NEIGHBOURHOOD TOTAL DOMINATION IN GRAPHS

S. Arumugam, C. Sivagnanam

Abstract

Let $G=(V, E)$ be a graph without isolated vertices. A dominating set S of G is called a neighbourhood total dominating set (ntd-set) if the induced subgraph $\langle N(S)\rangle$ has no isolated vertices. The minimum cardinality of a ntd-set of G is called the neighbourhood total domination number of G and is denoted by $\gamma_{n t}(G)$. The maximum order of a partition of V into $n t d$-sets is called the neighbourhood total domatic number of G and is denoted by $d_{n t}(G)$. In this paper we initiate a study of these parameters.

Keywords: neighbourhood total domination, total domination, connected domination paired domination, neighbourhood total domatic number.

Mathematics Subject Classification: 05C69

1. INTRODUCTION

By a graph $G=(V, E)$ we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [3].

Let $G=(V, E)$ be a graph and let $v \in V$. The open neighbourhood and the closed neighbourhood of v are denoted by $N(v)$ and $N[v]=N(v) \cup\{v\}$ respectively. If $S \subseteq V$, then $N(S)=\bigcup_{v \in S} N(v)$ and $N[S]=N(S) \cup S$. If $S \subseteq V$ and $u \in S$, then the private neighbour set of u with respect to S is defined by $p n[u, S]=\{v: N[v] \cap S=\{u\}\}$.

A subset S of V is called a dominating set of G if $N[S]=V$. The minimum (maximum) cardinality of a minimal dominating set of G is called the domination number (upper domination number) of G and is denoted by $\gamma(G)(\Gamma(G))$. An excellent treatment of the fundamentals of domination is given in the book by Haynes et al. [6]. A survey of several advanced topics in domination is given in the book edited by Haynes et al. [7].

Various types of domination have been defined and studied by several authors and more than 75 models of domination are listed in the Appendix of Haynes et al. [6]

Sampathkumar and Walikar [9] introduced the concept of connected domination in graphs. A dominating set S of a connected graph G is called a connected dominating set if the induced subgraph $\langle S\rangle$ is connected. The minimum cardinality of a connected dominating set of G is called the connected domination number of G and is denoted by $\gamma_{c}(G)$. Cockayne et al. [4] introduced the concept of total domination in graphs. A dominating set S of a graph G without isolated vertices is called a total dominating set of G if $\langle S\rangle$ has no isolated vertices. The minimum cardinality of a total dominating set of G is called the total domination number of G and is denoted by $\gamma_{t}(G)$. Haynes and Slater [5] introduced the concept of paired domination in graphs. A dominating set S of a graph G without isolated vertices is called a paired dominating set if $\langle S\rangle$ has a perfect matching. The minimum cardinality of a paired dominating set of G is called the paired domination number of G and is denoted by $\gamma_{p r}(G)$.

For a dominating set S of G it is natural to look at how $N(S)$ behaves. For example, for the cycle $C_{6}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{1}\right), S_{1}=\left\{v_{1}, v_{4}\right\}$ and $S_{2}=\left\{v_{1}, v_{2}, v_{4}\right\}$ are dominating sets, $\left\langle N\left(S_{1}\right)\right\rangle$ is not connected and $\left\langle N\left(S_{2}\right)\right\rangle$ is connected. Motivated by this example, in [1] we have introduced the concept of neighbourhood connected domination in graphs.

Definition 1.1 ([1]). A dominating set S of a connected graph G is called a neighbourhood connected dominating set (ncd-set) if the induced subgraph $\langle N(S)\rangle$ is connected. A ncd-set S is said to be minimal if no proper subset of S is a ncd-set. The minimum cardinality of a ncd-set of G is called the neighbourhood connected domination number of G and is denoted by $\gamma_{n c}(G)$.

For the path $P_{10}=\left(v_{1}, v_{2}, \ldots, v_{10}\right), S_{1}=\left\{v_{2}, v_{5}, v_{7}, v_{9}\right\}$ and $S_{2}=\left\{v_{1}, v_{4}, v_{6}\right.$, $\left.v_{7}, v_{10}\right\}$ are dominating sets, $\left\langle N\left(S_{1}\right)\right\rangle$ has isolates and $\left\langle N\left(S_{2}\right)\right\rangle$ has no isolates. Motivated by this example, in this paper we introduce the concept of neighbourhood total domination and initiate a study of neighbourhood total domination number and neighbourhood total domatic number.

We need the following theorems.

Theorem $1.2([8])$. Let G be a nontrivial connected graph. Then $\gamma_{c}(G)+\kappa(G)=n$ if and only if $G=C_{n}$ or K_{n} or $K_{2 a}-X$ where $a \geq 3$ and X is a 1-factor of $K_{2 a}$.

Theorem 1.3 ([1]). Let G be any graph such that both G and \bar{G} are connected. Then

$$
\gamma_{n c}(G)+\gamma_{n c}(\bar{G}) \leq \begin{cases}\left\lceil\frac{n}{2}\right\rceil+2 & \text { if } \operatorname{diam} G \geq 3 \\ \left\lceil\frac{n}{2}\right\rceil+3 & \text { if } \operatorname{diam} G=2\end{cases}
$$

Theorem 1.4 ([1]). Let T be any tree with $n>2$. Then $\gamma_{n c}(T)=n-\Delta$ if and only if T can be obtained from a star by subdividing k of its edges, $k \geq 1$, once or by subdividing exactly one edge twice.

2. MAIN RESULTS

We assume throughout that G is a graph without isolated vertices.
Definition 2.1. A dominating set S of a graph G is called a neighbourhood total dominating set (ntd-set) if the induced subgraph $\langle N(S)\rangle$ contains no isolated vertices. A ntd-set S is said to be minimal if no proper subset of S is a ntd-set. The minimum cardinality of a ntd-set of G is called the neighbourhood total domination number of G and is denoted by $\gamma_{n t}(G)$.

Remark 2.2. (i) Let S be a ntd-set of G. Since $\langle N(S)\rangle$ has no isolated vertices, it follows that $|N(S)| \geq 2$.
(ii) Clearly $\gamma_{n t} \geq \gamma$. Further if S is a total dominating set or a paired dominating set or a connected dominating set with $|S|>1$, then $N(S)=V$ and hence $\gamma_{n t} \leq \gamma_{t}, \gamma_{n t} \leq \gamma_{p r}$ and $\gamma_{n t} \leq \gamma_{c}$ if $\gamma_{c}>1$.
(iii) For any connected graph $G, \gamma_{n t}=1$ if and only if there exists a vertex $v \in V(G)$ such that deg $v=n-1$ and $G-v$ has no isolated vertices.

Theorem 2.3. For any connected graph $G, \gamma(G) \leq \gamma_{n t}(G) \leq \gamma_{n c}(G) \leq 2 \gamma(G)$. Further given three positive integers a, b and c with $a \leq b \leq c \leq 2 a$, there exists a graph G with $\gamma(G)=a, \gamma_{n t}(G)=b$ and $\gamma_{n c}(G)=c$.

Proof. We have $\gamma(G) \leq \gamma_{n t}(G) \leq \gamma_{n c}(G) \leq \gamma_{p r}(G) \leq 2 \gamma(G)$. Now, let a, b and c be positive integers with $a \leq b \leq c \leq 2 a$. Let $b=a+r, 0 \leq r \leq a, c=a+k, r \leq k \leq$ $2 a-r$. Consider the corona $K_{a} \circ K_{1}$ with $V\left(K_{a}\right)=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ and let u_{i} be the pendant vertex adjacent to v_{i}. Take r copies $H_{1}, H_{2}, \ldots, H_{r}$ of $\overline{K_{2}}$ and $k-r$ copies $G_{r+1}, G_{r+2}, \ldots, G_{k}$ of P_{4}. Let G be the graph obtained from $K_{a} \circ K_{1}$ by joining u_{i} to all the vertices of H_{i} where $1 \leq i \leq r$ and by joining u_{r+j} to all the vertices of G_{r+j} where $1 \leq j \leq k-r$. Then $\gamma(G)=a, \gamma_{n t}(G)=a+r=b$ and $\gamma_{n c}(G)=a+k=c$.

Theorem 2.4. For the path P_{n},

$$
\gamma_{n t}\left(P_{n}\right)= \begin{cases}\left\lceil\frac{n}{3}\right\rceil & \text { if } n \equiv 1(\bmod 3), \\ \left\lceil\frac{n}{3}\right\rceil+1 & \text { otherwise } .\end{cases}
$$

Proof. Let $P_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. If $n \equiv 1(\bmod 3)$, then $S=\left\{v_{i}: i=3 k+1, k=\right.$ $0,1,2, \ldots\}$ is a $n t d$-set of P_{n}. If $n \equiv 2(\bmod 3)$, then $S \cup\left\{v_{n}\right\}$ is a $n t d$-set of P_{n}. If $n \equiv 0(\bmod 3)$, then $S \cup\left\{v_{n-1}\right\}$ is a $n t d$-set of P_{n}. Hence

$$
\gamma_{n t}\left(P_{n}\right) \leq \begin{cases}\left\lceil\frac{n}{3}\right\rceil & \text { if } n \equiv 1(\bmod 3), \\ \left\lceil\frac{n}{3}\right\rceil+1 & \text { otherwise } .\end{cases}
$$

Now, $\gamma_{n t}\left(P_{n}\right) \geq \gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$. Further if $n \not \equiv 1(\bmod 3)$, then for any γ-set S of P_{n}, $\langle N(S)\rangle$ has at least one isolated vertex and hence $\gamma_{n t}\left(P_{n}\right) \geq\left\lceil\frac{n}{3}\right\rceil+1$. Hence the result follows.

Corollary 2.5. For any nontrivial path P_{n},
(i) $\gamma_{n t}\left(P_{n}\right)=\gamma\left(P_{n}\right)$ if and only if $n \equiv 1(\bmod 3)$.
(ii) $\gamma_{n t}\left(P_{n}\right)=\gamma_{c}\left(P_{n}\right)$ if and only if $n=4$ or 5 .
(iii) $\gamma_{n t}\left(P_{n}\right)=\gamma_{t}\left(P_{n}\right)$ if and only if $n=2,3,4,5$ or 8 .
(iv) $\gamma_{n t}\left(P_{n}\right)=\gamma_{n c}\left(P_{n}\right)$ if and only if $n=3,4,5,6$ or 8 .

Proof. Since $\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{c}\left(P_{n}\right)=n-2$,

$$
\gamma_{t}\left(P_{n}\right)= \begin{cases}\frac{n}{2} & \text { if } n \equiv 0(\bmod 4) \\ \left\lfloor\frac{n}{2}\right\rfloor+1 & \text { otherwise }\end{cases}
$$

and $\gamma_{n c}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ the corollary follows.
Theorem 2.6. For the cycle C_{n},

$$
\gamma_{n t}\left(C_{n}\right)= \begin{cases}\left\lceil\frac{n}{3}\right\rceil+1 & \text { if } n \equiv 2(\bmod 3) \\ \left\lceil\frac{n}{3}\right\rceil & \text { otherwise }\end{cases}
$$

Proof. Let $C_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)$ and $n=3 k+r$, where $0 \leq r \leq 2$.
Let $S=\left\{v_{i}: i=3 j+1,0 \leq j \leq k\right\}$.
Let $S_{1}= \begin{cases}S \cup\left\{v_{n}\right\} & \text { if } n \equiv 2(\bmod 3), \\ S & \text { otherwise. }\end{cases}$
Then S_{1} is a ntd-set of C_{n} and hence

$$
\gamma_{n t}\left(C_{n}\right) \leq\left\{\begin{array}{ll}
\left\lceil\frac{n}{3}\right. \\
\frac{n}{3} \\
\rceil
\end{array}\right]+1 \quad \text { if } n \equiv 2(\bmod 3), ~ \begin{aligned}
& \text { otherwise }
\end{aligned}
$$

Now, $\gamma_{n t}\left(C_{n}\right) \geq \gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$. Further if $n \equiv 2(\bmod 3)$, then for any γ-set of S of $C_{n},\langle N(S)\rangle$ has at least one isolated vertex and hence $\gamma_{n t}\left(C_{n}\right) \geq\left\lceil\frac{n}{3}\right\rceil+1$. Hence the result follows.

Corollary 2.7. (i) $\gamma_{n t}\left(C_{n}\right)=\gamma\left(C_{n}\right)$ if and only if $n \not \equiv 2(\bmod 3)$.
(ii) $\gamma_{n t}\left(C_{n}\right)=\gamma_{c}\left(C_{n}\right)$ if and only if $n=3,4$ or 5 .
(iii) $\gamma_{n t}\left(C_{n}\right)=\gamma_{t}\left(C_{n}\right)$ if and only if $n=4,5$ or 8 .
(iv) $\gamma_{n t}\left(C_{n}\right)=\gamma_{n c}\left(C_{n}\right)$ if and only if $n=3,4,5$ or 7 .

Proof. Since $\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{c}\left(C_{n}\right)=n-2$,

$$
\gamma_{t}\left(C_{n}\right)= \begin{cases}\frac{n}{2}+1 & \text { if } n \equiv 2(\bmod 4) \\ \left\lceil\frac{n}{2}\right\rceil & \text { otherwise }\end{cases}
$$

and

$$
\gamma_{n c}\left(C_{n}\right)= \begin{cases}\left\lceil\frac{n}{2}\right\rceil & \text { if } n \not \equiv 3(\bmod 4) \\ \left\lfloor\frac{n}{2}\right\rfloor & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

the result follows.

We now proceed to obtain a characterization of minimal ntd-sets.
Lemma 2.8. A superset of a ntd-set is a ntd-set.
Proof. Let S be a ntd-set of a graph G and let $S_{1}=S \cup\{v\}$, where $v \in V-S$. Clearly, $v \in N\left(S_{1}\right)$ and S_{1} is a dominating set of G. Suppose there exists an isolated vertex y in $\left\langle N\left(S_{1}\right)\right\rangle$. Then $N(y) \subseteq S-N(S)$ and hence y is an isolated vertex in $\langle N(S)\rangle$, which is a contradiction. Hence $\left\langle N\left(S_{1}\right)\right\rangle$ has no isolated vertices and S_{1} is a ntd-set.

Theorem 2.9. A ntd-set S of a graph G is a minimal ntd-set if and only if for every $u \in S$, one of the following holds:
(i) $p n[u, S] \neq \emptyset$.
(ii) There exists a vertex $x \in N(S-\{u\})$ such that $N(x) \cap N(S-\{u\})=\emptyset$.

Proof. Let S be a minimal ntd-set of G. Let $u \in S$. Then either $S-\{u\}$ is not a dominating set of G or $S-\{u\}$ is a dominating set and $\langle N(S-\{u\})\rangle$ has an isolated vertex. If $S-\{u\}$ is not a dominating set of G, then $p n[u, S] \neq \emptyset$. If $S-\{u\}$ is a dominating set and if $x \in N(S-\{u\})$ is an isolated vertex in $\langle N(S-\{u\})\rangle$, then $N(x) \cap N(S-\{u\})=\emptyset$. Conversely, if S is a ntd-set of G satisfying the conditions of the theorem, then S is a 1 -minimal ntd-set and hence the result follows from Lemma 2.8.

Remark 2.10. Let G be a graph with $\Delta=n-1$. Then $\gamma_{n t}(G)=1$ or 2 . Further $\gamma_{n t}(G)=2$ if and only if G has exactly one vertex v with $\operatorname{deg} v=n-1$ and v is adjacent to a vertex of degree 1. (A vertex which is adjacent to a vertex of degree 1 is called a support vertex).

Remark 2.11. Since any ntd-set of a spanning subgraph H of a graph G is a ntd-set of G, we have $\gamma_{n t}(G) \leq \gamma_{n t}(H)$.
Remark 2.12. If G is a disconnected graph with k components $G_{1}, G_{2}, \ldots, G_{k}$ then $\gamma_{n t}(G)=\gamma_{n t}\left(G_{1}\right)+\gamma_{n t}\left(G_{2}\right)+\cdots+\gamma_{n t}\left(G_{k}\right)$.

We now proceed to obtain bounds for $\gamma_{n t}$.
Observation 2.13. For any graph $G, \gamma_{n t}(G)=n$ if and only if $G=m K_{2}$.
Theorem 2.14. For any graph $G, \gamma_{n t}(G) \leq n-\Delta+1$. Further, $\gamma_{n t}(G)=n-\Delta+1$ if and only if G is isomorphic to H or $s K_{2} \cup H$ where H is any graph having a support vertex v with deg $v=|V(H)|-1$.

Proof. Let $v \in V(G)$ and $\operatorname{deg} v=\Delta$. Let $S=N(v)-\{u\}$ where $u \in N(v)$. Then $V-S$ is a ntd-set of G and hence $\gamma_{n t}(G) \leq n-\Delta+1$.

Now, let G be any graph with $\gamma_{n t}(G)=n-\Delta+1$. Case i. G is connected.

If $\Delta<n-1$, then $V-S$ where $S=(N(v)-\{u\}) \cup\{w\}, u \in N(v), w \notin N[v]$, is a ntd-set of G with $|V-S|=n-\Delta$ which is a contradiction. Hence $\Delta=n-1$ and deg $v=n-1$. If $n=2$, then $H=K_{2}$. Suppose $n \geq 3$. If deg $u \geq 2$ for all $u \in N(v)$,
then $\{v\}$ is a ntd-set of G and hence $\gamma_{n t}(G)=1$, which is a contradiction. Hence deg $u=1$ for some $u \in N(v)$, so that v is a support vertex of H.
Case ii. G is disconnected.
Let $G_{1}, G_{2}, \ldots, G_{k}$ be the components of G and let $\left|V\left(G_{i}\right)\right|=n_{i}$. If $\Delta=1$, then $\gamma_{n t}=n$ and each G_{i} is isomorphic to K_{2}. Suppose $\Delta \geq 2$. Let $v \in V\left(G_{1}\right)$ be such that deg $v=\Delta$. Since $\gamma_{n t}(G)=n-\Delta+1$ it follows that $\gamma_{n t}\left(G_{1}\right)=n_{1}-\Delta+1$ and $\gamma_{n t}\left(G_{i}\right)=n_{i}$ for all $i \geq 2$. Hence by Case i, G_{1} is isomorphic to H where H is any graph having a support vertex v with $\operatorname{deg} v=|V(H)|-1$ and G_{i} is isomorphic to K_{2} for all $i \geq 2$.

Theorem 2.15. Let G be a connected graph with $\Delta<n-1$. Then $\gamma_{n t}(G) \leq n-\Delta$. Further, for a tree T with $\Delta<n-1$ the following are equivalent.
(i) $\gamma_{n t}(T)=n-\Delta$.
(ii) $\gamma_{n c}(T)=n-\Delta$.
(iii) T can be obtained from a star by subdividing k of its edges, $k \geq 1$ once or by subdividing exactly one edge twice.
Proof. Let $v \in V(G)$ and deg $v=\Delta$. Since G is connected and $\Delta<n-1$, there exist two adjacent vertices u and w such that $u \in N(v)$ and $w \notin N[v]$. Let $S=$ $(N(v)-\{u\}) \cup\{w\}$. Then $V-S$ is a ntd-set of G and hence $\gamma_{n t}(G) \leq n-\Delta$.

Now, let T be a tree with $\Delta<n-1$. Suppose $\gamma_{n t}(T)=n-\Delta$. Then $n-\Delta=$ $\gamma_{n t}(T) \leq \gamma_{n c}(T) \leq n-\Delta$. Hence $\gamma_{n c}(T)=n-\Delta$, so that (i) implies (ii).

It follows from Theorem 1.4 that (ii) implies (iii). We now prove (iii) implies (i). Consider the star $K_{1, \Delta}$, where $V\left(K_{1, \Delta}\right)=\left\{v, v_{1}, v_{2}, \ldots, v_{\Delta}\right\}$ with deg $v=\Delta$. Case $i . T$ is obtained from $K_{1, \Delta}$ by subdividing the k edges $v v_{1}, v v_{2}, \ldots, v v_{k}$. Let u_{i} be the vertex subdividing $u v_{i}, 1 \leq i \leq k$. Clearly, $n-\Delta=k+1$. Also any ntd-set S of T contains either u_{i} or v_{i} for each $i, 1 \leq i \leq k$ and also contains the vertex v. Hence it follows that $|S| \geq k+1=n-\Delta$ and $\gamma_{n t}(T)=n-\Delta$.
Case ii. T is obtained from $K_{1, \Delta}$ by subdividing the edge $v v_{1}$ twice.
Let u_{1}, u_{2} be the vertices subdividing $v v_{1}$. Then $n-\Delta=3$ and $S=\left\{v, u_{1}, u_{2}\right\}$ is a minimum ntd-set of T. Thus $\gamma_{n t}(T)=n-\Delta$.
Corollary 2.16. For a forest $G, \gamma_{n t}(G)=n-\Delta$ if and only if G is isomorphic to $K_{2} \cup T$, where T is a tree with $\gamma_{n t}(T)=|V(T)|-\Delta(T)$.
Theorem 2.17. For each $\gamma_{n t}$-set S of a connected graph G, let t_{S} denote the number of vertices v such that v is not a pendant vertex of G and v is isolated in $\langle S\rangle$. Let $t=\min \left\{t_{S}: S\right.$ is a $\gamma_{n t}$-set of $\left.G\right\}$. Then $\gamma_{n c}(G) \leq \gamma_{n t}(G)+t$.
Proof. Let S be a $\gamma_{n t}$-set of G such that the number of vertices in S which are non-pendant vertices of G and are isolated in $\langle S\rangle$ is t.

Let $X=\{v \in S: d(v)=0$ in $\langle S\rangle$ and $d(v)>1$ in $G\}$ so that $|X|=t$. For each $v \in X$, choose a vertex $f(v) \in V(G)$ which is adjacent to v. Then $S_{1}=S \cup\{f(v)$: $v \in X\}$ is a ncd-set of G and hence $\gamma_{n c}(G) \leq|S| \leq \gamma_{n t}(G)+t$.
Theorem 2.18. Let G be a connected graph with diam $G=2$. Then $\gamma_{n t}(G) \leq 1+\delta(G)$ and the bound is sharp.

Proof. If $v \in V(G)$ and deg $v=\delta$, then $N[v]$ is an ntd-set of G and hence the result follows. The bound is attained for $K_{1, n}$ and C_{5}.

Theorem 2.19. Let G be a connected graph with diam $G=2$ and $\gamma_{n t}(G)=1+\delta(G)$. Then for every vertex $v \in V(G)$ with deg $v=\delta(G), N(v)$ is an independent set and for all $u \in N(v)$ there exists a vertex $w \notin N(v)$ such that w is adjacent only to u.

Proof. Let $S_{1}=N(v)$. Clearly S_{1} is a dominating set of G. Now, suppose $N(v)$ is not an independent set. Then $\langle N(v)\rangle$ contains an edge $e=x y$. Hence v is not isolated in $\left\langle N\left(S_{1}\right)\right\rangle$ and since $\operatorname{diam} G=2$, every vertex $w \notin N[v]$ is adjacent to either x or a neighbour of x. Thus w is not isolated in $\left\langle N\left(S_{1}\right)\right\rangle$. Hence S_{1} is a ntd-set of G and $\gamma_{n t}(G) \leq \delta(G)$ which is a contradiction. Thus $N(v)$ is an independent set.

Now, suppose there exists a vertex $u \in N(v)$ such that u has no private neighbour in $V-N[v]$. Then $N[v]-\{u\}$ is a ntd-set of G with cardinality $\delta(G)$ which is a contradiction. Hence the result follows.

Remark 2.20. The converse of Theorem 2.19 is not true. Consider the graph G given in Figure 1.

Fig. 1

Here $\delta(G)=2$ and $\gamma_{n t}(G)=2$. However, the unique vertex v with deg $v=\delta=2$ satisfies the conditions given in Theorem 2.19.

Theorem 2.21. Let G be a graph such that both G and \bar{G} have no isolated vertices. Then $\gamma_{n t}(G)+\gamma_{n t}(\bar{G}) \leq n+2$. Further, equality holds if and only if G or \bar{G} is isomorphic to $s K_{2}$, where $s>1$.

Proof. If G and \bar{G} are both connected, then $\gamma_{n t}(G) \leq \gamma_{n c}(G) \leq\left\lceil\frac{n}{2}\right\rceil$ and $\gamma_{n t}(\bar{G}) \leq$ $\left\lceil\frac{n}{2}\right\rceil$, so that $\gamma_{n t}(G)+\gamma_{n t}(\bar{G}) \leq n+1$.

If G is disconnected, then $\gamma_{n t}(\bar{G})=2$ and hence $\gamma_{n t}(G)+\gamma_{n t}(\bar{G}) \leq n+2$.
Now, let G be any graph with $\gamma_{n t}(G)+\gamma_{n t}(\bar{G})=n+2$. Then G or \bar{G} is disconnected. Suppose G is disconnected. Then $\gamma_{n t}(G)=n$ and $\gamma_{n t}(\bar{G})=2$ and hence G is isomorphic to $s K_{2}$ where $s>1$. The converse is obvious.

The bound given by Theorem 2.21 can be substantially improved when G and \bar{G} are both connected, as shown in the following theorem.

Theorem 2.22. Let G be any graph such that both G and \bar{G} are connected. Then

$$
\gamma_{n t}(G)+\gamma_{n t}(\bar{G}) \leq \begin{cases}\left\lceil\frac{n}{2}\right\rceil+2 & \text { if diam } G \geq 3 \\ \left\lceil\frac{n}{2}\right\rceil+3 & \text { if } \operatorname{diam} G=2\end{cases}
$$

Proof. Since $\gamma_{n t} \leq \gamma_{n c}$ the result follows from Theorem 1.3
Remark 2.23. The bounds given in Theorem 2.22 are sharp. The graph $G=C_{5}$ has diameter 2, $\gamma_{n t}(G)=\gamma_{n t}(\bar{G})=3$ and $\gamma_{n t}(G)+\gamma_{n t}(\bar{G})=6=\left\lceil\frac{n}{2}\right\rceil+3$. For the graph $G=C_{k} \circ K_{1} \operatorname{diam} G \geq 3$ and $\gamma_{n t}(G)+\gamma_{n t}(\bar{G})=\left\lceil\frac{n}{2}\right\rceil+2$.
Problem 2.24. Characterize graphs which attain the bounds given in Theorem 2.22.
Theorem 2.25. For any connected graph $G, \gamma_{n t}(G)+\kappa(G) \leq n-\Delta+\delta+1$ and equality holds if and only if G contains a support vertex v with deg $v=n-1$.
Proof. We have $\gamma_{n t} \leq n-\Delta+1$ and $\kappa \leq \delta$. Hence $\gamma_{n t}+\kappa \leq n-\Delta+\delta+1$.
Let G be a connected graph and let $\gamma_{n t}(G)+\kappa(G)=n-\Delta+\delta+1$. Then $\gamma_{n t}(G)=n-\Delta+1$ and $\kappa=\delta$ and the result follows from Theorem 2.14.
Theorem 2.26. For any graph $G, \gamma_{n t}(G)+\kappa(G)=n$ if and only if G is isomorphic to one of the graphs $s K_{2}, s>1, P_{3}$ or C_{5} or K_{n} or $K_{2 a}-X, a \geq 3$ and X is a 1-factor of $K_{2 a}$.
Proof. Let G be a graph with $\gamma_{n t}(G)+\kappa(G)=n$.
Case i. G is connected.
Suppose $\Delta=n-1$. Then $\gamma_{n t}=1$ or 2 . If $\gamma_{n t}=1$, then $\kappa=n-1$ and hence G is isomorphic to K_{n}. If $\gamma_{n t}=2$ then G contains a support vertex of degree $n-1$ and hence $\kappa=1, n=3$. Hence G is isomorphic to P_{3}.

Suppose $\Delta<n-1$. Then $\gamma_{n t} \leq \gamma_{c}$ and $\gamma_{n t}+\kappa \leq \gamma_{c}+\kappa$ so that $\gamma_{c}+\kappa \geq n$. Since $\gamma_{c}+\kappa \leq n$ we get $\gamma_{c}+\kappa=n$ and $\gamma_{n t}=\gamma_{c}$. Therefore by Theorem 1.2 G is isomorphic to C_{5} or $K_{2 a}-X$ where X is a 1-factor in $K_{2 a}$.
Case ii. G is disconnected.
Then $\kappa=0$. Hence $\gamma_{n t}=n$ so that G is isomorphic to $s K_{2}, s>1$. The converse is obvious.

3. NEIGHBOURHOOD TOTAL DOMATIC NUMBER

The maximum order of a partition of the vertex set V of a graph G into dominating sets is called the domatic number of G and is denoted by $d(G)$. For a survey of results on domatic number and their variants we refer to Zelinka [10]. In [2] we have initiated a study of the neighbourhood connected domatic number of a graph. In this section we present a few basic results on the neighbourhood total domatic number of a graph.
Definition 3.1. Let G be a graph without isolated vertices. A neighbourhood total domatic partition (nt-domatic partition) of G is a partition $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$ in which each V_{i} is a ntd-set of G. The maximum order of an nt-domatic partition of G is called the neighbourhood total domatic number (nt-domatic number) of G and is denoted by $d_{n t}(G)$.
Observation 3.2. Since any domatic partition of K_{n}, where $n \geq 3$, is also a nt-domatic partition, we have $d_{n t}\left(K_{n}\right)=d\left(K_{n}\right)=n$. Similarly $d_{n t}\left(K_{r, s}\right)=d\left(K_{r, s}\right)=$ $\min \{r, s\}$. Also for the wheel $W_{n}, d_{n t}\left(W_{n}\right)=d\left(W_{n}\right)= \begin{cases}4 & \text { if } n \equiv 1(\bmod 3), \\ 3 & \text { otherwise } .\end{cases}$

Observation 3.3. Since any total domatic partition of G is a nt-domatic partition and any nc-domatic partition is a nt-domatic partition, we have $d_{t}(G) \leq d_{n c}(G) \leq$ $d_{n t}(G) \leq d(G)$.
Observation 3.4. Let $v \in V(G)$ and $\operatorname{deg} v=\delta$. Since any ntd-set of G must contain either v or a neighbour of v, it follows that $d_{n t}(G) \leq \delta(G)+1$.
Definition 3.5. A graph G is called nt-domatically full if $d_{n t}(G)=\delta(G)+1$.
Example 3.6. The graph G given in Figure 2 is nt-domatically full. In fact $\left\{\left\{v_{1}\right\},\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\},\left\{v_{3}, v_{5}, v_{7}, v_{9}\right\}\right\}$ is a nt-domatic partition of G of maximum order and $d_{n t}(G)=3=1+\delta(G)$.

Fig. 2. nt-domatically full graph

Observation 3.7. Given two positive integers n and k with $n \geq 4$ and $1 \leq k \leq n$, there exists a graph G with n vertices such that $d_{n t}(G)=k$. We take

$$
G= \begin{cases}K_{n} & \text { if } k=n, n \geq 3, \\ K_{1, n-1} & \text { if } k=1, \\ B\left(n_{1}, n-2-n_{1}\right) & \text { if } k=2, \\ K_{k-1}+\overline{K_{n-k+1}} & \text { otherwise. }\end{cases}
$$

Theorem 3.8. For the path $P_{n}, n \geq 2$, we have

$$
d_{n t}\left(P_{n}\right)= \begin{cases}1 & \text { if } n=2,3 \text { or } 5 \\ 2 & \text { otherwise }\end{cases}
$$

Proof. Let $P_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. The result is trivial for $n=2,3$ or 5 . Suppose $n \neq 2,3,5$. It follows from Observation 3.4 that $d_{n t}\left(P_{n}\right) \leq 2$.

Now let $S=\left\{v_{i}: i \equiv 1(\bmod 3)\right\}$ and let

$$
V_{1}= \begin{cases}S & \text { if } n \equiv 1(\bmod 3), \\ S \cup\left\{v_{n-2}\right\} & \text { if } n \equiv 2(\bmod 3), \\ S \cup\left\{v_{n-1}\right\} & \text { if } n \equiv 0(\bmod 3) .\end{cases}
$$

Then $\left\{V_{1}, V-V_{1}\right\}$ is a nt-domatic partition of P_{n} and hence $d_{n t}\left(P_{n}\right)=2$.
Theorem 3.9. For the cycle C_{n} with $n \geq 4$ we have

$$
d_{n t}\left(C_{n}\right)= \begin{cases}1 & \text { if } n=5 \\ 3 & \text { if } n \equiv 0(\bmod 3) \\ 2 & \text { otherwise }\end{cases}
$$

Proof. Let $C_{n}=\left(v_{0}, v_{1}, \ldots, v_{n-1}, v_{0}\right)$. The result is trivial for $n=5$. Suppose $n \neq 5$. It follows from Observation 3.4 that $d_{n t}\left(C_{n}\right) \leq 3$. If $n \equiv 0(\bmod 3)$, let $n=3 k$ and let $S_{i}=\left\{v_{j}: 0 \leq j \leq n-1\right.$ and $\left.j \equiv i(\bmod 3)\right\}, i=0,1,2$. Then $\left\{S_{0}, S_{1}, S_{2}\right\}$ is a nt-domatic partition of C_{n} and hence $d_{n t}\left(C_{n}\right)=3$. Now, suppose $n \not \equiv 0(\bmod 3)$. Let $n=3 k+r$ where $r=1$ or 2 .

Let $S_{1}= \begin{cases}\left\{v_{i}: i \equiv 1(\bmod 3)\right\} & \text { if } n \equiv 1(\bmod 3), \\ \left\{v_{i}: i \equiv 2 \operatorname{or} 3(\bmod 4)\right\} & \text { if } n \equiv 2(\bmod 3) .\end{cases}$
Then $\left\{S_{1}, V-S_{1}\right\}$ is a nt-domatic partition of C_{n} and hence $d_{n t}\left(C_{n}\right) \geq 2$. Also it follows from Theorem 2.6 that $d_{n t}\left(C_{n}\right) \leq 2$ and hence $d_{n t}\left(C_{n}\right)=2$.

Observation 3.10. If $\left\{V_{1}, V_{2}, \ldots, V_{d_{n t}}\right\}$ is a nt-domatic partition of G, then $\left|V_{i}\right| \geq$ $\gamma_{n t}$ for each i and hence $\gamma_{n t}(G) d_{n t}(G) \leq n$.
Example 3.11. (i) If $G \cong s K_{r} r \geq 3, s \geq 1$, then $d_{n t}(G)=r$ and $\gamma_{n t}(G)=s$ and hence $d_{n t}(G) \gamma_{n t}(G)=s r=n$.
(ii) If $G \cong s K_{r, r} r \geq 2, s \geq 1$, then $d_{n t}(G)=r, \gamma_{n t}(G)=2 s$ and hence $d_{n t}(G) \gamma_{n t}(G)=2 s r=n$.
(iii) If $G \cong G_{1} \circ K_{1}$ where G_{1} is any connected graph, then $d_{n t}(G)=2$ and $\gamma_{n t}(G)=\frac{n}{2}$ and hence $d_{n t}(G) \gamma_{n t}(G)=n$.
Problem 3.12. Characterize the class of graphs for which $d_{n t}(G) \gamma_{n t}(G)=n$.
Theorem 3.13. Let G be a graph of order $n \geq 5$ with $\Delta=n-1$ and let k denote the number of vertices of degree $n-1$. Then $d_{n t}(G) \leq \frac{1}{2}(n+k)$. Further $d_{n t}(G)=\frac{1}{2}(n+k)$ if and only if $G=K_{k}+H$ where either H is isomorphic to $2 K_{\frac{n-k}{2}}$ or H is a connected graph with $V(H)=X_{1} \cup X_{2} \cup \cdots \cup X_{r}, r=\frac{n-k}{2},\left|X_{i}\right|=2, X_{i} \cap X_{j}=\emptyset$ for all $i \neq j$ and the subgraph induced by the edges of H with one end in X_{i} and the other end in X_{j} has a perfect matching.
Proof. Let $\left\{V_{1}, V_{2}, \ldots, V_{s}\right\}$ be any nt-domatic partition of G with $\left|V_{i}\right|=1,1 \leq i \leq k$. Since $\left|V_{j}\right| \geq 2$ for all j with $k+1 \leq j \leq s$, it follows that $s \leq k+\frac{n-k}{2}=\frac{n+k}{2}$. Hence $d_{n t}(G) \leq \frac{1}{2}(n+k)$.

Now, let G be a graph with $d_{n t}(G)=\frac{1}{2}(n+k)$. Then there exists a nt-domatic partition $\left\{V_{1}, V_{2}, \ldots, V_{k}, V_{k+1}, \ldots, V_{\frac{n+k}{2}}\right\}$ such that $\left|V_{i}\right|=1$ if $1 \leq i \leq k$ and $\left|V_{j}\right|=2$ if $k+1 \leq j \leq \frac{n+k}{2}$. Clearly, $\left\langle V_{1} \cup V_{2} \cup \cdots \cup V_{k}\right\rangle \cong K_{k}$. Let $H=\left\langle V_{k+1} \cup \cdots \cup V_{\frac{n+k}{2}}\right\rangle$. Case i. H is disconnected.

Since $\left|V_{j}\right|=2$ for all j with $k+1 \leq j \leq \frac{n+k}{2}$, it follows that H has exactly two components H_{1}, H_{2} and each V_{j} contains one vertex from H_{1} and one vertex from H_{2}. Since V_{j} is a ntd-set of G, it follows that H_{1} and H_{2} are complete graphs and
$\left|V\left(H_{1}\right)\right|=\left|V\left(H_{2}\right)\right|=\frac{n-k}{2}$. Hence H is isomorphic to $2 K_{\frac{n-k}{2}}$. If $k=1$, then each H_{1} and H_{2} must contain at least two vertices. Hence $n \geq 5$.
Case ii. H is connected.
Let $X_{i}=V_{k+i}, 1 \leq i \leq r=\frac{n-k}{2}$. Then $V(H)=X_{1} \cup X_{2} \cup \cdots \cup X_{r}$ and $X_{i} \cap X_{j}=\emptyset$ when $i \neq j$. Now, since each X_{i} is a dominating set of G, it follows that the subgraph induced by the edges of H with one end in X_{i} and the other end in X_{j} has a perfect matching.

Conversely, suppose G is of the form given in the theorem. Let $u_{1}, u_{2}, \ldots, u_{k}$ be the vertices of G with $\operatorname{deg} u_{i}=n-1,1 \leq i \leq k$.

Suppose $G=K_{k}+H$ where H is isomorphic to $2 K_{\frac{n-k}{2}}$ with $n \geq 5$ when $k=1$.
Let H_{1} and H_{2} be the two components of H with $V\left(H_{1}\right)=\left\{x_{i}: k+1 \leq i \leq \frac{n+k}{2}\right\}$ and $V\left(H_{2}\right)=\left\{y_{i}: k+1 \leq i \leq \frac{n+k}{2}\right\}$. Let

$$
V_{i}= \begin{cases}\left\{u_{i}\right\} & \text { if } 1 \leq i \leq k, \\ \left\{x_{i}, y_{i}\right\} & \text { where } x_{i} \in V\left(H_{1}\right) \text { and } y_{i} \in V\left(H_{2}\right), \text { if } k+1 \leq i \leq \frac{n+k}{2} .\end{cases}
$$

Then $\left\{V_{1}, V_{2}, \ldots, V_{\frac{n+k}{2}}\right\}$ is a nt-domatic partition of G. Also if $G=K_{k}+H$, where H is a connected graph satisfying the conditions stated in the theorem, then $\left\{\left\{u_{1}\right\},\left\{u_{2}\right\}, \ldots,\left\{u_{k}\right\}, X_{1}, X_{2}, \ldots, X_{r}\right\}$ is a nt-domatic partition of G. Thus $d_{n t}(G) \geq k+r=\frac{n+k}{2}$ and hence $d_{n t}(G)=\frac{n+k}{2}$.

Corollary 3.14. Let G be a graph with $\Delta<n-1$. Then $d_{n t}(G) \leq \frac{n}{2}$. Further $d_{n t}(G)=\frac{n}{2}$ if and only if $V=X_{1} \cup X_{2} \cup \cdots \cup X_{\frac{n}{2}}$, where $\left|X_{i}\right|=2$ for all i, $X_{i} \cap X_{j}=\emptyset$ if $i \neq j$, the subgraph induced by the edges of G with one end in X_{i} and the other end in X_{j} has a perfect matching and $\left\langle V-X_{i}\right\rangle$ has no isolated vertex if X_{i} is independent.

Theorem 3.15. Let G be any graph such that both G and \bar{G} are connected. Then $d_{n t}(G)+d_{n t}(\bar{G}) \leq n$. Further equality holds if and only if $V(G)=X_{1} \cup X_{2} \cup \cdots \cup X_{\frac{n}{2}}$, where $X_{i} \cap X_{j}=\emptyset$ and $\left\langle X_{i} \cup X_{j}\right\rangle$ is C_{4} or P_{4} or $2 K_{2}$ for all $i \neq j$.

Proof. Since both G and \bar{G} are connected, it follows that $\Delta<n-1$. Hence $d_{n t}(G) \leq \frac{n}{2}$ and $d_{n t}(\bar{G}) \leq \frac{n}{2}$, so that $d_{n t}(G)+d_{n t}(\bar{G}) \leq n$.

Now, suppose $d_{n t}(G)+d_{n t}(\bar{G})=n$. Then $d_{n t}(G)=\frac{n}{2}$ and $d_{n t}(\bar{G})=\frac{n}{2}$. Since $d_{n t}(G) \leq \delta(G)+1$, it follows that $\delta(G) \geq \frac{n}{2}-1$ and $\delta(\bar{G}) \geq \frac{n}{2}-1$ and hence $\operatorname{deg} v=\frac{n}{2}-1$ or $\frac{n}{2}$ for all $v \in V(G)$.

Now, let $V=X_{1} \cup X_{2} \cup \cdots \cup X_{\frac{n}{2}}$ be a nt-domatic partition of G. Then the subgraph induced by the edges of G with one end in X_{i} and the other end in X_{j} has a perfect matching. Further, if $\left\langle X_{i} \cup X_{j}\right\rangle$ has more than four edges, then at least one vertex v of $\left\langle X_{i} \cup X_{j}\right\rangle$ has degree at least 3 . Since there are $\frac{n}{2}-2$ ntd-sets other than X_{i} and X_{j}, deg $v \geq \frac{n}{2}+1$ which is a contradiction. Thus $\left\langle X_{i} \cup X_{j}\right\rangle$ contains at most four edges and hence is isomorphic to C_{4} or P_{4} or $2 K_{2}$. The converse is obvious.

4. CONCLUSION AND SCOPE

In this paper we have introduced a new type of domination, namely, neighbourhood total domination. We have also discussed the corresponding neighbour total domatic partition. The following are some interesting problems for further investigation.

Problem 4.1. Characterize the class of graphs for which $\gamma_{n t}(G)=n-\Delta$.
Problem 4.2. Characterize graphs for which $\gamma_{n t}(G)=\left\lceil\frac{n}{2}\right\rceil$.
Problem 4.3. Characterize the class of graphs for which $\gamma_{n t}(G)=n-1$ or $n-2$.
Problem 4.4. Characterize nt-domatically full graphs.
Problem 4.5. Characterize graphs for which $d_{n t}(G)=d(G)$.

Acknowledgements

We are thankful to the Department of Science and Technology, New Delhi for its support through the project $S R / S 4 / M S: 282 / 05$, awarded to the first author.

REFERENCES

[1] S. Arumugam, C. Sivagnanam, Neighbourhood connected domination in graphs, J. Combin. Math. Combin. Comput. 73 (2010), 55-64.
[2] S. Arumugam, C. Sivagnanam, Neighbourhood connected domatic number of a graph, J. Combin. Math. Combin. Comput. 75 (2010), 239-249.
[3] G. Chartrand, L. Lesniak, Graphs and Digraphs, Chapman and Hall, CRC, $4^{\text {th }}$ edition, 2005.
[4] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980), 211-219.
[5] T.W. Haynes, P.J. Slater, Paired domination in graphs, Networks 32 (1998), 199-206.
[6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
[7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs - Advanced Topics, Marcel Dekker Inc., 1998.
[8] J. Paulraj, S. Arumugam, Domination and Connectivity in graphs, International Journal of Management and Systems 8 (1992) 3, 233-236.
[9] E. Sampathkumar, H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979), 607-613.
[10] B. Zelinka, Domatic number of graphs and their variants: A survey in Domination in graphs Advanced topics, Ed. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Marcel Dekker, 1998.
S. Arumugam
s.arumugam.klu@gmail.com

Kalasalingam University
National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH) Anand Nagar, Krishnankoil-626190, India

The University of Newcastle
School of Electrical Engineering and Computer Science
NSW 2308, Australia
C. Sivagnanam
choshi71@gmail.com
St. Joseph's College of Engineering
Department of Mathematics
Chennai-600119, India

Received: October 21, 2009.
Revised: December 23, 2010.
Accepted: December 23, 2010.

