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RECURSIVELY ARBITRARILY
VERTEX-DECOMPOSABLE SUNS

Olivier Baudon, Frédéric Gilbert, Mariusz Woźniak

Abstract. A graph G = (V,E) is arbitrarily vertex decomposable if for any sequence τ
of positive integers adding up to |V |, there is a sequence of vertex-disjoint subsets of V
whose orders are given by τ , and which induce connected graphs. The aim of this paper
is to study the recursive version of this problem on a special class of graphs called suns.
This paper is a complement of [O. Baudon, F. Gilbert, M. Woźniak, Recursively arbitrarily
vertex-decomposable graphs, research report, 2010].
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1. TERMINOLOGY AND PRELIMINARY RESULTS

In this paper, we deal only with simple graphs, that means, graphs without loops
or multiple edges. We denote by n the number of vertices, also called order of the
graph and by m the number of edges. If G = (V,E) and A ⊆ V , G[A] will denote the
subgraph of G induced by A. For more definitions on graphs, please refer to [2].

1.1. ARBITRARILY VERTEX-DECOMPOSABLE GRAPHS

Let n, τ1, . . . , τk be positive integers such that τ1 + . . . + τk = n. τ = (τ1, . . . , τk) is
called a decomposition of n. If the size of the decomposition is pertinent, we would
precise k-decomposition.

Let G = (V,E) be a graph of order n, and τ a k-decomposition of n. G is
τ -vertex-decomposable iff it exists a partition of V : V1, . . . , Vk such that for each
i, 1 ≤ i ≤ k
• |Vi| = τi,
• G[Vi] is connected.

A graph G = (V,E) of order n is arbitrarily vertex-decomposable (in short AVD)
iff for each decomposition τ of n, G is τ -vertex-decomposable.
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1.2. RECURSIVELY ARBITRARILY VERTEX-DECOMPOSABLE GRAPHS

Definition 1.1. A graph G = (V,E) with order n is recursively arbitrarily
vertex-decomposable (in short R-AVD) iff:

• G = K1 or
• G is connected and for each decomposition τ = (τ1, . . . , τk) of n, k ≥ 2, it exists a

partition of V : V1, . . . , Vk such that for all i, 1 ≤ i ≤ k:
– |Vi| = τi
– G[Vi] is R-AVD.

Remark 1.2. A graph G = (V,E) of order n is R-AVD iff for each integer 1 ≤ λ ≤
bn2 c, it exists a subset Vλ of V such that:

• |Vλ| = λ,
• G[Vλ] is R-AVD,
• G[V \Vλ] is R-AVD.

1.3. FAMILIES OF GRAPHS

We present here some families of graphs and their notations, used in the further
sections.

Let a be a positive integer. Pa denotes the path of order a, Ca the cycle of order
a (cp. Figures 1a and 1b).

A k-pode Tk(t1, . . . , tk) is a tree of order 1+
∑k
i=1 ti composed by k paths of order

respectively t1, . . . , tk, connected to a unique node, called the root of the k-pode (cp.
Figure 1c).

Let a and b be two positive integers. A caterpillar Cat (a, b) is a tree of order a+b,
composed by three paths of order a, b and 2, sharing exactly one node, called the root
of the caterpillar. Cat (a, b) is isomorphic to T3(a− 1, b− 1, 1) (cp. Figure 1d).

A sun with r rays is a graph of order n ≥ 2r with r hanging vertices u1, . . . , ur
whose deletion yields a cycle Cn−r, and each vertex vi adjacent to ui is of degree three.
If the sequence of vertices vi is situated on the cycle Cn−r in such a way that there
are exactly ai ≥ 0 vertices, each of degree two, between vi and vi+1, i = 1, . . . , r (the
indices taken modulo r), then this sun is denoted by Sun (a1, . . . , ar), and is unique
up to isomorphism (cp. Figure 1e).

Note that the order of Sun (a1, . . . , ar) equals n = 2r + a1 + . . .+ ar.

1.4. ON-LINE ARBITRARILY VERTEX-DECOMPOSABLE GRAPHS

The notion of on-line arbitrarily vertex decomposable graph has been introduced by
Horňák and al. in [3].

Let G = (V,E) be a graph. Imagine now the following decomposition procedure
consisting of k stages, where k is a random variable attaining values from [1, n]. In
the ith stage, where i ∈ [1, k], a positive integer τi arrives and we have to choose a
subset Vi of V of order τi that is disjoint from all subsets of V chosen in previous
stages (without a possibility of changing the choice in the future).
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(a) Path P5 (b) Cycle C5 (c) 3-pode T3(3, 2, 2)

(d) Cat (3, 5) (e) Sun (2, 3, 1)

Fig. 1. Examples of graphs

More precisely, for every partial sequence (τ1, . . . τi) whose sum is less than n, there
is a sequence (V1, . . . , Vi) of disjoint subsets of V such that for 1 ≤ j ≤ i, |Vj | = τj ,
with the following property: for all sequences (τ ′1, . . . , τ

′
k) with k ≥ i and summing to

n, such that τ ′r = τr for 1 ≤ r ≤ i, there is a decomposition of V into disjoint subsets
V ′1 , . . . , V

′
k with |V ′j | = τ ′j and G[V ′j ] connected, for all j, and V ′j = Vj for 1 ≤ j ≤ i.

Definition 1.3 ([3]). If the decomposition procedure can be accomplished for any
(random) sequence of positive integers (τ1, . . . , τk) adding up to n, the graph G is said
to be on-line arbitrarily vertex-decomposable, (in short OL-AVD).

Lemma 1.4 ([3]). A graph G = (V,E) of order n is OL-AVD iff for each integer
1 ≤ λ ≤ n− 1, it exists a subset Vλ of V such that

• |Vλ| = λ,
• G[Vλ] is connected,
• G[V \Vλ] is OL-AVD.

Remark 1.5. A straightforward consequence of Lemma 1.4 and Remark 1.2 is that
every R-AVDgraph is OL-AVD.

The opposite is not true. For example, the caterpillar Cat (8, 11) is OL-AVD [3],
but not R-AVD [1].

The next result gives a complete characterization of OL-AVD suns.
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Theorem 1.6 ([4]). A sun with one ray is always OL-AVD.
A sun with two rays Sun (a, b) is OL-AVD iff a and b take values given in Table 1a.
A sun with three rays Sun (a, b, c) is OL-AVD iff a, b and c take values given in

Table 1b.
A sun with four rays is OL-AVD iff it is isomorphic to Sun (0, 0, 1, d), where

d ≡ 2, 4 (mod 6).
A sun with five or more rays is never OL-AVD.

Table 1. Values for OL-AVD suns

a b

0 arbitrary
1, 3 ≡ 0 (mod 2)
2 6≡ 3 (mod 6), 3, 9, 21
4 ≡ 2, 4 (mod 6), [4, 19]\{15}
5 ≡ 2, 4 (mod 6), 6, 18
6 6, 7, 8, 10, 11, 12, 14, 16
7 8, 10, 12, 14, 16
8 8, 9, 10, 11,12
9 10, 12

(a) Values a, b (b ≥ a), such that Sun (a, b)
is OL-AVD

a b c

0 ≡ 1, 2 (mod 3)
1 ≡ 0 (mod 2)
2 ≡ 2, 4 (mod 6), 3, 6, 7, 11, 18, 19

0 3 ≡ 2, 4 (mod 6)
4 4, 5, 6, 8, 10, 11, 12, 14, 16
5 6, 8, 16

6, 7 8, 10
8 8, 9

1 2 ≡ 2, 4 (mod 6), 6, 18
2 3 4, 8, 16

(b) Values a, b, c (c ≥ b ≥ a), such that Sun (a, b, c)
is OL-AVD

1.5. RECURSIVELY ARBITRARILY VERTEX-DECOMPOSABLE TREES

Theorem 1.7 ([1]). A tree T is R-AVD if and only if either T is a path or T is a
caterpillar Cat (a, b) with a and b given in Table 2 or T is the 3-pode T3(2, 4, 6).

Table 2. Values a, b (b ≥ a), such that Cat (a, b) is R-AVD

a b

2, 4 ≡ 1 (mod 2)
3 ≡ 1, 2 (mod 3)
5 6, 7, 9, 11, 14, 19
6 7
7 8, 9, 11, 13, 15

2. RECURSIVELY ARBITRARILY VERTEX-DECOMPOSABLE SUNS

This section presents the main result of this paper, a complete characterization of
R-AVD suns.
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Theorem 2.1.
A sun with one ray is always R-AVD.
A sun with two rays Sun (a, b) is R-AVD if and only if a and b take values given in
Table 3a.
A sun with three rays Sun (a, b, c) is R-AVD if and only if a, b and c take values given
in Table 3b.
A sun with four rays is R-AVD if and only if it is isomorphic to Sun (0, 0, 1, 2) or to
Sun (0, 0, 1, 4).
A sun with five or more rays in never R-AVD.

Table 3. Values for R-AVD suns

a b
0 arbitrary
1 ≡ 0 (mod 2)

2 6≡ 0 (mod 3), 3, 6, 9, 12, 18, 21, 24, 36
3 ≡ 0 (mod 2)

4 4 ≤ b ≤ 19 except for b = 15,
≡ 2, 4 (mod 6) with 20 ≤ b ≤ 46

5 ≡ 2, 4 (mod 6) with 8 ≤ b ≤ 32, 6, 18
6 6, 7, 8, 10, 11, 12, 14, 16

(a) Values a, b (b ≥ a), such that Sun (a, b)
is R-AVD

a b c
0 ≡ 1, 2 (mod 3)
1 ≡ 0 (mod 2)

0 2 2, 3, 4, 6, 7, 8, 10, 11, 14, 16, 18, 19
3 4, 8, 10
4 4, 5, 6, 8, 10, 11, 12, 14, 16
5 6

1 2 2, 4, 6, 8, 10, 14, 16, 18
2 3 4

(b) Values a, b, c (c ≥ b ≥ a), such that
Sun (a, b, c) is R-AVD

Proof. Since every R-AVD graph is also OL-AVD, so, we shall use the complete char-
acterization of OL-AVD suns given in Theorem 1.6, and Remark 1.2.

The labelling used in the proof follows that one from Figure 2.

v2

v1

xa+1
u2

v3

xa+b+c+...

xa

u3

xa+b u1

xa+b+1

x1

Fig. 2. Sun (a, b, . . .)



538 Olivier Baudon, Frédéric Gilbert, Mariusz Woźniak

Sun with one ray. A sun with one ray is traceable. Thus, it is R-AVD.

Sun with two rays. Without loss of generality, we consider Sun (a,b) with b ≥ a.

• Sun (0, b) is traceable and then is R-AVD.
• Sun (1, b) contains Cat (2, b+3) as partial graph. Thus, Sun (1, b) with b ≡

0 (mod 2) is R-AVD.
• Sun (2, b) is OL-AVD only for b 6≡ 3 (mod 6) or b = 3, 9, 21.

– Sun (2, b) contains Cat (3, b + 3) as spanning tree and thus is R-AVD for b 6≡
0 (mod 3).

– If b = 6k with k = 5 or k ≥ 7, it is not possible to find a partition into two
R-AVD subgraphs of size 18 and n− 18.

– If b ∈ {3, 6, 9, 12, 18, 21, 24, 36}, then Sun (2, b) is R-AVD and the values of
G[Vλ] and G[V \Vλ] are given in Table 4.

• Sun (3, b) contains Cat (4, b + 1) as a spanning tree. Thus, it is R-AVD for b ≡
0 (mod 2).
• Sun (4, b) is OL-AVD only for b ≡ 2, 4 (mod 6) or b ∈ {4, . . . , 19}\{15}.

– Sun (4, b) contains Cat (5, b + 3) as a spanning tree. Thus, it is R-AVD for
b ∈ {4, 6, 8, 11, 16}.

– Similarly, Sun (4, b) contains Cat (7, b+1) as a spanning tree. Thus, it is R-AVD
for b ∈ {7, 10, 12, 14}.

– Let us consider the case where b ≡ 2, 4 (mod 6).
* If b ≥ 50, then n = b+ 8 ≥ 58. Then, we have to consider the case λ = 30
with n− λ ≥ 28. Because there is no caterpillar with order 30, G[Vλ] must
be a path and G[V \Vλ] a caterpillar Cat (5, x) or Cat (7, x). But such a
caterpillar has a maximum order 24. Thus, if b ≥ 50, Sun (4, b) cannot be
R-AVD.

* For b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46, all the Sun (4, b) are R-AVD and the
values of G[Vλ] and G[V \Vλ] are given in Table 5.

– For the last possible values of b, that is b ∈ {5, 9, 13, 17, 18, 19}, Sun (4, b) is
R-AVD and the values of G[Vλ] and G[V \Vλ] are given in Table 5.

• Sun (5, b) is OL-AVD only for b ≡ 2, 4 (mod 6) or b ∈ {6, 18}.
– Consider the case b ≡ 2, 4 (mod 6). For λ = 18, the only possibility is that
G[V18] = P18. But in that case, G[V \V18] must be a caterpillar Cat (6, x) or
Cat (8, x), which is impossible for n − 18 ≥ 14, that is n ≥ 32 and b ≥ 23.
Thus Sun (5, b) may be R-AVD only for b ≡ 2, 4 (mod 6) with 8 ≤ b ≤ 22 or
b ∈ {6, 18}.

– For all the remaining values of b, that is b ∈ {6, 8, 10, 14, 16, 18, 20, 22},
Sun (5, b) is R-AVD and the values of G[Vλ] and G[V \Vλ] are given in Table 6.

• Sun (6, b) is OL-AVD only for b ∈ {6, 7, 8, 10, 11, 12, 14, 16}.
– Observe that Sun (6, b) contains, as a spanning tree, the caterpillar Cat (7, b+3).
Thus, Sun (a, b) is R-AVD for b ∈ {6, 8, 10, 12}.

– For all the remaining values of b, that is b ∈ {7, 11, 14, 16}, Sun (6, b) is R-AVD
and the values of G[Vλ] and G[V \Vλ] are given in Table 7.
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• Sun (7, b) is OL-AVD only for b ∈ {8, 10, 12, 14, 16}. For all of these values of b, it
is not possible to find an edge {w1, w2} such that G[V \{w1, w2}] is R-AVD.

• Sun (8, b) is OL-AVD only for b ∈ {8, 9, 10, 11, 12}.
– For b ∈ {8, 10, 11, 12}, it is not possible to find a set of size 3 V3 such that both
G[V3] and G[V \V3] are R-AVD.

– For b = 9, it is not possible to find an edge {w1, w2} such that G[V \{w1, w2}]
is R-AVD.

• Sun (9, b) is OL-AVD only for b ∈ {10, 12}. For these two values of b, it is not
possible to find an edge {w1, w2} such that G[V \{w1, w2}] is R-AVD.

Table 4. Values of G[Vλ] and G[V \Vλ] for Sun (2, b)

b λ Vλ G[Vλ] G[V \Vλ]
3, 6, 9, 12, 18, 21, 24, 36 1 {u1} P1 sun with one ray

2 {x1, x2} P2 Pb+4

3 {x3, x4, x5} P3 P6

6, 12, 18, 24, 36 3 {x2, v2, u2} P3 Cat (2, b+ 1)
9, 21 {xa+b−2, xa+b−1, xa+b} P3 Cat (5, b− 2)

3, 6, 9, 12, 18, 21, 24, 36 4 {u1, 12, x1, x2} P4 Pb+2

6, 9, 12, 18, 21, 24, 36 5 {x1, x2, v2, u2, x3} Cat (2, 3) Pb+1

6 {u1, v1, x1, x2, v2, u2} P6 Pb
9, 12, 18, 21, 24, 36 7 {u1, v1, x1, x2, v2, u2, x3} Cat (2, 5) Pb−1

12, 18, 21, 24, 36 8 {u1, v1, x1, x2, v2, u2, x3, x4} Cat (3, 5) Pb−2

9 {u1, v1, x1, x2, v2, u2, x3, x4, x5} Cat (4, 5) Pb−3

10 {x1, x2, v2, u2, x3, . . . , x8} Cat (3, 7) Pb−4

18, 21, 24, 36 11 {x1, x2, v2, u2, x3, . . . , x9} Cat (3, 8) Pb−5

12 {u1, v1, x1, x2, v2, u2, x3, . . . , x8} Cat (5, 7) Pb−6

21, 24, 36 13 {x1, x2, v2, u2, x3, . . . , x11} Cat (3, 10) Pb−7

24, 36 14 {x1, x2, v2, u2, x3, . . . , x12} Cat (3, 11) Pb−8

15 {x2, v2, u2, x3, . . . , x14} Cat (2, 13) Cat (2, b− 11)

16 {x1, x2, v2, u2, x3, . . . , x14} Cat (3, 13) P26

17 {x1, x2, v2, u2, x3, . . . , x15} Cat (3, 14) P25

36 18 {x21, . . . , x38} P18 Cat (5, 19)
19 {x1, x2, v2, u2, x3, . . . , x17} Cat (3, 16) P23

20 {x1, x2, v2, u2, x3, . . . , x18} Cat (3, 17) P22

21 {x2, v2, u2, x3, . . . , x20} Cat (2, 19) Cat (2, 19)

Sun with three rays. Without loss of generality, we consider Sun (a,b,c) with c ≥
b ≥ a.

• Sun (0,0,c) is OL-AVD only for c ≡ 1, 2 (mod 3). Because Sun (0,0,c) contains
Cat (3, c+ 3) as a spanning tree, thus it is also R-AVD for c ≡ 1, 2 (mod 3).
• Sun (0,1,c) is OL-AVD only for c ≡ 0 (mod 2). Because Sun (0,1,c) contains

Cat (4, c+ 3) as a spanning tree, thus it is also R-AVD for c ≡ 0 (mod 2).
• Sun (0,2,c) is OL-AVD only for c ≡ 2, 4 (mod 6) or c ∈ {3, 6, 7, 11, 18, 19}.
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Table 5. Values of G[Vλ] and G[V \Vλ] for some Sun (4, b)

b λ Vλ G[Vλ] G[V \Vλ]

5, 9, 13, 17, 18, 19 sun with
b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 1 {u1} P1 one ray

5, 13, 17, 19
b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 {x1, x2} P2 Cat (3, b+ 3)

9 2 {x5, x6} P2 Cat (7, 8)
18 {u1, v1} P2 Cat (5, 19)

5, 13, 17 {x5, x6, x7} P3 Cat (7, b− 2)
9, 19 3 {u2, v2, x5} P3 Cat (5, b)
18

b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 {x1, x2, x3} P3 Cat (2, b+ 3)
5, 9, 13, 17, 18, 19

b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 4 {x1, . . . , x4} P4 Pb+4

5, 13, 17, 19 {x3, x4, v2, u2, x5} Cat (2, 3) Cat (3, b)
9 5 {x5, . . . , x9} P5 Cat (5, 7)
18

b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 {x4, v2, u2, x5, x6} Cat (2, 3) Cat (4, b− 1)
5, 9, 13, 17, 18, 19

b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 6 {u1, v1, x1, . . . , x4} P6 Pb+2

9, 13, 19 {x3, x4, v2, u2, x5, x6, x7} Cat (3, 4) Cat (3, b− 2)
17 7 {x15, . . . , x21} P7 Cat (7, 11)
18

b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 {x4, v2, u2, x5, . . . , x8} Cat (2, 5) Cat (4, b− 3)
9, 13, 17, 18, 19

b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 8 {u1, v1, x1, . . . , x4, v2, u2} P8 Pb
13, 17, 18, 19 9 {x1, . . . , x4, v2, u2, x5, x6, x7} Cat (4, 5) Pb−1

b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 10 {u1, v1, x1, . . . , x4, v2, u2, x5, x6} Cat (3, 7) Pb−2

17, 18, 19 11 {x1, . . . , x4, v2, u2, x5, . . . , x9} Cat (5, 6) Pb−3

b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 12 {x1, . . . , x4, v2, u2, x5, . . . , x10} Cat (5, 7) Pb−4

18, 19
b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 13 {u1, v1, x1, . . . , x4, v2, u2, x5, . . . , x9} Cat (6, 7) Pb−5

b ≡ 2, 4 (mod 6), 20 ≤ b ≤ 46 14 {x1, . . . , x4, v2, u2, x5, . . . , x12} Cat (5, 9) Pb−6

b ≡ 2, 4 (mod 6), 22 ≤ b ≤ 46 15 {x4, v2, u2, x5, . . . , x16} Cat (2, 13) Cat (4, b− 11)
16 {x1, . . . , x4, v2, u2, x5, . . . , x14} Cat (5, 11) Pb−8

26, 28, 32, 34, 38, 40, 44, 46 17 {x4, v2, u2, x5, . . . , x18} Cat (2, 15) Cat (4, b− 13)
28, 32, 34, 38, 40, 44, 46 18 {u1, v1, x1, . . . , x4, v2, u2, x5, . . . , x14} Cat (7, 11) Pb−10

19 {x4, v2, u2, x5, . . . , x20} Cat (2, 17) Cat (4, b− 15)
32, 34, 38, 40, 44, 46 20 {u1, v1, x1, . . . , x4, v2, u2, x5, . . . , x16} Cat (7, 13) Pb−12

34, 38, 40, 44, 46 21 {x4, v2, u2, x5, . . . , x22} Cat (2, 19) Cat (4, b− 17)
22 {u1, v1, x1, . . . , x4, v2, u2, x5, . . . , x18} Cat (7, 15) Pb−14

38, 40, 44, 46 23 {x4, v2, u2, x5, . . . , x24} Cat (2, 21) Cat (4, b− 19)
40, 44, 46 24 {x1, . . . , x4, v2, u2, x5, . . . , x22} Cat (5, 19) Pb−16

25 {x4, v2, u2, x5, . . . , x26} Cat (2, 23) Cat (4, b− 21)
44, 46 26 {x3, x4, v2, u2, x5, . . . , x26} Cat (3, 23) Cat (3, b− 21)

46 27 {x4, v2, u2, x5, . . . , x28} Cat (2, 25) Cat (4, 23)
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Table 6. Values of G[Vλ] and G[V \Vλ] for Sun (5, b)

b λ Vλ G[Vλ] G[V \Vλ]
6, 8, 10, 14, 1 {u1} P1 sunwith one ray
16, 18, 20, 22 2 {x1, x2} P2 Cat (4, b+ 7)

6, 18 {u1, v1, x1} P3 Cat (5, b+ 1)
8, 10, 14, 16, 20, 22 3 {x1, x2, x3} P3 Cat (3, b+ 3)

4 {x1, x2, x3, x4} P4 Cat (2, b+ 5)
6, 8, 10, 14, 5 {x1 . . . , x5} P5 Pb+4

16, 18, 20, 22 6 {x2 . . . , x5, v2, u2} P6 Cat (2, b+ 1)
7 {u1, v1, x1 . . . , x5} P7 Pb+2

8, 10, 14, 16, 18, 20, 22 8 {x2 . . . , x5, v2, u2, x6, x7} Cat (3, 5) Cat (2, b− 1)

10, 14, 16, 18, 20, 22 9 {u1, v1, x1 . . . , x5, v2, u2} P9 Pb
10 {x4, x5, v2, u2, x6, . . . , x11} Cat (3, 7) Cat (4, b− 5)

14, 16, 18, 20, 22 11 {u1, v1, x1 . . . , x5, v2, u2, x6, x7} Cat (3, 8) Pb−2

16, 18, 20, 22 12 {x2, . . . , x5, v2, u2, x6, . . . , x11} Cat (5, 7) Cat (2, b− 5)

18, 20, 22 13 {x1, . . . , x5, v2, u2, x6, . . . , x11} Cat (6, 7) Pb−4

20, 22 14 {x2, . . . , x5, v2, u2, x6, . . . , x13} Cat (5, 9) Cat (2, b− 7)

22 15 {u1, v1, x1 . . . , x5, v2, u2, x6, . . . , x11} Cat (7, 8) P16

Table 7. Values of G[Vλ] and G[V \Vλ] for some Sun (6, b)

b λ Vλ G[Vλ] G[V \Vλ]
7, 11, 14, 16 1 {u1} P1 sun with one ray

7, 14 {u1, v1} P2 Cat (7, b+ 1)
11, 16 2 {x1, x2} P2 Cat (5, b+ 3)

7 {x7, x8, x9} P3 Cat (5, 9)
11 3 {v2, u2, x7} P3 Cat (7, b)

14, 16 {x1, x2, x3} P3 Cat (4, b+ 3)

7, 11, 14, 16 4 {x1, . . . , x4} P4 Cat (3, b+3)
7, 11 {x5, x6, v2, u2, x7} Cat (2, 3) Cat (5, b)
14, 16 5 {x1, . . . , x5} P5 Cat (2, b+ 3)

7, 11, 14, 16 6 {x1, . . . , x6} P6 Pb+4

7, 11 {x3, . . . , x6, v2, u2, x7} Cat (2, 5) Cat (3, b)
14, 16 7 {x2, . . . , x6, v2, u2} P7 Cat (2, b+ 1)

7, 11, 14, 16 8 {x1, . . . , x6, v2, u2} P8 Pb+2

9
11, 14, 16 10

11 {x1, . . . , x6, v2, u2, x7, . . . , xλ−2} Cat (λ− 7, 7) Pb+10−λ
14, 16 12
16 13
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• Sun (0,2,c) contains Cat (5, c + 3) as a spanning tree, thus it is R-AVD for
c ∈ {3, 6, 11}.
• For c ∈ {7, 18, 19}, Sun (0, 2, c) is R-AVD and the values of G[Vλ] and G[V \Vλ]

are given in Table 8.
• For c ≡ 2, 4 (mod 6), we first eliminate values of c such that Sun (0,2,c) is not

R-AVD.
* c ≡ 2 (mod 6), c 6= 2, 8, 14, 26

Consider λ = 10. The two possibilities for G[V10] to be R-AVD are
– Cat (3, 7) with V10 = {u2, v2, v1, u1, xc+2, . . . , xc−3}, and thus
G[V \V10] = Cat (3, c−5). Cat (3, c−5) is not R-AVD for c ≡ 2 (mod 6).

– P10 with V10 = {u1, v1, xc+2, . . . , xc−5}. Then G[V \V10] = Cat (5, c−7).
If we consider only the cases where c ≥ 20 and c ≡ 2 (mod 6), G[V \V10]
is R-AVD only if c = 26.

* c = 26
Consider λ = 13. The possibilities for G[V13] to be R-AVD are
– Cat (3, 10) with V13 = {u2, v2, v1, u1, xc+2, . . . , xc−6}. If c = 26, then
G[V \V13] = Cat (3, 18) which is not R-AVD.

– P13 with V13 = {u1, v1, xc+2, . . . , xc−8}. If c = 26, G[V \V13] =
Cat (5, 16) which is not R-AVD.

* c ≡ 4 (mod 6), c ≥ 22
First, observe that because n = c + 8 and c ≡ 4 (mod 6), we have n ≡
0 (mod 6) and then n ≡ 0 (mod 3).
We consider λ = 15. Both 15 and n − 15 ≡ 0 (mod 3). Therefore, both
G15 and G[V \V15] cannot be realized as a R-AVD caterpillar of the form
Cat (3, b). Because Cat (5, 10) is not R-AVD the only remaining possibility
is that G15 is a path P15 and G[V \V15] is a caterpillar Cat (5, c− 12). But
Cat (5, c− 12) is not R-AVD for c = 22, 28 or c ≥ 34.

In conclusion, for c ≡ 2, 4 (mod 6), the only remaining values are 2, 4, 8, 10, 14
and 16. For all of these values, Sun (0,2,c) is R-AVD and the values of G[Vλ]
and G[V \Vλ] are given in Table 8.

• Sun (0,3,c) is OL-AVD only for c ≡ 2, 4 (mod 6).
Consider first λ = 6. Because there is no R-AVD caterpillar of order 6, G[V6] must
be a path of length 6. The two possibilities are that V6 = {u1, v1, xc+3, . . . , xc} or
{u3, v3, x4, . . . x7}.
If V6 = {u3, v3, x4, . . . x7}, G[V \V6] is R-AVD if and only if G[V \V6] is a caterpillar
Cat (3, 4) and c = 4.
If V6 = {u1, v1, xc+3, . . . , xc}, G[V \V6] is R-AVD if and only if G[V \V6] is a cater-
pillar Cat (5, 6) or Cat (6, 7) and then c = 8 or c = 10.
For c ∈ {4, 8, 10}, Sun (0, 3, c) is R-AVD and the values of G[Vλ] and G[V \Vλ] are
given in Table 9.
• Sun (0,4,c) is OL-AVD only for c ∈ {4, 5, 6, 8, 10, 11, 12, 14, 16}.

For all of these values of c, Sun (0,4,c) is also R-AVD and values of G[Vλ] and
G[V \Vλ] are given in Table 10.
• Sun (0,5,c) is OL-AVD only for c ∈ {6, 8, 16}.
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Table 8. Values of G[Vλ] and G[V \Vλ] for some Sun (0, 2, c)

c λ Vλ G[Vλ] G[V \Vλ]
2, 4, 7, 8, 10, 14, 16, 18, 19 1 {u3} P1 Pc+7

2, 4, 7, 8, 10, 14, 16, 19 {u1, v1} P2 Cat (3, c+ 3)
18 2 {x1, x2} P2 Cat (5, 19)

2, 4, 8, 10, 14, 16, 18 {u2, v2, x1} P3 Cat (2, c+ 3)
7, 19 3 {u1, v1, xc+2} P3 Cat (5, c)

2, 4, 7, 8, 10, 14, 16, 18, 19 4 {u2, v2, x1, x2} P4 Pc+4

2, 4, 8, 10, 14, 16, 18 {u1, v1, v2, u2, x1} Cat (2, 3) Cat (2, c+ 1)
7, 19 5 {xc+2, v1, u1, v2, u2} Cat (2, 3) Cat (3, c)

4, 7, 8, 10, 14, 16, 18, 19 6 {u2, v2, x1, x2, v3, u3} P6 Pc+2

7, 8, 10, 14, 16, 18, 19 7 {u2, v2, x1, x2, v3, u3, x3} Cat (2, 5) Pc+1

8, 10, 14, 16, 18, 19 8 {u1, v1, v2, u2, x1, x2, v3, u3} Cat (3, 5) Pc
10, 14, 16, 18, 19 9 {u2, v2, x1, x2, v3, u3, x3, x4, x5} Cat (4, 5) Pc−1

14 {u1, v1, x16, . . . , x9} P10 Cat (5, 7)
16, 18, 19 10 {u2, v2, v1, u1, xc+2, . . . , xc−3} Cat (3, 7) Cat (3, c− 5)

14, 16, 18, 19 11 {u2, v2, x1, x2, v3, u3, x3, . . . , x7} Cat (5, 6) Pc−3

16, 18, 19 12 {u2, v2, x1, x2, v3, u3, x3, . . . , x8} Cat (5, 7) Pc−4

18, 19 13 {u2, v2, v1, u1, xc+2, . . . , xc−6} Cat (3, 10) Cat (3, c− 8)

Table 9. Values of G[Vλ] and G[V \Vλ] for Sun (0, 3, c)

c λ Vλ G[Vλ] G[V \Vλ]
1 {u3} P1 Pc+8

2 {u2, v2} P2 Cat (4, c+ 3)
4, 8, 10 3 {u2, v2, x1} P3 Cat (3, c+ 3)

4 {u2, v2, x1, x2} P4 Cat (2, c+ 3)
5 {u2, v2, x1, x2, x3} P5 Pc+4

4 {u3, v3, x4, . . . x7} P6 Cat (3, 4)
8, 10 6 {u1, v1, xc+3, . . . , xc} P6 Cat (6, c− 3)

8, 10 7 {u2, v2, x1, x2, x3, v3, u3} P7 Pc+2

8, 10 8 {u2, v2, v1, u1, xc+3, . . . , xc} Cat (3, 5) Cat (4, c− 3)

10 9 {x1, x2, x3, v3, u3, x4, . . . , x7} Cat (4, 5) Cat (3, 7)

Consider λ = 2. There is only two possibilities for V2, either V2 = {u2, v2}, or
V2 = {u1, v1}.
If V2 = {u2, v2}, then G[V \V2] = Cat (6, c + 3) which is not R-AVD for any
c ∈ {6, 8, 16}.
If V2 = {u1, v1}, then G[V \V2] = Cat (8, c+ 1) which is R-AVD for c = 6 but not
for c = 8 or c = 16.
In fact, Sun (0, 5, 6) is R-AVD and values of G[Vλ] and G[V \Vλ] are given in
Table 11.
• Sun (0,6,c) is OL-AVD only for c ∈ {8, 10}.

Consider λ = 3. The two possibilities for V3 are {u2, v2, x1} and {u1, v1, xc+6}.
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Table 10. Values of G[Vλ] and G[V \Vλ] for Sun (0, 4, c)

c λ Vλ G[Vλ] G[V \Vλ]
4, 5, 6, 8, 10, 11, 12, 14, 16 1 {u3} P1 Pc+9

4, 6, 11, 16 {u2, v2} P2 Cat (5, c+ 3)
5, 8, 10, 12, 14 2 {u1, v1} P2 Cat (7, c+ 1)

4, 6, 8, 10, 12, 14, 16 {u2, v2, x1} P3 Cat (4, c+ 3)
5, 11 3 {u1, v1, xc+4} P3 Cat (7, c)

4, 5, 8, 10, 11, 14, 16 {x1, . . . , x4} P4 Cat (3, c+ 3)
6, 12 4 {u1, v1, xc+4, xc+3} P4 Cat (7, c− 1)

4, 6, 8, 10, 12, 14, 16 {u2, v2, x1, x2, x3} P5 Cat (2, c+ 3)
5 5 {u1, v1, x9, x8, x7} P5 Cat (3, 7)
11 {u2, v2, v1, u1, x15} Cat (2, 3) Cat (5, 11)

4, 5, 6, 8, 10, 11, 12, 14, 16 6 {u2, v2, x1, . . . , x4} P6 Pc+4

4, 6, 8, 10, 12, 14, 16 {u1, v1, v2, u2, x1, x2, x3} Cat (3, 4) Cat (2, c+ 1)
5, 11 7 {u2, v2, v1, u1, xc+4, xc+3, xc+2} Cat (3, 4) Cat (5, c− 2)

6, 8, 10, 11, 12, 14, 16 8 {u2, v2, x1, . . . , x4, v3, u3} P8 Pc+2

8, 10, 11, 12, 14, 16 9 {u2, v2, x1, . . . , x4, v3, u3, x5} Cat (2, 7) Pc+1

10, 11, 12, 14, 16 10 {u2, v2, x1, . . . , x4, v3, u3, x5, x6} Cat (3, 7) Pc
12, 14, 16 11 {u2, v2, x1, . . . , x4, v3, u3, x5, x6, x7} Cat (4, 7) Pc−1

14, 16 12 {u2, v2, x1, . . . , x4, v3, u3, x5, . . . , x8} Cat (5, 7) Pc−2

16 13 {u2, v2, x1, . . . , x4, v3, u3, x5, . . . , x9} Cat (6, 7) Pc−3

Table 11. Values of G[Vλ] and G[V \Vλ] for Sun (0, 5, 6)

λ Vλ G[Vλ] G[V \Vλ]
1 {u3} P1 P16

2 {u1, v1} P2 Cat (7, 8)

3 {u2, v2, x1} P3 Cat (5, 9)

4 {u2, v2, x1, x2} P4 Cat (4, 9)

5 {u1, v1, v2, u2, x1} Cat (2, 3) Cat (5, 7)

6 {u2, v2, x1, . . . , x4} P6 Cat (2, 9)

7 {u2, v2, x1, . . . , x5} P7 P10

8 {u1, v1, v2, u2, x1, . . . , x4} Cat (3, 5) Cat (2, 7)

In the first case, G[V \V3] = Cat (6, c+3), in the second case G[V \V3] = Cat (9, c).
In both cases, G[V \V3] is not R-AVD for c = 8 or c = 10.

• Sun (0,7,c) is OL-AVD only for c ∈ {8, 10}.
Consider λ = 2. There is only two possibilities for V2, either V2 = {u2, v2}, or
V2 = {u1, v1}.
If V2 = {u2, v2}, then G[V \V2] = Cat (8, c+ 3). If V2 = {u1, v1}, then G[V \V2] =
Cat (10, c+1). Both Cat (8, c+3) and Cat (10, c+1) are not R-AVD for c = 8 and
c = 10.
• Sun (0,8,c) is OL-AVD only for c ∈ {8, 9}.



Recursively arbitrarily vertex-decomposable suns 545

Consider again λ = 2 and the two possibilities for V2: V2 = {u2, v2}, or V2 =
{u1, v1}.
If V2 = {u2, v2}, then G[V \V2] = Cat (9, c+ 3). If V2 = {u1, v1}, then G[V \V2] =
Cat (11, c+1). Both Cat (9, c+3) and Cat (11, c+1) are not R-AVD for c = 8 and
c = 9.
• Sun (1,2,c) is OL-AVD only for c ≡ 2, 4 (mod 6) or c ∈ {6, 18}.

Consider first λ = 11. That means that n ≥ 22 and thus c ≥ 13. We consider four
possibilities to obtain a R-AVD graph with order 11:
– V11 = {u2, v2, x1, v1, u1, xc+3, . . . , xc−2}. In that case, G[V \V11] = Cat (3, c −

5).
– V11 = {u2, v2, x2, x3, v3, u3, x4, . . . , x8}. Thus, G[V \V11] = Cat (2, c− 4).
– V11 = {x2, x3, v3, u3, x4, . . . , x10}. Thus, G[V \V11] = Cat (4, c− 6).
– V11 = {x1, v1, u1, xc+3, . . . , xc−4}. Thus, G[V \V11] = Cat (5, c− 7).
For all these cases, G[V \V11] is not R-AVD for c ≥ 13, c ≡ 2 (mod 6), except for
G[V \V11] = Cat (5, 7) or Cat (5, 19) and c = 14 or 26.
Consider now λ = 13. That means that n ≥ 26 and thus c ≥ 17. We consider three
possibilities to obtain a R-AVD graph with order 13:
– V13 = {x2, x3, v3, u3, x4, . . . , x13}. Thus, G[V \V13] = Cat (4, c− 8).
– V13 = {u2, v2, x1, v1, u1, xc+3, . . . , xc−4}. In that case, G[V \V13] = Cat (3, c −

7).
– V13 = {x1, v1, u1, xc+3, . . . , xc−6}. Thus, G[V \V13] = Cat (5, c− 9).
For all these cases, G[V \V13] is not R-AVD for c ≥ 17, c ≡ 4 (mod 6), except when
G[V \V13] = Cat (5, 19) and c = 28.
At last, consider an induced subgraph with order 18. Because the only caterpil-
lar with this order is Cat (7, 11), the only way to have a R-AVD subgraph of
Sun (1, 2, c) with order 18 is a path P18. In the cases of c = 26 or c = 28, the
remaining subgraph contains four leaves and then, cannot be R-AVD.
Thus, the only remaining values for c are 2, 4, 6, 8, 10, 14, 16 and 18. For all these
values of c, Sun (1, 2, c) is R-AVD and values of G[Vλ] and G[V \Vλ] are given in
Table 12.
• Sun (2,3,c) is OL-AVD only for c ∈ {4, 8, 16}.

Let us consider λ = 2. If V2 = {u1, v1}, V2 = {u2, v2} or V2 = {u3, v3}, then
G[V \V2] has four leaves and then is not R-AVD. The only remaining possibility
is V2 = {x1, x2}, and thus G[V \V2] = Cat (6, c+ 3). Then, Sun (2, 3, c) cannot be
R-AVD with c = 8 or c = 16.
Sun (2, 3, 4) is R-AVD and values of G[Vλ] and G[V \Vλ] are given in Table 13.

Sun with four rays. A sun with four rays is OL-AVD if and only if it is isomorphic
to Sun (0, 0, 1, d) with d ≡ 2, 4 (mod 6).

Consider λ = 6. Since an R-AVD graph with order 6 must be a path, the only
possibility is to have:

• d = 2,V6 = {u1, v1, x3, x2, v4, u4} and G[V \V6] = Cat (2, 3)
or
• d = 4, V6 = {u1, v1, x5, x4, x3, x2} and G[V \V6] = Cat (4, 3).
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Table 12. Values of G[Vλ] and G[V \Vλ] for Sun (1, 2, c)

c λ Vλ G[Vλ] G[V \Vλ]
2, 4, 6, 8, 10, 14, 16, 18 1 {u1} P1 Sun (2, c+ 2)

2, 4, 6, 8, 10, 14, 16, 18 2 {x2, x3} P2 Cat (4, c+ 3)

2, 4, 8, 10, 14, 16 {x1, v2, u2} P3 Cat (3, c+ 3)
6, 18 3 {u1, v1, x1} P3 Cat (5, c+ 1)

2, 4, 6, 8, 10, 14, 16, 18 4 {u2, v2, x2, x3} P4 Cat (2, c+ 3)

2, 4, 6, 8, 10, 14, 16, 18 5 {x1, v2, u2, x2, x3} Cat (2, 3) Pc+4

4, 6, 8, 10, 14, 16, 18 6 {u2, v2, x2, x3, v3, u3} P6 Cat (2, c+ 1)

6, 8, 10, 14, 16, 18 7 {x1, v2, u2, x2, x3, v3, u3} Cat (2, 5) Pc+2

8, 10, 14, 16, 18 8 {u2, v2, x2, x3, v3, u3, x4, x5} Cat (3, 5) Cat (2, c− 1)

10, 14, 16, 18 9 {u1, v1, x1v2, u2, x2, x3, v3, u3} Cat (4, 5) Pc
14, 16, 18 10 {x2, x3, v3, u3, x4, . . . , x9} Cat (3, 7) Cat (4, c− 5)

14 {x1, v1, u1, xc+3, ‖dots, xc−4} Cat (2, 9) Cat (5, c− 7)
16, 18 11 {u2, v2, x1, v1, u1, xc+3, ‖dots, xc−2} Cat (4, 7) Cat (3, c− 5)

16, 18 12 {u2, v2, x2, x3, v3, u3, x4, . . . , x9} Cat (5, 7) Cat (2, c− 5)

18 13 {u2, v2, x1, v1, u1, x21, . . . , x9} Cat (4, 9) Cat (3, 11)

Table 13. Values of G[Vλ] and G[V \Vλ] for Sun (2, 3, 4)

λ Vλ G[Vλ] G[V \Vλ]
1 {u3} P1 Sun (2, 8)

2 {x1, x2} P2 Cat (6, 7)

3 {x3, x4, x5} P3 Cat (5, 7)

4 {x1, x2, v2, u2} P4 Cat (4, 7)

5 {x1, x2, v2, u2, x3} Cat (2, 3) Cat (3, 7)

6 {u1, v1, x1, x2, v2, u2} P6 Cat (4, 5)

7 {u2, v2, x3, x4, x5, v3, u3} P7 Cat (3, 5)

We prove that both Sun (0, 0, 1, 2) and Sun (0, 0, 1, 4) are R-AVD, by giving the
values of G[Vλ] and G[V \Vλ] in Table 14.

Table 14. Values of G[Vλ] and G[V \Vλ] for Sun (0, 0, 1, d)

d λ Vλ G[Vλ] G[V \Vλ]
2, 4 1 {u1} P1 Sun (0, 1, d+ 1)

2, 4 2 {u2, v2} P2 Cat (4, d+ 3)

2, 4 3 {u3, v3, x1} P3 Cat (3, d+ 3)

2, 4 4 {u2, v2, v3, u3} P4 Cat (2, d+ 3)

2, 4 5 {u2, v2, v3, u3, x1} Cat (2, 3) Pd+4

4 6 {u1, v1, x5, x4, x3, x2} P6 Cat (4, 3)
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