g(x1)g(e)g(x2) in E(G2), for all e = x1ex2 ∈ E(G1), with

x1, x2 ∈ V (G1).

In particular, the bijection g is called a graph-isomorphism. In [1] and [2], we showed
that if two graphs G1 and G2 have graph-isomorphic shadowed graphs Ĝ1 and Ĝ2,
then the corresponding graph groupoids G1 and G2 are groupoid-isomorphic.

Proposition 3.5. Fix v ∈ V, and let Gv be the v-graph on X, and Gαv, the αv-graph
on G, for all α ∈ R+. Then they are graph-isomorphic from each other, for all α ∈ R+.

Proof. Let v ∈ V be fixed and let α ∈ R+ be arbitrary. For the fixed voltage v, the
v-graph Gv is well-defined, and since αv ∈ V, we can have the αv-graph Gαv, too. By
definition, the vertex set V (Gαv) satisfies

V (Gαv) = X = V (Gv), (3.6)

and the edge set E(Gαv) is defined by the subset

E(Gαv) = {(x, y) ∈ X ×X : iαv ((x, y)) > 0}

in X ×X. Since iαv = αiv, for α ∈ R+, we conclude that

iαv ((x, y)) > 0⇐⇒ iv ((x, y)) > 0

for (x, y) ∈ X ×X. Therefore,

E(Gαv) = E(Gv). (3.7)

Thus, by (3.6) and (3.7), we can define a bijection

g : V (Gv) ∪ E(Gv)→ V (Gαv) ∪ E(Gαv) (3.8)
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by
g(y) = y, for all y ∈ V (Gv) ∪ E(Gv).

It is easy to check that the map g of (3.8) is a graph-isomorphism. So, the graphs
Gv and Gαv are graph-isomorphic. Since α ∈ R+ is arbitrary, the graphs Gv and
{Gαv}α∈R+ are graph-isomorphic from each other.

The above proposition says that the v-graph Gv is kind of a representative of all
αv-graphs Gαv, for all α ∈ R+. So, from now on, if we simply mention about v-graphs
Gv, then they are also regarded as αv-graphs Gαv, for all α ∈ R+. Also, we obtain
the following proposition.

Proposition 3.6. Let v = v1 + v2 in the voltage set V on X, for v1, v2 ∈ V. Then
the (v1 + v2)-graph Gv1+v2 is graph-isomorphic to the unioned graph Gv1 ∪Gv2 .

Proof. Let v1, v2 ∈ V. Then the corresponding voltage graphs Gv1 and Gv2 are
well-defined. Since v1 +v2 is also an element in V, we have the (v1 +v2)-graph Gv1+v2 .
By definition,

V (Gv1+v2) = X = V (Gv1) = V (Gv2) =
= V (Gv1) ∪ V (Gv2), (3.9)

and
E(Gv1+v2) = {(x, y) ∈ X ×X : iv1+v2 ((x, y)) > 0}.

Consider the edge set E(Gv1+v2). Since iv1+v2 = iv1 + iv2 , we can get that (x, y) ∈
E(Gv1+v2), if and only if

iv1+v2 ((x, y)) > 0,

if and only if one of the followings holds

iv1 ((x, y)) > 0, and iv2 ((x, y)) > 0, or (3.10)
iv1 ((x, y)) > iv2 ((x, y)) , or (3.11)
iv1 ((x, y)) < iv2 ((x, y)) . (3.12)

The condition (3.10) holds, if and only if

(x, y) ∈ E(Gv1) ∩ E(Gv2),

and the condition (3.11) (resp., the condition (3.12)) holds, if and only if

(x, y) ∈ E(Gv1) (resp., (x, y) ∈ E(Gv2)).

Therefore, we get that

(x, y) ∈ E(Gv1+v2)⇐⇒ (x, y) ∈ E(Gv1) ∪ E(Gv2).

Equivalently,
E(Gv1+v2) = E(Gv1) ∪ E(Gv2). (3.13)

So, by (3.9) and (3.13), the (v1 + v2)-graph Gv1+v2 is graph-isomorphic to the
unioned graph Gv1 ∪Gv2 , via a graph-isomorphism, defined like (3.8).
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The above proposition is one of our motivation to re-define electric resistance
networks. Now, let

G def
= {Gv : v ∈ V}

be the collection of voltage graphs on X induced by a voltage set V. The iterated
unioned graph

G = ∪G = ∪
v∈V

Gv (3.14)

is well-defined. This new graph G is called the directed network on X induced by
voltage V.

Definition 3.7. Let X be a countable set and V, a voltage set on X, and let G =
{Gv}v∈V be the collection of all voltage-graphs. The iterated unioned graph G = ∪G
of (3.14) is called the direct network on X induced by voltage V. The shadow G−1

of G is called the negative network, and the corresponding graph groupoid G of G is
called the network groupoid.

Observe the detailed property of the directed network G.
Recall now that we say a graph G is simplicial, if (i) G has no loop-edges, and (ii)

G does not allow multi-edges. Here, loop-edges are the edges e satisfying e = xex, for
some x ∈ V (G). And multi-edges mean more than one edge, connecting same initial
vertex to same terminal vertex, for example, if a graph G contains a pair (x1, x2) of
vertices satisfying

x1•⇒ •x2 ,

then G allows multi-edges (in fact, 2-edges) connecting x1 to x2. Note here that, if a
graph G is either

•� •, or •� •,

then it has no multi-edges, because there is no multi-edges connecting same initial
vertex to same terminal vertex.

Proposition 3.8. Let G be the direct network on a set X induced by voltage V. Then
G is simplicial.

Proof. Let G be the direct network. To show G is simplicial, we need to prove this
graph G contains neither loop-edges nor multi-edges. Assume now that G contains a
loop-edge l = xlx with x ∈ X = V (G). This means that the pair (x, x) ∈ X ×X is
contained in the edge set E(G). Since G is the unioned graph ∪

v∈V
Gv of voltage-graphs

Gv, there exists at least one v ∈ V, such that (x, x) is contained in E(Gv). Equiva-
lently,

iv ((x, x)) = v(x)− v(x) > 0.

This contradicts the definition of Gv’s, for all v ∈ V (and hence the definition
of G). Therefore, the directed network G does not have loop-edges.

Assume now that there exist two distinct edges e1 and e2 in E(G), such that

ek = x1ekx2, with x1, x2 ∈ X = V (G),
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for all k = 1, 2. Then there exist(s) v1, v2 ∈ V, such that

e1, e2 ∈ E(Gv1), (or, e1, e2 ∈ E(Gv2)) or (3.15)

e1 ∈ E(Gv1) and e2 ∈ E(Gv2) (or, e1 ∈ E(Gv2) and e2 ∈ E(Gv1)). (3.16)

Suppose first that (3.16) holds. By definition of voltage graphs and unioned graph,
if e1 and e2 satisfies (3.16), then they are identically same edges, i.e., e1 = e2 in E(G).
So, it contradicts our assumption.

Let’s assume that (3.15) holds. Then both e1 and e2 are represented as (x1, x2) in
X×X (in E(Gv1) or E(Gv2)). This means that they are identical element in E(G). It
contradicts our assumption. Thus the directed network G does not allow multi-edges.

So, the graph G has neither loop-edges nor multi-edges, and hence it is simplicial.

The above proposition shows that our directed network G on a countable set X
induced by voltage V is simplicial. So, without loss of generality, we can write the
length-k reduced finite paths by the (k + 1)-tuples of vertices, for all k ∈ N. i.e.,
if w is a length-k reduced finite path in the network groupoid G, then there exists
(k + 1)-vertices x1, . . . , xk+1 ∈ X = V (Ĝ), such that

w = (x1, . . . , xk+1),

for k ∈ N. Again, by the simpliciality of G, the above tuple-notation is uniquely
determined for each reduced finite path in G.

Now, consider the currents iv on E(Ĝ) more in detail, for v ∈ V. We can extend
the current i on E(Ĝ) to the current, also denoted by i, on G. i.e., we define

iv : G→ R

by a function

iv(w)
def
=


∑k
j=1 iv ((xj , xj+1)) if w = (x1, . . . , xk+1) ∈ FPr(Ĝ),∑
w∼x iv ((w, x)) if w ∈ V (Ĝ),

0 if w = ∅,
(3.17)

for all w ∈ G, and for all v ∈ V, where

x1 ∼ x2
def⇐⇒ ∃(x1, x2), (x2, x1) ∈ E(Ĝ), (3.18)

for all x1, x2 ∈ X = V (Ĝ).

Lemma 3.9. Let (x1, . . . , xk+1) be a reduced finite path in the network groupoid G.
Then

iv ((x1, . . . , xk+1)) = v(x1)− v(xk+1), (3.19)

for all v ∈ V, for all k ∈ N.
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Proof. The proof is straightforward. Indeed,

iv ((x1, . . . , xk+1)) =
k∑
j=1

iv ((xj , xj+1)) =

=
k∑
j=1

(v(xj)− v(xj+1)) = v(x1)− v(xj+1), for k ∈ N.

3.2. OHM’S LAW AND ERNS

Let X be a countable set and V, a voltage set on X, and let G = ∪
v∈V

Gv be the

directed network on X induced by V, with its network groupoid G. Like in basic
physics, consider Ohm’s law,

V = RI, equivalently, I = cV,

where V , R, I, c = 1
R mean the voltage, the resistance, the current, and the conduc-

tance, respectively.
Since the network groupoid G of the direct network G is determined by the voltage

and current, the resistance (or the conductance) on G would be defined naturally.
Remark that, as a graph groupoid, the network groupoid G is generated by the edge
set E(Ĝ) of the network Ĝ, which is the shadowed graph of the directed network G.
So, we can define the conductance c on E(Ĝ), and then we may extend it to that on
G. Define the conductance c on E(Ĝ) by a function,

c : E(Ĝ)→ R+ (3.20)

satisfying
c ((x, y)) = c ((y, x)) ,

for all (x, y) ∈ E(Ĝ). i.e., the conductance is the symmetric positive-real-valued
function on E(Ĝ). For convenience, we denote c ((x, y)) simply by cxy, for all
(x, y) ∈ E(Ĝ).

Remark 3.10. If a conductance c is determined on E(Ĝ), then the resistance R is
also well-defined on E(Ĝ). By physics,

R
def
=

1
c

: E(Ĝ)→ R+.

Since c is nonzero, the rational function R is well-defined on E(Ĝ).

By the Ohm’s law, we define the currents Iv with conductance c by a function

Iv : E(Ĝ)→ R

such that
Iv ((x, y))

def
= cxyiv ((x, y)) = cxy (v(x)− v(y)) ,

for all (x, y) ∈ E(Ĝ), and for all v ∈ V.
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Proposition 3.11. Let Iv be the currents with conductance c, for v ∈ V.

(1) Iv is skew-symmetric on E(Ĝ), for all v ∈ V.
(2) Iv1+v2 = Iv1 + Iv2 , on E(Ĝ), for all v1, v2 ∈ V.

(3) αIv =

{
Iαv if α > 0,
−I|α|v if α < 0,

on E(Ĝ), for all α ∈ R \ {0}.

Proof. (1) For any v ∈ V, the current Iv with conductance c is defined by

Iv ((x, y)) = cxyiv ((x, y)) .

Thus, we have

Iv ((x, y)) = cxy (v(x)− v(y)) =
= −cxy (v(y)− v(x)) = −cyxiv ((y, x)) =

= −Iv ((y, x)) , for all (x, y) ∈ E(Ĝ).

Therefore, each current Iv with conductance c is skew-symmetric.
(2) Take v1, v2 ∈ V, and (x, y) ∈ E(Ĝ). Then

Iv1+v2 ((x, y)) = cxyiv1+v2 ((x, y)) =
= cxy ((iv1 + iv2)((x, y)))

since iv1+v2 = iv1 + iv2 , for all v1, v2 ∈ V

= cxyiv1 ((x, y)) + cxyiv2 ((x, y)) =
= Iv1 ((x, y)) + Iv2 ((x, y)) =
= (Iv1 + Iv2) ((x, y)) .

Therefore, Iv1+v2 = Iv1 + Iv2 on E(Ĝ).
(3) Let α ∈ R \ {0}. First, assume that α > 0. Take arbitrary v in V. Then

Iv ((x, y)) = α (cxyiv(x, y)) =
= cxy (αiv ((x, y))) = cxyiαv ((x, y)) =
= Iαv ((x, y))

for all (x, y) ∈ E(Ĝ), because if α > 0, then αiv = iαv. Thus, if α > 0, then αIv = Iαv.
Assume now that α < 0 in R. Then

αIv ((x, y)) = cxy (αiv ((x, y))) = cxy (−i−αv ((x, y))) = −cxyi|α|v ((x, y)) =
= −I|α|v ((x, y))

for all (x, y) ∈ E(Ĝ), because if α < 0, then αiv = −i|α|v. Thus, if α < 0, then
αIv = −I|α|v.
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Now, we can define the current set Ic with conductance c by

Ic
def
=

Iv : E(Ĝ)→ R

∣∣∣∣∣∣
Iv are the current
with conductance c,

∀v ∈ V

 .

Now, extend the conductance c of (3.20) on E(Ĝ) to the conductance, also denoted
by c, on G. Define the R+

0 -valued function

c : G→ R+
0

by

c(w) = cw
def
=


∑k
j=1 cxjxj+1 if w = (x1, . . . , xk+1) ∈ FPr(Ĝ),∑

w∼x
cwx if w ∈ V (Ĝ),

0 if w = ∅,

(3.21)

for all w ∈ G, where
R+

0

def
= R+ ∪ {0}.

Similarly, extend the current I on E(Ĝ) with conductance c to the current, also
denoted by I, on G with conductance c. Define

Iv (w)
def
= cwiv (w) , (3.22)

for all w ∈ G, and for all v ∈ V. Recall that iv(w) is defined in (3.17), and cw = c(w)
is defined in (3.19).

So, if w = (x1, . . . , xk+1) is a reduced finite path in G, then

Iv(w) = cwiv(w) =

 k∑
j=1

cxjxj+1

 (v(x1)− v(xk+1)) . (3.23)

And, if w is a vertex in G, then

Iv(w) = cwiv(w) =

(∑
w∼x

cwx

)(∑
w∼x

iv ((w, x))

)
, (3.24)

where the relation w ∼ x is defined in (3.18).
Finally, if w = ∅, then Iv(w) = 0.

Definition 3.12. Let Ĝ be the network on a countable set X induced by the direct
network G and by voltage V, and let G be the network groupoid of G. Assume that
we define the conductance c on G as in (3.21) (extended by (3.20) on E(Ĝ)). Then the
weighted graph Ĝ = (Ĝ, c) is called the electric resistance network (in short, ERN).
The weighted groupoid G = (G, c) is called the ERN-groupoid.
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4. REPRESENTATIONS OF ERNS

Throughout this section, let X be a countable set, and V, a voltage set on X, and let
G be the direct network on X induced by V. Also, let Ĝ = (Ĝ, c) be the ERN, and
G = (G, c), the ERN-groupoid, where c is a conductance in the sense of (3.21).

Since the ERN-groupoid G is a groupoid in the sense of Section 2.3, we may
consider suitable groupoid actions of G acting on certain Hilbert spaces. We will
consider two Hilbert spaces where G acts.

4.1. ENERGY HILBERT SPACE

Recall that a set C is convex, if, for any t ∈ [0, 1],

tx1 + (1− t)x2 ∈ C,

for all x1, x2 ∈ C, where [0, 1] is the closed interval in R. Let X be an arbitrary set.
Then the convex hull conH(X) of X is defined to be a set of all covex combinations
in X. i.e.,

conH(X)
def
= ∩

{
C

∣∣∣∣ C is convex, and
X ⊆ C

}
.

By definition, the set X, itself, is convex, if and only if conH(X) = X. Similarly,
we say that a set D is a convex cone, if, for any t ∈ R+

0 , if (i) D is convex, and (ii)
for any t ∈ R+, tx ∈ D, too, where R+ = {r ∈ R : r > 0}. For an arbitrary set X, the
convex cone conC(X) of X is defined to be a set,

conC(X)
def
= ∩

{
C

∣∣∣∣ C is a convex cone, and
X ⊆ C

}
.

Fix an arbitrary countable set X, from now on. Take a subset V of the set of all
positive-real-valued functions on X. i.e.,

V = {f : X → R+ : f is a function}.

Construct the convex cone conC(V ) of the set V . We will denote this convex cone
conC(V ) of V simply by V, and we call V, a voltage set on X. Let V be a voltage
set on X. Construct a vector space V generated by V. i.e., V is the set of all linear
combinations of voltages in V, equipped with the vector addition (+), defined by the
usual functional addition, and the usual C-scalar product.

Remark that, by definition, a voltage set V satisfies

v1, v2 ∈ V =⇒ v1 + v2 ∈ V,

and
α ∈ R+, v ∈ V =⇒ αv ∈ V,

since V is a convex cone. So, the vector space V generated by V is naturally deter-
mined, by defining the natural C-scalar product.
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On V, define an inner product 〈, 〉c on V by the sesqui-linear form satisfying that

〈v1, v2〉c
def
=

1
2

∑
(x,y)∈E(G)

cxy (iv1 ((x, y))) (iv2 ((x, y))) , (4.1)

having its norm ‖·‖c on V, satisfying

‖v‖2c =
1
2

∑
(x,y)

cxy |iv ((x, y))|2 . (4.2)

We call the inner product (4.1) and (4.2), the energy form and the energy norm
on V, respectively.

Remark 4.1. (1) In (4.1), we need to keep in mind that the sum
∑

(x,y)∈E(G)

is over

the edge set E(G) of the “directed” network, not the edge set E(Ĝ) of the network! If
we take the sum over E(Ĝ), then the form (4.1) becomes 0, for any v1, v2 ∈ V. Indeed,
the edge (x, y) ∈ E(Ĝ), if and only if its shadow (y, x) ∈ E(Ĝ). So, for a summand

cxy (v1(x)− v1(y)) (v2(x)− v2(y)) ,

there always exists its pair,

cyx (v1(y)− v1(x)) (v2(y)− v2(x)) .

Since cxy = cyx, for all (x, y) ∈ E(Ĝ), we always obtain a factor of 2 from

cxy (v1(x)− v1(y)) (v2(x)− v2(y)) + cyx (v1(y)− v1(x)) (v2(y)− v2(x))

in the sum
∑

(x,y)∈E( bG) over E(Ĝ). And hence, if we take the sum over E(Ĝ), then
the form (4.1) goes to 0.

(2) Moreover, if we take a sum
∑

(x,y)∈E(G) over E(G), then it is equivalent to the
original definition of the energy form in the sense of Jorgensen and Pearse (See [6]).

(3) Under the inner product (4.1), our energy Hilbert spaces, defined below, are
equivalent to the original energy Hilbert spaces in the sense of Jorgensen and Pearse
(Also, see [6]).

Definition 4.2. The Hilbert space, the norm closure of the normed space (V, ‖.‖c),
is called the energy Hilbert space, equipped with its energy form (or its energy inner
product) 〈, 〉c. We denote the energy Hilbert space by HE .

We consider the ERN-groupoid G acts on the energy Hilbert space HE . Indeed,
there exists a groupoid action λ,

λ : G→ B(HE)

such that
λ(w) = λw for all w ∈ G,
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where

λw(v)(x)
def
= v

(
wxw−1

)
(4.3)

for all v ∈ V ⊂ V, and for all x ∈ X = V (Ĝ), with identity

v(∅) = 0, as an image of the zero element of HE .

Theorem 4.3. The groupoid action λ of G acting on the energy Hilbert space HE is
well-defined.

Proof. To check λ is a well-defined groupoid action, it is sufficient to show that

λw1λw2 = λw1w2 , for w1, w2 ∈ G,

and λw are linear onHE , for w ∈ G. By definition, λw are linear onHE . Let w1, w2 ∈ G.
Then

(λw1λw2) (v)(x) = λw1

(
v(w2xw

−1
2 )
)

=

= v
(
w1w2xw

−1
2 w−1

1

)
= v

(
(w1w2)x(w1w2)−1

)
=

= λw1w2(v)(x), for all v ∈ V ⊂ V, and x ∈ X.

Therefore,

λw1λw2 = λw1w2 . (4.4)

The above theorem guarantees that our ERN-groupoid G acts on the energy
Hilbert space HE .

Definition 4.4. The pair (HE , λ) of the energy Hilbert space HE and the
ERN-groupoid action λ of (4.3) is called the energy representation of G (or, by abusing
of notation, the energy representation of ERN).

In the rest of this section, we will consider some fundamental relations between
the ERN-groupoid action λ of the ERN G, and the energy form 〈, 〉c. The following
computation would be the basic tool to establish our next sections.

Theorem 4.5. Let λ be the ERN-groupoid action of the ERN G, acting on the energy
Hilbert space HE . Then

〈λwv1, v2〉c =
1
2
v1 (s(w))

∑
r(w)∼y

cr(w)y (v2 (r(w))− v2(y)) . (4.5)

for all w ∈ G, and for all v1, v2 ∈ V ⊂ V ⊆ HE .
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Proof. Take w ∈ G, and v1, v2 ∈ V. Then in L(HE)

〈λwv1, v2〉c =
1
2

∑
(x, y)∈E(G)

cxy (λwv1(x)− λwv1(y)) (v2(x)− v2(y)) =

=
1
2

∑
(x,y)∈E(G)

cxy
(
v1(wxw−1)− v1(wyw−1)

)
(v2(x)− v2(y)) =

=
1
2

∑
(x,y)∈E(G)

cxy
(
δr(w),xv1 (s(w))− δr(w),yv1 (s(w))

)
(v2(x)− v2(y)) =

=
1
2

∑
(x,y)∈E(G)

cxy
(
δr(w),x − δr(w),y

)
v1 (s(w)) (v2(x)− v2(y)) =

=
1
2

∑
(r(w),y)∈E(G)

cr(w)yv1 (s(w)) (v2 (r(w))− v2(y))−

− 1
2

∑
(x, r(w))∈E(G)

cxr(w)v1 (s(w)) (v2(x)− v2 (r(w))) =

since we have

δr(w),x = 1⇐⇒ δr(w),y = 0,

and

δr(w),x = 0⇐⇒ δr(w), y = 1

(Remark that the directed network G is simplicial, and hence if (x, y) ∈ E(G), then
x 6= y in X = V (G).)

=
1
2

∑
(r(w),y)∈E(G)

cr(w)yv1 (s(w)) (v2 (r(w))− v2(y)) +

+
1
2

∑
(x, r(w))∈E(G)

cxr(w)v1 (s(w)) (v2 (r(w))− v2(x)) =

=
1
2

∑
r(w)∼y

cr(w)yv1 (s(w)) (v2 (r(w))− v2(y)) =

since cxy = cyx, where the relation ∼ is defined in (3.18),

=
1
2
v1 (s(w))

∑
r(w)∼y

cr(w)y (v2 (r(w))− v2(y)) .

We will use the formula (4.5) in Section 5.
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4.2. DISSIPATION HILBERT SPACE

Let X,V, G, Ĝ,G be given as above and let Ic be the current set on X with conduc-
tance c, induced by V. This set Ic satisfies that:

Iv1 , Iv2 ∈ Ic =⇒ Iv1 + Iv2 ∈ Ic, and (4.6)
α ∈ R, and Iv ∈ Ic =⇒ αIv ∈ Ic. (4.7)

The statement (4.6) holds, because if v1, v2 ∈ V, then v1 +v2 ∈ V, and hence Iv1 +
Iv2 is identical to Iv1+v2 . Also, the statement (4.7) holds, because αIv is determined
by I|α|v, for all α ∈ R, and v ∈ V (See Section 3.2 above).

By (4.6) and (4.7), the current set Ic is a vector space over R. So, the complexifi-
cation of Ic is well-defined as a vector space over C. Let’s denote this complexification
of Ic by Ic. Define an inner product 〈, 〉I on the vector space Ic by a sesqui-linear
form satisfying that

〈Iv1 , Iv2〉I
def
=

1
2

∑
(x, y)∈E(G)

1
cxy

(Iv1 ((x, y))) (Iv2 ((x, y))) , (4.8)

for all Iv1 , Iv2 ∈ Ic ⊂ Ic. Recall that the currents Iv with conductance c are deter-
mined by

Iv ((x, y)) = cxyiv ((x, y)) = cxy (v(x)− v(y)) ,

for all (x, y) ∈ E(Ĝ), and v ∈ V (See (3.22)). Then it has its corresponding norm ‖.‖I ,
satisfying

‖Iv‖2I =
1
2

∑
(x,y)∈E(G)

1
cxy
|Iv ((x, y))|2 . (4.9)

Remark here that the sum
∑

(x,y)∈E(G)

in (4.8) is over E(G) (not over E(Ĝ)). By

definition, we obtain that the formula (4.8) can be re-written by

〈Iv1 , Iv2〉I =
1
2

∑
(x,y)∈E(G)

cxy (iv1 ((x, y))) (iv2 ((x, y))) ,

where iv1 , iv2 are currents contained in I in the sense of Section 3.1. Thus we obtain
that:

Lemma 4.6. Let v1, v2 ∈ V ⊂ V, and let Iv1 , Iv2 ∈ Ic ⊂ Ic be the corresponding
currents with conductance c. Then

〈Iv1 , Iv2〉I = 〈v1, v2〉c, in R or in C. (4.10)

The proof is straightforward. However, keep in mind that the inner product 〈, 〉I
is defined on I.

Definition 4.7. The Hilbert space HD, generated by the normed space (I, ‖.‖I), is
called the dissipation Hilbert space.
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Let HD be the dissipation Hilbert space and let G be the ERN-groupoid. Define
a map

π : G→ L(HD)

by a linear (unbounded) operator on HD

π : w ∈ G 7−→ π(w) = πw : HD → HD,

where L(HE) means the linear (bounded or unbounded) operators on HE , and where

πw (Iv) (e)
def
= Iv (we) for all e ∈ E(Ĝ), (4.11)

i.e.,

πw(Iv)(x, y) =


δxk,x Iv ((x1, . . . , xk, y)) if w = (x1, . . . , xk) ∈ FPr(Ĝ),
δw,x Iv ((w, y)) if w ∈ V (Ĝ),
0 if w = ∅,

=


δxk,x

(∑k
j=1 cxjxj+1

)
(v(x1)− v(y)) if w ∈ FPr(Ĝ),

δw,x cw,y (v(w)− v(y)) if w ∈ V (Ĝ),
0 if w = ∅,

for all v ∈ V, and (x, y) ∈ E(Ĝ). (Recall the extended definitions for the conductance
c and the current i (and I). See Section 3).

Then the morphism π of G is a well-defined groupoid action acting on the dissi-
pation Hilbert space HD.

Theorem 4.8. The map π defined in (4.11) is a well-defined groupoid action of the
ERN-groupoid G, acting on the dissipation space HD.

Proof. It suffices to show that π satisfies:

πw1πw2 = πw1w2 on HD, for all w1, w2 ∈ G. (4.12)

Let’s take w1, w2 ∈ G. Then

πw1πw2(Iv) (e) = πw1 (πw2(Iv)(e)) = πw1 (Iv(w2e)) =
= Iv (w1w2e) = Iv ((w1w2)e) = πw1w2(Iv)(e),

for all Iv ∈ I ⊆ HD, and for all e ∈ E(Ĝ). It shows that the statement (4.12) holds
true.

Now, take w ∈ G. Then

πw (Iv1 + Iv2) (e) = πw (Iv1+v2) (e) = Iv1+v2(we) =
= (Iv1 + Iv2) (we) = Iv1(we) + Iv2(we) =

= (πw(Iv1) + πw(Iv2)) (e), for all v1, v2 ∈ V, and e ∈ E(Ĝ).
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And
πw (αIv) (e) = (αIv)(we) = αIv(we) = απw(Iv)(e),

for all v ∈ V, e ∈ E(Ĝ), and for α ∈ C. Therefore, each πw is linear on HD, and hence,
the map π is a well-defined groupoid action of G acting on HD.

The above theorem shows that the ERN-groupoid G acts on HD. We call π the
dissipation action of G.

Definition 4.9. The pair (HD, π) of the dissipation space HD and the dissipation
action π of G is called the dissipation representation of G.

In this paper, we concentrate on energy representation of ERN-groupoids. How-
ever, it is definitely true that the dissipation representation is very interesting.

5. ERN-ACTIONS ON ENERGY HILBERT SPACE

Let X be a countable set and V, the voltage set on X, and let G and Ĝ be the
direct network and ERN with their groupoid G, the ERN-network. Also, let HE be
the energy Hilbert space. In Section 4.1, we showed that the groupoid G acts on HE
via a groupoid action

λ : w ∈ G 7−→ λw ∈ L(HE),

satisfying
λw(v)(x) = v(wxw−1) for all x ∈ X = V (Ĝ),

for all v ∈ V ⊂ HE , for w ∈ G, where L(HE) is the set of all bounded or unbounded
operators on HE . Also, recall the formula (4.5);

〈λwv1, v2〉c =
1
2
v1 (s(w))

∑
r(w)∼y

cr(w)y (v2 (r(w))− v2(y)) ,

for all v1, v2 ∈ V ⊂ HE , and w ∈ G. In this section, we extend the energy groupoid
action λ of G to the representation, also denoted by λ of algebra AG.

Definition 5.1. Let G be the ERN-groupoid of an ERN Ĝ. Define the (pure algebraic)
algebra AG generated by the formal series in G. i.e.,

AG
def
= C[[G]].

We call this graph-groupoid algebra AG, the ERN-algebra.

Let a be an element of AG. Then, by definition, it is expressed by

a =
∑
w∈G

tww, with tw ∈ C.

For any fixed a ∈ AG, the support Supp(a) of a is defined by a subset of G,

Supp(a)
def
= {w ∈ G : tw 6= 0}.
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Thus, we can re-write that

a =
∑

w∈Supp(a)

tww.

Remark 5.2. We define the ERN-algebra AG by the algebra C[[G]] of “formal” series
in G, not the usual groupoid algebra C[G]. So, if a ∈ AG with its support Supp(a),
then

|Supp(a)| ≤ ∞.

For instance, if there exists a reduced finite path l = (x0, x1, . . . , x0) in G, with
|l| ≥ 2, then we can have an element,

∞∑
k=−∞

ln = lim
n→∞

n∑
k=−n

ln, in AG

with the identity l0 = x0 in G. Clearly, the usual groupoid algebra C[G] is the algebra
consisting of all “finitely” supported elements in G, and hence

C[G]
Subalgebra
⊆ AG.

Suppose our directed network G is a finite tree. Then

AG = C[[G]] = C[G].

However, we are working on the general case where G is either finite or infinite.
Recall that our directed networks are just simplicial (finite or infinite) graphs.

Define now a morphism, also denoted by λ, on AG by a linear transformation,

λ : a ∈ AG 7−→ λ(a) = λa ∈ B(HE) (5.1)

satisfying that

λa (v) (x) =
∑

w∈Supp(a)

twλw(v)(x) =
∑

w∈Supp(a)

twv
(
wxw−1

)
for all v ∈ V ⊂ HE , and x ∈ X = V (Ĝ).

Proposition 5.3. Define a unary operation

(∗) : AG → AG

by  ∑
w∈Supp(a)

tw w

∗ def=
∑

w∈Supp(a)

tww
−1, (5.2)

for all
∑

w∈Supp(a)
tww ∈ AG. Then the ERN-algebra AG is a ∗-algebra.
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Proof. To show that AG is a ∗-algebra, we need to check

(a+ b)∗ = a∗ + b∗, for all a, b ∈ AG, (5.3)

a∗∗ = (a∗)∗ = a, for all a ∈ AG, (5.4)

and
(ab)∗ = b∗a∗, for all a, b ∈ AG. (5.5)

By definition, the statement (5.3) holds immediately.
Now, let w ∈ G ⊂ AG. Then, by definition, w∗ = w−1. So,

w∗∗ = (w∗)∗ = (w−1)∗ = (w−1)−1 = w.

Therefore, for any a ∈ AG, a
∗∗ = a. i.e., the statement (5.4) holds true on AG.

Now, let w1, w2 ∈ G ⊂ AG. Then

(w1w2)∗ = (w1w2)−1 = w−1
2 w−1

1 = w∗2w
∗
1 .

Thus, for any a, b ∈ AG, we get

(ab)∗ = b∗a∗,

and hence the statement (5.5) holds on AG. So, by (5.3), (5.4), and (5.5), the
ERN-algebra AG is a (pure algebraic) ∗-algebra.

From now on, we can regard our ERN-algebras as ∗-algebras.

Remark 5.4. On AG, the unary operation (5.1) is well-defined, and hence AG be-
comes a ∗-algebra. However, we do not know the corresponding groupoid actions λw’s,
in the sense of (4.3), acting on the energy Hilbert space HE , satisfy

λ∗w
??= λw−1 on B(HE), for w ∈ G. (5.6)

In fact, the relation (5.6) does “not” hold on B(HE), in general (See below)! This
shows that the unary operation (5.1) is defined naturally as “adjoint” on AG, but the
adjoints λ∗w of the corresponding actions (or representations) λ∗w acting on HE do
“not” satisfy

λ∗w = λw∗ = λw−1 , for w ∈ G,

in general, on B(HE).

5.1. TRANSFER OPERATORS AND LAPLACIANS

Throughout this section, we will use the same notations used before. Define now an
element TG in the ERN-algebra AG by

TG
def
=

∑
e∈E( bG)

λe =
∑

e∈E(G)

(λe + λe−1) =
∑

e∈E(G)

(λe + λ∗e) . (5.7)
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This element TG is called the radial operator of the ERN-groupoid G (or the
ERN Ĝ). The radial operators in the “canonical” graph-groupoidal settings have been
studied in [3, 4], and [6].

The radial operator TG of AG represents the admissibility (or the connection)
induced by the ERN Ĝ. Now, consider how the radial operator TG acts on the energy
Hilbert space HE .

Theorem 5.5. Let TG ∈ AG be the radial operator of the ERN Ĝ. Consider the
action λTG on the energy Hilbert space HE . Then

λTG(v)(x) =
∑
x∼y

v(y), (5.8)

for all v ∈ V ⊂ HE , and x ∈ X = V (Ĝ).

Proof. Let TG be the radial operator of Ĝ in AG. Then the groupoid action λTG in
the sense of (5.1) acts on HE as follows:

λTG(v)(x) =
∑

e∈E( bG)

λe(v)(x) =

=
∑

e∈E( bG)

v
(
exe−1

)
=

∑
e∈E( bG)

δr(e),xv (s(e)) =

=
∑

e∈E( bG), r(e)∼y

v (s(e)) =
∑

e∈E( bG),e=(x,y), or e=(y,x)

v(y) =

since r(e) = x

=
∑
x∼y

v(y).

Recall that Jorgensen and Pearse define a transfer operator T on the energy Hilbert
space HE by an operator,

T (v)(x)
def
=
∑
x∼y

v(y)

in [6]. Thus, the following corollary is an immediate consequence of (5.8).

Corollary 5.6. The transfer operator T in the sense of [6] is equivalent to the
groupoid action λTG of our radial operator TG on HE , in the sense that

T (v)(x) = λTG(v)(x),

for all v ∈ V ⊂ HE , and x ∈ X = V (Ĝ).

So, without loss of generality, we can say the groupoid action λTG of the radial
operator TG ∈ AG is the transfer operator on HE .
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Define now the conductance, also denoted by c, by the operator on the energy
Hilbert space HE , such that

c(v)(x)
def
=
∑
x∼y

cxyv(x), (5.9)

for all v ∈ V, and for all x ∈ X. We will call c, the conductance operator on HE .

Definition 5.7. Let TG ∈ AG be the radial operator of the ERN Ĝ, and let c ∈ B(HE)
be the conductance operator on HE . Then the Laplacian (operator) ∆G on HE is
defined by the operator

∆G
def
= c− λTG . (5.10)

Observe that

∆G(v)(x) = (c− λTG) (v)(x) = c(v)(x)− λTG(v)(x) =
∑
x∼y

cxyv(x)−
∑
x∼y

cxyv(y)

by (5.10) and (5.8)
=
∑
x∼y

cxy (v(x)− v(y)) (5.11)

for all v ∈ V ⊂ HE , and x ∈ X. By (5.11), we obtain the following lemma.

Lemma 5.8. Let ∆G be the Laplacian on HE . Then

∆G(v)(x) =
∑
x∼y

cxyiv ((x, y)) =
∑
x∼y

Iv ((x, y)) (5.12)

in R.

By (5.11), and (5.12), we can obtain the following theorem.

Theorem 5.9. Let ∆G be the Laplacian on the energy Hilbert space HE , as in (5.10).
Then it is equivalent to the Laplacian ∆ in the sense of Jorgensen and Pearse (See
[6]), on HE .

5.2. ENERGY FORM AND ERN-ACTIONS ON HE

In this section, we consider how the energy form 〈•, •〉c on the energy Hilbert space
HE is affected by the ERN-actions λ(G), more in detail. i.e., we study the formula
(4.5) in special cases.

In [6], Jorgensen and Pearse define the following special types of elements in the
energy Hilbert space HE .

Definition 5.10. Let v ∈ V in HE , and let ∆G be the Laplacian on HE .

(1) v is harmonic, if ∆Gv = 0, the zero element in HE.
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(2) v is a dipole, if there exists x1, x2 ∈ X = V (Ĝ), such that

∆G(v) = δx1 − δx2 ,

where δx : X → {0, 1}, defined by δx(y)
def
= δx, y, for all y ∈ X. (3) For x ∈ X, vx

is a reproducing kernel of HE , induced by o ∈ X, if

〈vx, u〉c = u(x)− u(o),

for an arbitrary “fixed” vertex o ∈ X, called the origin.

Remark here that the origin o is arbitrary chosen in X, and in the above lemma,
the reproducing kernel Ko of HE is defined for the chosen origin o. By (4.5), we obtain
the following theorem.

Theorem 5.11. Let w ∈ G be an element of the ERN-algebra AG, and let v1, v2 ∈ V
be elements of the energy Hilbert space HE . Then

〈λwv1, v2〉c =
1
2

(v1 (s(w))) (∆G(v2) (r(w))) . (5.13)

Proof. By (4.5),

〈λwv1, v2〉c =
1
2
v1 (s(w))

 ∑
r(w)∼y

cr(w)y (v2 (r(w))− v2(y))


for all v1, v2 ∈ V ⊂ HE , and w ∈ G. And by definition,

∆G(v)(x) =
∑
x∼y

cxy (v(x)− v(y)) ,

for all v ∈ V, and w ∈ G. Therefore,

〈λwv1, v2〉c =
1
2

(v1(s(w))) (∆G(v2)(r(w))) ,

for all v1, v2 ∈ V, and w ∈ G.

Now, we will compute the energy forms for harmonic elements, dipoles, and re-
producing kernels affected by ERN-actions (or by ERN-representations). Such com-
putation will show how the ERN-groupoid G (or the ERN-algebra AG) acts on the
energy Hilbert space HE . First, consider the energy form for harmonic elements up
to the ERN-actions.

Corollary 5.12. Let v ∈ V ⊂ HE be harmonic. Then

〈λwv, v〉c = 0 for all w ∈ G, (5.14)

and hence
〈λav, v〉c = 0 for all a ∈ AG.
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Proof. By (5.13), we have

〈λwv, v〉c =
1
2
v (s(w)) (∆G(v) (r(w))) .

Since v is harmonic, ∆G(v) = 0 on X. Therefore, the energy form, which is the
left-hand side of the above equality, becomes 0. Equivalently, the formula (5.14) holds,
for all w ∈ G. Thus, by definition

〈λav, v〉c = 0

for all a ∈ AG, whenever v is harmonic.

The above corollary is a direct consequence of the general formula (5.13), by the
definition of harmonic elements.

Now, let v ∈ V ⊂ HE be a dipole. We compute the energy form of v.

Corollary 5.13. Let v ∈ V ⊂ HE be a dipole with respect to the fixed vertices x1 and
x2. i.e., ∆G(v) = δx1 − δx2 , in HE . Then

〈λwv, v〉c =
1
2

(v (s(w)))
(
δr(w),x1 − δr(w),x2

)
(5.15)

for all w ∈ G, and hence

〈λav, v〉c =
1
2

(v (s(w)))
(∣∣Sa

x1

∣∣− |Sx2
a |
)

for all a ∈ AG, where

Sa
x1

= {w ∈ Supp(a) : r(w) = x1},

and
Sx2
a = {y ∈ Supp(a) : r(y) = x2}.

Proof. Let v be a given dipole with respect to the vertices x1 and x2 in X, and let
w ∈ G. Then, by (5.13), we obtain that

〈λwv, v〉c =
1
2

(v (s(w))) (∆G(v) (r(w))) =

=
1
2

(v (s(w))) ((δx1 − δx2) (r(w))) =

=
1
2

(v (s(w)))
(
δx1,r(w) − δx2,r(w)

)
= (5.16)

=


1
2v (s(w)) if x1 = r(w),
− 1

2v (s(w)) if x2 = r(w),
0 otherwise,

(5.17)

for all w ∈ G. So, now, let

a =
∑

w∈Supp(a)

tww ∈ AG, with tw ∈ C.
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Then

〈λav, v〉c =
∑

w∈Supp(a)

(
1
2

(v ((s(w))))
(
δx1,r(w) − δx2,r(w)

))
=

by (5.16)

=
∑

w∈Supp(a), r(w)=x1

1
2

(v (s(w)))−
∑

w∈Supp(a), r(w)=x2

1
2

(v (s(w))) =

by (5.17)

=
1
2
v (s(w))

(∣∣Sa
x1

∣∣− |Sx2
a |
)
,

since the direct network G, and the ERN Ĝ are simplicial, where

Sa
x1

= {w ∈ Supp(a) : r(w) = x1},

and
Sx2
a = {y ∈ Supp(a) : r(y) = x2},

in the ERN-groupoid G.

Now, let’s consider how the ERN-actions λ(AG) works on the reproducing kernels
{vx : x ∈ X} of HE for a fixed vertex (origin) o ∈ X.

Theorem 5.14. Let vx ∈ V ⊂ HE be a reproducing kernel with respect to a fixed
origin o ∈ X. i.e., it satisfies

〈vx, u〉c = u(x)− u(o), for all u ∈ V ⊂ HE .

Then we obtain

〈λwvx, vx〉c =
1
cxo

(
δs(w),x − δs(w),o

) (
δr(w),x − δr(w),o

)
(5.18)

for all w ∈ G, and hence

〈λavx, vx〉c =
∑

w∈Supp(a)

tw
cxo

(
δs(w),x − δs(w),o

) (
δr(w),x − δr(w),o

)
for all a =

∑
w∈Supp(a)

tww ∈ AG.

Proof. Let vx be given as above, and let w ∈ G. Different from the above two corol-
laries, we will not use our general formula (5.13), to prove (5.18). Observe that

〈λwvx, vx〉c = 〈vx, λwvx〉c =

since the energy inner product 〈, 〉c is a sesqui-linear form on HE

= λw(vx)(x)− λw(vx)(o)
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since 〈vx, u〉c = u(x)− u(o)

= vx(wxw−1)− vx(wow−1) =

= vx(wxw−1)− vx(wow−1) =

since all elements of V are R-valued

= δr(w),xvx (s(w))− δr(w),ovx (s(w)) =

= vx (s(w))
(
δr(w),x − δr(w),o

)
.

(5.19)

Now, let’s define the following two morphisms. First, define an operator Ew0 :
AG → AG by

Ew0

(∑
w∈G

tww

)
def
= tw0w0 (5.20)

for all
∑
w∈G

tww ∈ AG, for a fixed groupoid element w0 ∈ G. (Clearly, if w0 /∈ Supp(a),

then Ew0(a) = 0AG = ∅.)
Second, define a functional χw0 : AG → C by

χw0

(∑
w∈G

tww

)
def
= tw0 (5.21)

for all
∑
w∈G

tww ∈ AG, for a fixed groupoid element w0 ∈ G. (Clearly, if w0 /∈ Supp(a),

then χw0(a) = 0 in C.)
Then, for a fixed groupoid element w0 ∈ G, we define a new functional dw0 : AG →

C by

dw0

def
= χw0 ◦ Ew0 , (5.22)

where χw0 is defined in (5.21), and Ew0 is defined in (5.20).
For the rest of this proof, we will show that a reproducing kernel vx satisfies

vx =
1
cxo

(dx − do) , for x ∈ X, (5.23)

where

dx = dx |X , and do = do |X ,

where dx and do are defined in (5.22). By definition, a reproducing kernel vx0 satisfies

〈vx0 , u〉c = u(x0)− u(o),
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for all u ∈ V ⊂ HE , and for an arbitrary fixed x0 ∈ X, with respect to an arbitrary
chosen origin o ∈ X. Observe that

〈vx, u〉c =
1
2

∑
(x,y)∈E(G)

cxy (vx0(x)− vx0(o)) (u(x)− u(o)) =

=
1
2

∑
(x,y)∈E(G)

cxy

(
1
cx0o

(dx0 − do)(x)− 1
cx0o

(dx0 − do)(o)
)

(u(x)− u(o)) =

=
1
2
cx0o

(
1
cx0o

dx0(x0)− 1
cx0o

(−do(o))
)

(u(xo)− u(o)) =

=
1
2

(dx0(x0) + do(o)) (u(x0)− u(o)) =

=
1
2

(1 + 1) (u(x0)− u(o)) =

= u(x0)− u(o).

Therefore, a reproducing kernel vx0 is identified with the function on X,

1
cx0o

(dx0 − do) .

Since x0 is arbitrary in X, a reproducing kernel vx satisfies the identity (??), for
x ∈ X. Therefore, by (5.19) and (5.23), we obtain that

〈λwvx, vx〉c = vx (s(w))
(
δr(w),x − δr(w),o

)
=

=
(

1
cxo

(dx − do) (s(w))
)(

δr(w),x − δr(w),o

)
=

=
1
cxo

(dx (s(w))− do (s(w)))
(
δr(w),x − δr(w),o

)
=

=
1
cxo

(
δs(w),x − δs(w),o

) (
δr(w),x − δr(w),o

)
.

(5.24)

Therefore, the formula (5.18) holds true, for all w ∈ G, and x ∈ X. So, if we take
a =

∑
w∈Supp(a) tww in the ERN-algebra AG, then it acts on a reproducing kernel vx,

for x ∈ X, with the following energy form:

〈λavx, vx〉c =
∑

w∈Supp(a)

tw〈λwvx, vx〉c =
∑

w∈Supp(a)

tw
cxo

(
δs(w),x − δs(w),o

) (
δr(w),x − δr(w),o

)
,

(5.25)
by (5.24).

Therefore, by (5.24) and (5.25), we can get the formula (5.18).

The formula (5.18) is important to compute arbitrary energy form affected by the
ERN-groupoid-actions, because of the following proposition, proven in [6].
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Jorgensen and Pearse showed that:

Theorem 5.15 ([6]). Let Ko = {vx : x ∈ X} be the subset of HE , consisting of all
reducing kernel with respect to a fixed vertex o ∈ X. Then the energy Hilbert space
HE is generated by Ko. i.e.,

HE = spanKo
‖.‖c , (5.26)

where S
‖.‖c means the ‖.‖c-norm closure of S ⊆ HE , and where spanY means the

vector space spanned by a set Y .

The above theorem shows that if g ∈ HE , then

g =
∑
x∈X

rxvx = lim
n→∞

∑
x∈Sn

rxvx,

such that
‖g‖c <∞,

where Sn are the finite subsets of X, for n ∈ N, with

S1 ⊆ S2 ⊆ S3 ⊆ . . . .

So, thanks to (5.26), we understand arbitrary elements g of the energy Hilbert
space HE as (infinite) linear sum of reproducing kernels in Ko = {vx}x∈X , where we
fix a suitable origin o in X. And this shows that our formula (5.18) would be the key
computation to “measure” how the ERN-groupoid G (or the ERN-algebra AG) acts
on HE (for a fixed origin o in HE). Also, conversely, the formula (5.18) provides a
noncommutative probability on the ERN-algebra AG (See Section 6 below).

Corollary 5.16. Let a =
∑
w∈Supp(a) tww be an element of the ERN-algebra AG,

and let g =
∑
x∈X rxvx be a finite linear combination in the energy Hilbert space HE ,

where Ko = {vx}x∈X are the reproducing kernels of HE , with respect to a fixed origin
o ∈ X ⊂ HE . Then the action λa of a acts on g as follows:

〈λag, g〉c =
∑

(x1,x2)∈X2, w∈Supp(a)

twrx1rx2

c(x2, o)
(
δs(w),x1 − δs(w),o

) (
δr(w),x2 − δr(w),o

)
,

(5.27)
via energy form.

Proof. By (5.18), we have that

〈λwvx1 , vx2〉c =
1

c(x2, o)
(
δs(w),x1 − δs(w),o

) (
δr(w),x2 − δr(w),o

)
(5.28)

for all w ∈ G, and hence

〈λavx1 , vx2〉c =
∑

w∈Supp(a)

tw
c(x2, o)

(
δs(w),x1 − δs(w),o

) (
δr(w),x2 − δr(w),o

)
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for a =
∑

w∈Supp(a)
tww ∈ AG, for x1, x2 ∈ X. Thus, if g =

∑
x∈X

rxvx in HE , then

〈λag, g〉c =

〈
λa

(∑
x∈X

rxvx

)
,
∑
x∈X

rxvx

〉
c

=

=
∑

(x1,x2)∈X2

rx1rx2 〈λavx1 , vx2〉c

where X2 = X ×X

=
∑

(x1,x2)∈X2

rx1rx2

 ∑
w∈Supp(a)

tw
c(x2, o)

(
δs(w),x1 − δs(w),o

) (
δr(w),x2 − δr(w),o

) =

=
∑

(x1,x2)∈X2

∑
w∈Supp(a)

twrx1rx2

c(x2, o)
(
δs(w),x1 − δs(w),o

) (
δr(w),x2 − δr(w),o

)
=

=
∑

(x1,x2)∈X2, w∈Supp(a)

twrx1rx2

c(x2, o)
(
δs(w),x1 − δs(w),o

) (
δr(w),x2 − δr(w),o

)
,

for all a =
∑

w∈Supp(a)
tww ∈ AG.

6. FREE PROBABILITY ON ERN-ALGEBRAS

Throughout this section, we also use the same notations used in previous sections. In
Section 5, we study how the ERN-algebra AG act on the energy Hilbert space HE ,
in terms of the energy form 〈, 〉c, via the representation λ of AG. Conversely, in this
section, we consider how the energy measure ε(•), satisfying

εh(w) = 〈λwh, h〉c,

for all h ∈ HE , for w ∈ G, acts on AG.

6.1. FREE PROBABILITY

Let A be an arbitrary (pure algebraic) algebra, and let ε : A→ C be a linear functional
on A. Then the pair (A, ε) is called a ( noncommutative) free probability space (e.g., see
[30]). By definition, the so-called free probability on a given algebra A is completely
dependent upon a fixed linear functional ε. Each element a of a free probability space
(A, ε) are called (noncommutative) free random variables.

Let a ∈ (A,ε) be a free random variable. Then the n-th (free) moments of a is
defined by

ε(an) for n ∈ N.
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Similarly, if a1, . . . , as ∈ A are chosen elements, for s ∈ N, then the (j1, . . . , jn)-th
joint (free) moments of a1, . . . , as is defined by

ε (aj1aj2 . . . ajn) ,

for all (j1, . . . , jn) ∈ {1, . . . , s}n, for all n ∈ N. Define a set Θ by a collection of
certain formal series in (a variable) z,

Θz
def
= {

∞∑
n=1

knz
n : kn ∈ C,∀n ∈ N}.

The set {ε(an)}∞n=1 of n-th moments of a represents the free-distributional data of
a in (A, ε) i.e., the (noncommutative) free distribution µa of a is a linear functional,

µa : Θ(z)→ C

defined by

µa

( ∞∑
n=1

knz
n

)
= ε

( ∞∑
n=1

kna
n

)
=
∞∑
n=1

kn (ε(an)) ,

for all
∑∞
n=1 knz

n ∈ Θ(z), with kn ∈ C. So, by definition, indeed, the free moments
{ε(an)}∞n=1 of a ∈ A represent the free distributional data µa of the free random
variable a. Similarly, for a set Θz1,...,zs of the multi-variable formal series

Θz1,...,zs =
∞
∪
n=1
{

∑
(i1,...,in)∈{1,...,s}n

ki1,...,in(zi1 . . . zin) : ki1,...,in ∈ C},

in noncommutative variables z1, . . . , zs, the set

∞
∪
n=1
{ε(ai1 . . . ain) : (i1, . . . , in) ∈ {1, . . . , s}n}

of joint free moments of the random variables a1, . . . , as of (A, ε) represent the joint
free distributional data of a1, . . . , as. Indeed, the joint free distribution µa1,...,as of
a1, . . . , as is defined by a linear functional,

µa1,...,as : Θz1,...,zs → C

satisfying

µa1,...,as(g) = g(a1, . . . , as) = ε

( ∑
(i1,...,in)∈{1,...,s}n

ki1,...,inai1 . . . ain

)
,

whenever

g(z1, . . . , zs) =
∑

(i1,...,in)∈{1,...,s}n
ki1,...,in(zi1 . . . zin) in Θz1,...,zs ,
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with ki1,...,in ∈ C. So, the study of joint free distributions µa1,...,as (or free distributions
µa) of random variables a1, . . . , as (resp., random variables a) is to investigate the joint
free moments ε(ai1ai2 . . . ain) (resp., the free moments ε(an)) of the random variables.

Now, let h be an arbitrary fixed element of our energy Hilbert space HE , and let
AG be the ERN-algebra induced by the ERN Ĝ. Define a linear functional

εh : AG → C

by
εh (a) =

∑
w∈Supp(a)

twεh(w)

def
=

∑
w∈Supp(a)

tw〈λwh, h〉c,
(6.1)

for all a =
∑

w∈Supp(a)
tww ∈ AG. Then, for a fixed h ∈ HE , the linear functional εh is

well-defined on AG.

Definition 6.1. Let AG be the ERN-algebra, and h ∈ HE . Let εh be the linear
functional on AG, defined in (6.1). Then the pair (AG, εh) is called a energy (noncom-
mutative) probability space induced by h.

Let’s go back to the general setting. Suppose (A, ε) is an arbitrary noncommutative
probability space. Then the n -th moments ε(an) of a free random variable a ∈ (A, ε)
have their equivalent free distributional data, called free cumulants kn(a, . . . , a) of
a (See [30] and the cited references in [30]).

The n-th cumulant kn(a, . . . , a) of a free random variable a ∈ (A, ε) is defined by

kn

a, . . . ., a︸ ︷︷ ︸
n-times

 def
=

∑
π∈NC(n)

επ

a, . . . . . . , a︸ ︷︷ ︸
n-times

µ(π, 1n),

for all n ∈ N, where NC(n) is the lattice consisting of all noncrossing partitions over
{1, . . . , n}, with its minimal element

0n = {(1), (2), . . . , (n)},

and its maximal element
1n = {(1, . . . , n)},

(Here, the parenthesis means blocks of the partitions.) and επ(. . .) means the
partition-depending moments, and where

µ : NC(n)×NC(n)→ C

is the Moebius functional in the incident algebra I.
Noncrossing partitions over {1, . . . , n} mean the partitions without crossings. For

example,
π = {(1, 2, 5), (3, 4), (6, 7)}
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is a noncrossing partition in NC(7), however

θ = {(1, 2, 5), (3, 4, 6), (7)}

is a “crossing” partition, because the blocks (1, 2, 5) and (3, 4, 6) of the partition θ are
crossing from each other.

Let NC(n) be the collection of all noncrossing partitions over {1, . . . , n}, for all
n ∈ N. Then this set NC(n) is a lattice under the partial ordering ≤,

π1 ≤ π2
def⇐⇒ ∀V1 ∈ π1,∃V2 ∈ π2, s.t., V1 ⊆ V2,

where “V ∈ π” means “V is a block of π,” and ⊆ means the usual set-inclusion.
The incident algebra I is an algebra consisting of all multiplicative functionals

ψ : NC(n)×NC(n)→ C

satisfying that ψ(π1, π2) = 0, whenever π1 > π2, equipped with the usual functional
addition (+), and the functional convolution (∗), defined by

(ψ1 ∗ ψ2) (π1, π2)
def
=

∑
π1≤θ≤π2

ψ(π1, θ)ψ(θ, π2)

for all ψk ∈ I, for k = 1, 2. Here, a “multiplicative” functional ψ means that

ψ(π, 1n) = Π
V ∈π

ψ
(
0|V |, 1|V |

)
,

where “V ∈ π” means that “V is a block of π,” and |V | means the cardinality of V .
There exists the zeta functional ζ in I, defined by

ζ(π, θ)
def
=

{
1 if π ≤ θ,
0 otherwise.

As the convolution inverse of ζ, we can define the Moebius functional µ in I. Since
it is the inverse of ζ, it satisfies that

µ(0n, 1n) = (−1)n−1cn−1 and
∑

π∈NC(n)

µ(π, 1n) = 0, (6.2)

where ck = 1
k+1

(
2k
k

)
are the k-th Catalan numbers, for all k ∈ N.

Finally, the partition-depending moments επ(a, . . . , a) is computed as follows:

επ(a, . . . , a) = Π
V ∈π

ε(a|V |),

for all π ∈ NC(n), for all n ∈ N. For example, if

π = {(1, 3), (2), (4, 5)} in NC(5),
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then
επ(a, a, a, a, a) = ε(aε(a)a)ε(aa) = ε(a2)ε(a)ε(a2).

By considering the cumulant computation on (A, ε), we can check the free structure
on A (with respect to ε). By Speicher, two subalgebras A1 and A2 of A are free in
(A, ε), if all “mixed” free cumulants of A1 and A2 vanish. Also, two subsets A1 and
A2 of A are free in (A, ε), if the algebras Ak generated by Ak are free in (A, ε), for
k = 1, 2. Similarly, two free random variables a1 and a2 of A are free in (A, ε), if two
subsets {a1} and {a2} are free in (A, ε). Assume now that Aj are subalgebras of A,
and suppose they are free from each other in (A, ε). The we can construct a subalgebra
A0 generated by Aj ’s in A. We denote this subalgebra A0 by ∗

j
Aj to emphasize that

it is generated by free subalgebras. If A0 is identical to A, itself, then we call A a free
product algebra of Aj ’s.

6.2. FREE-MOMENT COMPUTATIONS IN (AG, εX)

Throughout this section, we keep using the same notations. In Section 6.1, we showed
that there exists a well-defined noncommutative probability space (AG, εh), consisting
of the ERN-algebra AG, and a linear functional εh induced by h, for any fixed h ∈ HE .
This shows that the energy Hilbert space HE acts on the algebraic dual A′G of AG,
via a Hilbert-space-action ε,

ε : HE → A′G

such that
ε(h)

def
= εh for all h ∈ HE , (6.3)

where a linear functional εh ∈ A′G is defined by (6.1).

Proposition 6.2. The energy Hilbert space HE acts on the ERN-algebra AG, in the
sense of (6.3).

Recall that the algebraic dual A′ of an arbitrary algebra A is defined by

A′
def
= {f : A→ C : f is linear}.

Remark here that, since our ERN-algebra AG is a pure algebraic algebra, its
algebraic dual A′G is topology-free. i.e., the elements of A′G are simply linear (without
boundedness, equivalently continuity).

Recall that the energy Hilbert space HE is spanned by reproducing kernels
Ko = {vx}x∈X , for an arbitrary fixed origin o ∈ X. So, we can determine the linear
functionals

εx = εvx ∈ A′G, for vx ∈ Ko. (6.4)

Definition 6.3. Let AG be the ERN-algebra and let εx be a linear functional on AG,
defined in (6.4). Then the noncommutative probability space (AG, εx) is called the
energy (noncommutative) probability space (centered at x).
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i.e., a linear functional εx measures the quantity of elements of AG, in terms of
the energy form depending on the location x ∈ X = V (Ĝ) of the ERN Ĝ. Consider
the following computation:

εx(w) =〈λwvx, vx〉c =

=
1

c (r(w), o)
(
δs(w),x − δs(w),o

) (
δs(w),x − δr(w),o

)
= by (5.28) (or by (5.18))

=
1

c (r(w), o)
(
δs(w),xδs(w),x − δs(w),xδr(w),o − δs(w),oδs(w),x + δs(w),oδr(w),o

)

=



1
c(x, o) = 1

cxo

if w is a loop with s(w) = x = r(w),
equivalently, (s(w), r(w)) = (x, x),

− 1
c(o,o) = − 1

coo
if (s(w), r(w)) = (x, o),

− 1
c(x, o) = − 1

cxo
if (s(w), r(w)) = (o, x),

1
c(o,o) = 1

coo
if (s(w), r(w)) = (o, o),

(6.5)

where s(w) = ww−1, and r(w) = ww−1 in V (Ĝ) = X. In (6.5), we assume x 6= o in
X, for convenience. However, we can easily verify the case where x = o in X, again
by (5.18). Assume that x = o in X. Then we obtain

εo(w) = 0 for all w ∈ G, (6.6)

equivalently,
εo = 0, the zero functional on AG.

Indeed, we have that

εo(w) =

{
1
cxo

(1− 1− 1 + 1) if (s(w), r(w)) = (o, o)
0 otherwise,

for all w ∈ G ⊂ AG. So, from now on, if we mention a energy functional εx, then we
automatically assume x 6= o in X. From the formula (6.5), we also verify that the
quantity of εx(w) is related to the resistance R = 1

c , i.e., we can re-write (6.5) by

εx(w) =


R(x, o)

if w is a loop with s(w) = x = r(w),
equivalently, (s(w), r(w)) = (x, x)

−R(o, o) if (s(w), r(w)) = (x, o)
−R(x, o) if (s(w), r(w)) = (o, x)
R(o, o) if (s(w), r(w)) = (o, o),

(6.7)

for all w ∈ G ⊂ AG. By physics, we can have

R(x, x) = 0 for all x ∈ X,
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because the current has the zero resistance to flow from x to x. In such a sense, the
formula (6.7) becomes

εx(w) =


R(x, o) = 1

cxo

if w is a loop with s(w) = x = r(w),
equivalently, (s(w), r(w)) = (x, x),

0 if (s(w), r(w)) = (x, o),
−R(x, o) = −1

cxo
if (s(w), r(w)) = (o, x),

0 if (s(w), r(w)) = (o, o),

(6.8)

and hence

εx(w) =


R(x, o) = 1

cxo
if (s(w), r(w)) = (x, x),

−R(x, o) = −1
cxo

if (s(w), r(w)) = (o, x),
0 otherwise,

for all w ∈ G ⊂ AG. The following lemma is the direct consequence of the computation
(6.8).

Lemma 6.4. Let w ∈ G be a groupoid element in the ERN-algebra AG, and let εx
be an energy functional induced by a reproducing kernel vx, defined in (6.4), in the
energy Hilbert space HE . Then

εx(w) =


1
cxo

if (s(w), r(w)) = (x, x),
− 1
cxo

if (s(w), r(w)) = (o, x),
0 otherwise.

Let w be a reduced finite path in the (arbitrary) graph groupoid G of a graph
G. We say that w is a loop (finite path) in G, if w = xwx, with x ∈ V (G). Now,
let G be our directed network with its ERN Ĝ. As we have seen in Section 3, every
directed network is simplicial, and hence every ERN is simplicial in the sense that Ĝ
has neither loop-edges nor multi-edges. However, it is possible that Ĝ may / can have
loops, which are not loop-edges! For example, let

G =

x1 •
↑ ↘

x3 • ← • x2

.

Then this graph G has neither loop-edges nor multi-edges. However, it has its
loops

(x1, x2, x3)n, (x2, x3, x1)n, and (x3, x1, x2)n

for all n ∈ N. Thus, the above lemma has the following combinatorial equivalency:

Corollary 6.5. Let w ∈ G be a groupoid element in AG, and let εx be an energy
functional in the sense of (6.4). Then

εx(w) =


1
cxo

if w is a loop with w = xwx,

− 1
cxo

if w = owx,

0 otherwise.
(6.9)
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More precisely, we have that:

(1) if w is an edge in G, then εx(w) = − 1
cxo

, only when w = (o, x) in E(Ĝ).
(2) if w is a non-loop reduced finite path in G, which is not an edge, then εx(w) =
− 1
cxo

, only when w = owx.
(3) if w is a loop in G, with |w| > 1, then εx(w) = 1

cxo
, only when w = xwx.

The above corollary shows that, if w ∈ G in AG is “non-loop,” then the nonzero
energy form becomes a negative quantity, and if w is loop, then the nonzero energy
form becomes a positive quantity.

By (6.8) (or (6.9)), we obtain the following distributional data.

Theorem 6.6. Let w ∈ G be a random variable in the energy probability space
(AG, εx) centered at x ∈ X. Then

εx(wn) =


1
cxo

if w is a loop with w = xwx,

for all n ∈ N,
− 1
cxo

if w = owx, and n = 1

0 otherwise,

(6.10)

for all n ∈ N.

Proof. If n = 1, then the formula (6.10) holds, by (6.9). Assume now that n > 1 in
N. If w is non-loop, then wn = ∅, for all n > 1. So,

εx(wn) = εx(∅) = εx(0AG) = 0,

whenever n > 1, if w is non-loop. Now, assume that w is loop, moreover, w = xwx in
G. Then wn = xwnx, for all n ∈ N. i.e.,

(s(wn), r(wn)) = (x, x), in X2,

for all n ∈ N. Therefore, by (6.8), we can obtain that

εx(wn) =
1
cxo

for all n ∈ N.

The above theorem provides the noncommutative probabilistic distributional data
of groupoid elements w ∈ G in the energy probability space (AG, εx). Based on the
above theorem, we establish a calculus on the ERN-algebra AG with respect to energy
forms.

6.3. FREE-CUMULANT COMPUTATIONS IN (AG, εX)

Let (AG, εx) be an energy probability space centered at x ∈ X, and let w ∈ G be an
element in the ERN-algebra AG. In Section 6.2, we considered the free distributional



Free probability induced by electric resistance networks on energy Hilbert spaces 591

data of w, by computing the free moments {εx(wn)}n∈N (See (6.10)). In this section,
we study the equivalent free-distributional data of w by computing the free cumulants

{kn(w, . . . , w)}n∈N.

By doing that, we obtain the free structure of AG, in terms of a fixed vertex x. Let
w ∈ G be a free random variable in the energy probability space (AG, εx). Observe

kn

(
w, . . . . . . ., w︸ ︷︷ ︸

n-times

)
=

∑
π∈NC(n)

εx:π (w, . . . , w)µ(π, 1n) =

=
∑

π∈NC(n)

(
Π
V ∈π

εx

(
w|V |

))
µ(π, 1n) =

=
∑

π∈NC(n)

(
Π
V ∈π

(
εx(w|V |) µ(0|V |, 1|V |)

)) (6.11)

for all n ∈ N. By (6.11), we obtain the following lemma without proof.

Lemma 6.7. Let w ∈ G be a free random variable in (AG, εx). Then

kn

(
w, . . . , w︸ ︷︷ ︸
n-times

)
=

∑
π∈NC(n)

(
Π
V ∈π

(
εx(w|V |)µ

(
0|V |, 1|V |

)))

for all n ∈ N.

By the above lemma (or (6.11)) and (6.10), we get that

k1(w) = εx(w) =


1
cxo

if w = xwx,

− 1
cxo

if w = owx,

0 otherwise,

and, for n > 1,

kn(w) =


∑

π∈NC(n)

(
Π
V ∈π

(
(−1)|V |

cxo|V |

(
2 (|V | − 1)
|V | − 1

)))
if w = xwx,

0 otherwise,

=


∑

π∈NC(n)

(
Π
V ∈π

(
(−1)|V |

cxo|V |
(2(|V |−1))!

(|V |−1)!(|V |−1)!

))
if w = xwx,

0 otherwise,

(6.12)

by (6.2).
Let π ∈ NC(n) be a noncrossing partition. Then we define the size |π| of π by

the cardinality of the set of blocks in π. For example, if

π = {(1, 3, 6, 7), (2), (4, 5)},
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with blocks (1, 3, 6, 7), (2), and (4, 5), in NC(7), then

|π| = 3.

By (6.12), we can obtain the following theorem, which is equivalent to (6.10)
(combinatorially).

Theorem 6.8. Let w ∈ G be a free random variable in the energy probability space
(AG, εx) centered at x. Then the n-th free cumulants of w are determined by the
formula,

k1(w) = εx(w) =


1
cxo

if w = xwx,

− 1
cxo

if w = owx,

0 otherwise,
(6.13)

and

kn

(
w, . . . . . . , w︸ ︷︷ ︸

n-times

)
=


∑

π∈NC(n)

(
1
cxo

)|π|
µ(π, 1n) if w = xwx,

0 otherwise

for all n ∈ N \ {1}, where |π| means the size of π.

Proof. Let n = 1. Then, by definition, k1(w) = εx(w). Assume now that n > 1 in N.
Then, by (6.12), we obtain that

kn(w, . . . , w) =


∑

π∈NC(n)

(
Π
V ∈π

(
(−1)|V |

cxo|V |
(2(|V |−1))!

(|V |−1)!(|V |−1)!

))
if w = xwx,

0 otherwise,

=


∑

π∈NC(n)

(
1
cxo

)|π|(
Π
V ∈π

(
(−1)|V |(2(|V |−1))!

|V |((|V |−1)!)2

))
if w = xwx,

0 otherwise,

=


∑

π∈NC(n)

(
1
cxo

)|π|
(µ(π, 1n)) if w = xwx,

0 otherwise,

since
µ(π, 1n) = Π

V ∈π
µ
(
0|V |, 1|V |

)
,

for all π ∈ NC(n), for n ∈ N (See Section 6.1 or [30]).

Now, let’s consider the mixed cumulants of the distinct groupoid elements w1 and
w2, as free random variables in the energy probability space (AG, εx) “centered at x”.
First, compute the followings;

k2 (w1, w2) = εx(w1w2)µ(12, 12) + εx(w1)εx(w2)µ(02, 12) =
= εx(w1w2)− εx(w1)εx(w2),

(6.14)
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since
µ(12, 12) = 1, and µ(02, 12) = (−1)2−1c1 = −1.

Assume that wk = xwkx in G, for all k = 1, 2. Then the formula (6.14) goes to

k2(w1, w2) =
1
cxo
− 1
cxo

1
cxo

=
cxo − 1
c2xo

,

by (6.13). Suppose now that w1 and w2 are admissible, i.e., w1w2 6= ∅ in G, and
assume that w1 = ow1x and w2 = xw2x. Then the formula (6.14) goes to

k2(w1, w2) = − 1
cxo
−
(
− 1
cxo

)(
1
cxo

)
=

1− cxo
c2xo

, (6.15)

by (6.13). Similarly, let w1 = xw1x and w2 = xw2o. Then

k2(w1, w2) = 0, (6.16)

again by (6.13). This shows that even though w1 and w2 are admissible in G, the
cumulants induced by the energy form can vanish. Since we assume x 6= o in X =
V (Ĝ) ⊂ G, from (6.15) and (6.16) we can verify as follows:

Theorem 6.9. Let w1, w2 ∈ G be free random variables in the energy probability
space (AG, εx) centered at x. Then the “mixed” cumulants satisfy

kn (wj1 , wj2 , . . . , wjn) =

=



∑
π∈NC(n)

(
1
cxo

)|π|
µ(π, 1n) if wk = xwkx, ∀k = 1, 2,

∑
π∈NC(n)

(
1
cxo

)|Wπ|
µ(π, 1n) if w1 = ow1x, w2 = xw2x,

0 otherwise,

(6.17)

for all “mixed” n-tuples (j1, . . . , jn) ∈ {1, 2}n, for n ∈ N \ {1}, where

Wπ =

V ∈ π
∣∣∣∣∣∣
V = (i1, . . . , i|V |) in π,
i1 ≤ i2 ≤ . . . ≤ i|V |

in {1, 2}

 ,

for each π ∈ NC(n), for all n ∈ N \ {1}.

Proof. Assume first that wk = xwkx in G, for all k = 1, 2. Then the mixed cumulants

kn(wj1 , . . . , wjn) =
∑

π∈NC(n)

εx:π (wj1 , . . . , wjn)µ(π, 1n) =

=
∑

π∈NC(n)

(
Π
V ∈π

εV (wj1 , . . . , wjn)
)
µ(π, 1n),
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where
εV (wj1 , . . . , wjn)

def
= ε

(
wi1wi2 . . . wi|V |

)
,

whenever V = (i1, . . . , i|V |) ∈ π. And we have

εV (wj1 , . . . , wjn) = ε(wi1 . . . wi|V |) =
1
cxo

, (6.18)

for all V ∈ π ∈ NC(n), for n ∈ N \ {1}, by (6.10), because the groupoid element wi1
. . .win is again a loop connecting x to x in G. By (6.18), if wk are loop with their
initial and terminal vertices x, then the mixed cumulants of w1 and w2 satisfy

kn(wj1 , . . . , wjn) =
∑

π∈NC(n)

(
1
cxo

)|π|
µ(π, 1n). (6.19)

Assume now that w1 = ow1x and w2 = xw2x. Then w1w2 is nonempty in G, and
it satisfies

w1w2 = o(w1w2)x,

and hence, we obtain the nonzero quantities for it, in (6.10) and (6.15). So, in general,
we can get that

kn (wj1 , . . . , wjn) =
∑

π∈NC(n)

(εx:π(wj1 , . . . , wjn))µ(π, 1n) =

=
∑

π∈NC(n)

(
Π
V ∈π

εx:V (xj1 , . . . , xjn)
)
µ(π, 1n) =

=
∑

π∈NC(n)

(
− 1
cxo

)|Wπ|

µ(π, 1n),

(6.20)

where

Wπ
def
=

V ∈ π
∣∣∣∣∣∣
V = (i1, . . . , i|V |), and
i1 ≤ i2 ≤ . . . ≤ i|V |

in {1, 2}

 ,

since εx(w2w1) = 0, by (6.10).
Besides (6.19) and (6.20), all other mixed cumulants vanish, by (6.13) and (6.10).

By the previous theorem we can obtain the following free structure on the energy
probability space (AG, εx).

Theorem 6.10. Let w ∈ G be a random variable in (AG, εx), either

w = xwx or w = oxw in G,

and let w′ ∈ G ⊂ AG. Then w and w′ are ∗-free in (AG, εx), if and only if the subsets

{w,w−1 = w∗} and {w′, (w′)−1 = (w′)∗}
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of AG are free in (AG, εx), if and only if

s(w′), r(w′) ∈ X \ {x, o}.

Proof. (⇐) Assume that a free random variable w′ ∈ G in (AG, εx) satisfies

s(w′), r(w′) ∈ X \ {x, o}.

Then, by (6.17), the mixed free cumulants of

{w,w−1 = w∗} and {w′, (w′)−1 = (w′)∗}

vanish. Equivalently, the free random variables w and w′ are free in (AG, εx).
(⇒) Suppose the free random variables w and w′ are free in (AG, εx), equivalently,

{w,w−1 = w∗} and {w′, (w′)−1 = (w′)∗}

have vanishing mixed cumulants. Now, assume that either

s(w′) ∈ {x, o} or r(w′) ∈ {x, o}.

Then, again by (6.17), there exists (at least one) nonvanishing mixed cumulants
(for example, like in (6.14) or in (6.15)). This contradicts our assumption that w and
w′ are free in (AG, εx).

The above theorem characterize the free structure on the ERN-algebra AG, in
terms of the energy form εx (centered at x ∈ X). The following corollary is the direct
consequence of the above theorem.

Corollary 6.11. Let AG be our ERN-algebra and let (AG, εx) be an energy probability
space centered at x ∈ X \ {o}. Then there exists ∗-subalgebras Ao and Aco of AG, such
that

AG = Ao ∗ Aco, (6.21)

in the sense of Section 6.1, where

Ao
def
= A lg

(
C
[[{

w ∈ G
∣∣∣∣ s(w) ∈ {x, o} or

r(w) ∈ {x, o}

}]])
,

and

Aco
def
= A lg

C

w ∈ G

∣∣∣∣∣∣
s(w) ∈ X \ {x, o}

and
r(w) ∈ X \ {x, o}

 ,

where A lg(Y ) means an algebra generated by a set Y . i.e., the ERN-algebra AG is a
free product ∗-algebra of Ao and Aco.

Proof. The above corollary is proven by the above theorem and by the following
observation: if we let

Go = {w ∈ G : s(w) ∈ {x, o} or r(w) ∈ {x, o}},
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then
G = Go ∪Gc

o,

where Gc
o is the compliment of Go in G, set-theoretically. Remark here that, by defi-

nition,
G−1
o = Go,

where Y −1 def= {y−1 : y ∈ Y }, for all subsets Y of G. So, the ∗-subalgebra

Ao = A lg (C[[Go]]) = ∗ −A lg (C[[Go]]) ⊆ AG

is well-defined and hence Aco, too. Also, by definition,

AG = C[[G]] = C[[Go ∪Gc
o]],

and hence
AG = A lg (Ao ∪ Aco) . (6.22)

By the above theorem, the ∗-subalgebras Ao and Aco are ∗-free in (AG, εx). There-
fore, by (6.22),

AG = Ao ∗ Aco.

The relation (6.21) characterizes the free structure of AG in terms of εx, for x ∈ X.
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