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NEIGHBOURHOOD TOTAL DOMINATION
IN GRAPHS

S. Arumugam, C. Sivagnanam

Abstract. Let G = (V,E) be a graph without isolated vertices. A dominating set S of G
is called a neighbourhood total dominating set (ntd-set) if the induced subgraph 〈N(S)〉 has
no isolated vertices. The minimum cardinality of a ntd-set of G is called the neighbourhood
total domination number of G and is denoted by γnt(G). The maximum order of a partition
of V into ntd-sets is called the neighbourhood total domatic number of G and is denoted by
dnt(G). In this paper we initiate a study of these parameters.
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1. INTRODUCTION

By a graph G = (V,E) we mean a finite, undirected graph with neither loops nor
multiple edges. The order and size of G are denoted by n and m respectively. For
graph theoretic terminology we refer to Chartrand and Lesniak [3].

Let G = (V,E) be a graph and let v ∈ V . The open neighbourhood and the closed
neighbourhood of v are denoted byN(v) andN [v] = N(v)∪{v} respectively. If S ⊆ V ,
then N(S) =

⋃
v∈S

N(v) and N [S] = N(S) ∪ S. If S ⊆ V and u ∈ S, then the private

neighbour set of u with respect to S is defined by pn[u, S] = {v : N [v] ∩ S = {u}}.
A subset S of V is called a dominating set of G if N [S] = V . The minimum

(maximum) cardinality of a minimal dominating set of G is called the domination
number (upper domination number) of G and is denoted by γ(G) (Γ(G)). An excellent
treatment of the fundamentals of domination is given in the book by Haynes et al.
[6]. A survey of several advanced topics in domination is given in the book edited by
Haynes et al. [7].

Various types of domination have been defined and studied by several authors and
more than 75 models of domination are listed in the Appendix of Haynes et al. [6].
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Sampathkumar and Walikar [9] introduced the concept of connected domination in
graphs. A dominating set S of a connected graph G is called a connected dominating
set if the induced subgraph 〈S〉 is connected. The minimum cardinality of a connected
dominating set of G is called the connected domination number of G and is denoted
by γc(G). Cockayne et al. [4] introduced the concept of total domination in graphs. A
dominating set S of a graph G without isolated vertices is called a total dominating
set of G if 〈S〉 has no isolated vertices. The minimum cardinality of a total dominating
set of G is called the total domination number of G and is denoted by γt(G). Haynes
and Slater [5] introduced the concept of paired domination in graphs. A dominating
set S of a graph G without isolated vertices is called a paired dominating set if 〈S〉
has a perfect matching. The minimum cardinality of a paired dominating set of G is
called the paired domination number of G and is denoted by γpr(G).

For a dominating set S ofG it is natural to look at howN(S) behaves. For example,
for the cycle C6 = (v1, v2, v3, v4, v5, v6, v1), S1 = {v1, v4} and S2 = {v1, v2, v4} are
dominating sets, 〈N(S1)〉 is not connected and 〈N(S2)〉 is connected. Motivated by
this example, in [1] we have introduced the concept of neighbourhood connected
domination in graphs.

Definition 1.1 ([1]). A dominating set S of a connected graph G is called a neigh-
bourhood connected dominating set (ncd-set) if the induced subgraph 〈N(S)〉 is con-
nected. A ncd-set S is said to be minimal if no proper subset of S is a ncd-set.
The minimum cardinality of a ncd-set of G is called the neighbourhood connected
domination number of G and is denoted by γnc(G).

For the path P10 = (v1, v2, . . . , v10), S1 = {v2, v5, v7, v9} and S2 = {v1, v4, v6,
v7, v10} are dominating sets, 〈N(S1)〉 has isolates and 〈N(S2)〉 has no isolates. Mo-
tivated by this example, in this paper we introduce the concept of neighbourhood
total domination and initiate a study of neighbourhood total domination number and
neighbourhood total domatic number.

We need the following theorems.

Theorem 1.2 ([8]). Let G be a nontrivial connected graph. Then γc(G) + κ(G) = n
if and only if G = Cn or Kn or K2a −X where a ≥ 3 and X is a 1-factor of K2a.

Theorem 1.3 ([1]). Let G be any graph such that both G and G are connected. Then

γnc(G) + γnc(G) ≤

{⌈
n
2

⌉
+ 2 if diam G ≥ 3,⌈

n
2

⌉
+ 3 if diam G = 2.

Theorem 1.4 ([1]). Let T be any tree with n > 2. Then γnc(T ) = n − ∆ if and
only if T can be obtained from a star by subdividing k of its edges, k ≥ 1, once or by
subdividing exactly one edge twice.
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2. MAIN RESULTS

We assume throughout that G is a graph without isolated vertices.

Definition 2.1. A dominating set S of a graph G is called a neighbourhood total
dominating set (ntd-set) if the induced subgraph 〈N(S)〉 contains no isolated vertices.
A ntd-set S is said to be minimal if no proper subset of S is a ntd-set. The minimum
cardinality of a ntd-set of G is called the neighbourhood total domination number of
G and is denoted by γnt(G).

Remark 2.2. (i) Let S be a ntd-set of G. Since 〈N(S)〉 has no isolated vertices, it
follows that |N(S)| ≥ 2.

(ii) Clearly γnt ≥ γ. Further if S is a total dominating set or a paired dominating
set or a connected dominating set with |S| > 1, then N(S) = V and hence
γnt ≤ γt, γnt ≤ γpr and γnt ≤ γc if γc > 1.

(iii) For any connected graph G, γnt = 1 if and only if there exists a vertex v ∈ V (G)
such that deg v = n− 1 and G− v has no isolated vertices.

Theorem 2.3. For any connected graph G, γ(G) ≤ γnt(G) ≤ γnc(G) ≤ 2γ(G).
Further given three positive integers a, b and c with a ≤ b ≤ c ≤ 2a, there exists a
graph G with γ(G) = a, γnt(G) = b and γnc(G) = c.

Proof. We have γ(G) ≤ γnt(G) ≤ γnc(G) ≤ γpr(G) ≤ 2γ(G). Now, let a, b and c be
positive integers with a ≤ b ≤ c ≤ 2a. Let b = a + r, 0 ≤ r ≤ a, c = a + k, r ≤ k ≤
2a− r. Consider the corona Ka ◦K1 with V (Ka) = {v1, v2, . . . , va} and let ui be the
pendant vertex adjacent to vi. Take r copies H1, H2, . . . ,Hr of K2 and k − r copies
Gr+1, Gr+2, . . . , Gk of P4. Let G be the graph obtained from Ka ◦K1 by joining ui to
all the vertices of Hi where 1 ≤ i ≤ r and by joining ur+j to all the vertices of Gr+j

where 1 ≤ j ≤ k− r. Then γ(G) = a, γnt(G) = a+ r = b and γnc(G) = a+ k = c.

Theorem 2.4. For the path Pn,

γnt(Pn) =

{⌈
n
3

⌉
if n ≡ 1(mod 3),⌈

n
3

⌉
+ 1 otherwise.

Proof. Let Pn = (v1, v2, . . . , vn). If n ≡ 1(mod 3), then S = {vi : i = 3k + 1, k =
0, 1, 2, . . . } is a ntd-set of Pn. If n ≡ 2(mod 3), then S ∪ {vn} is a ntd-set of Pn. If
n ≡ 0(mod 3), then S ∪ {vn−1} is a ntd-set of Pn. Hence

γnt(Pn) ≤

{⌈
n
3

⌉
if n ≡ 1(mod 3),⌈

n
3

⌉
+ 1 otherwise.

Now, γnt(Pn) ≥ γ(Pn) =
⌈

n
3

⌉
. Further if n 6≡ 1(mod 3), then for any γ-set S of Pn,

〈N(S)〉 has at least one isolated vertex and hence γnt(Pn) ≥
⌈

n
3

⌉
+1. Hence the result

follows.
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Corollary 2.5. For any nontrivial path Pn,

(i) γnt(Pn) = γ(Pn) if and only if n ≡ 1(mod 3).
(ii) γnt(Pn) = γc(Pn) if and only if n = 4 or 5.
(iii) γnt(Pn) = γt(Pn) if and only if n = 2, 3, 4, 5 or 8.
(iv) γnt(Pn) = γnc(Pn) if and only if n = 3, 4, 5, 6 or 8.

Proof. Since γ(Pn) =
⌈

n
3

⌉
, γc(Pn) = n− 2,

γt(Pn) =

{
n
2 if n ≡ 0(mod 4),⌊
n
2

⌋
+ 1 otherwise

and γnc(Pn) =
⌈

n
2

⌉
the corollary follows.

Theorem 2.6. For the cycle Cn,

γnt(Cn) =

{⌈
n
3

⌉
+ 1 if n ≡ 2(mod 3),⌈

n
3

⌉
otherwise.

Proof. Let Cn = (v1, v2, . . . , vn, v1) and n = 3k + r, where 0 ≤ r ≤ 2.
Let S = {vi : i = 3j + 1, 0 ≤ j ≤ k}.

Let S1 =
{
S ∪ {vn} if n ≡ 2(mod 3),
S otherwise.

Then S1 is a ntd-set of Cn and hence

γnt(Cn) ≤
{ ⌈

n
3

⌉
+ 1 if n ≡ 2(mod 3),⌈

n
3

⌉
otherwise.

Now, γnt(Cn) ≥ γ(Cn) =
⌈

n
3

⌉
. Further if n ≡ 2(mod 3), then for any γ-set of S of

Cn, 〈N(S)〉 has at least one isolated vertex and hence γnt(Cn) ≥
⌈

n
3

⌉
+ 1. Hence the

result follows.

Corollary 2.7. (i) γnt(Cn) = γ(Cn) if and only if n 6≡ 2(mod 3).
(ii) γnt(Cn) = γc(Cn) if and only if n = 3, 4 or 5.
(iii) γnt(Cn) = γt(Cn) if and only if n = 4, 5 or 8.
(iv) γnt(Cn) = γnc(Cn) if and only if n = 3, 4, 5 or 7.

Proof. Since γ(Cn) =
⌈

n
3

⌉
, γc(Cn) = n− 2,

γt(Cn) =

{
n
2 + 1 if n ≡ 2(mod 4),⌈
n
2

⌉
otherwise,

and

γnc(Cn) =

{⌈
n
2

⌉
if n 6≡ 3(mod 4),⌊

n
2

⌋
if n ≡ 3(mod 4)

the result follows.
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We now proceed to obtain a characterization of minimal ntd-sets.

Lemma 2.8. A superset of a ntd-set is a ntd-set.

Proof. Let S be a ntd-set of a graph G and let S1 = S ∪ {v}, where v ∈ V − S.
Clearly, v ∈ N(S1) and S1 is a dominating set of G. Suppose there exists an isolated
vertex y in 〈N(S1)〉 . Then N(y) ⊆ S − N(S) and hence y is an isolated vertex in
〈N(S)〉, which is a contradiction. Hence 〈N(S1)〉 has no isolated vertices and S1 is a
ntd-set.

Theorem 2.9. A ntd-set S of a graph G is a minimal ntd-set if and only if for every
u ∈ S, one of the following holds:

(i) pn[u, S] 6= ∅.
(ii) There exists a vertex x ∈ N(S − {u}) such that N(x) ∩N(S − {u}) = ∅.

Proof. Let S be a minimal ntd-set of G. Let u ∈ S. Then either S − {u} is not a
dominating set of G or S−{u} is a dominating set and 〈N(S − {u})〉 has an isolated
vertex. If S − {u} is not a dominating set of G, then pn[u, S] 6= ∅. If S − {u} is a
dominating set and if x ∈ N(S − {u}) is an isolated vertex in 〈N(S − {u})〉, then
N(x) ∩ N(S − {u}) = ∅. Conversely, if S is a ntd-set of G satisfying the conditions
of the theorem, then S is a 1-minimal ntd-set and hence the result follows from
Lemma 2.8.

Remark 2.10. Let G be a graph with ∆ = n − 1. Then γnt(G) = 1 or 2. Further
γnt(G) = 2 if and only if G has exactly one vertex v with deg v = n − 1 and v is
adjacent to a vertex of degree 1. (A vertex which is adjacent to a vertex of degree 1
is called a support vertex).

Remark 2.11. Since any ntd-set of a spanning subgraph H of a graph G is a ntd-set
of G, we have γnt(G) ≤ γnt(H).

Remark 2.12. If G is a disconnected graph with k components G1, G2, . . . , Gk then
γnt(G) = γnt(G1) + γnt(G2) + · · ·+ γnt(Gk).

We now proceed to obtain bounds for γnt.

Observation 2.13. For any graph G, γnt(G) = n if and only if G = mK2.

Theorem 2.14. For any graph G, γnt(G) ≤ n−∆+1. Further, γnt(G) = n−∆+1 if
and only if G is isomorphic to H or sK2 ∪H where H is any graph having a support
vertex v with deg v = |V (H)| − 1.

Proof. Let v ∈ V (G) and deg v = ∆. Let S = N(v) − {u} where u ∈ N(v). Then
V − S is a ntd-set of G and hence γnt(G) ≤ n−∆ + 1.

Now, let G be any graph with γnt(G) = n−∆ + 1.
Case i. G is connected.

If ∆ < n− 1, then V − S where S = (N(v)− {u}) ∪ {w}, u ∈ N(v), w /∈ N [v], is
a ntd-set of G with |V − S| = n−∆ which is a contradiction. Hence ∆ = n− 1 and
deg v = n− 1. If n = 2, then H = K2. Suppose n ≥ 3. If deg u ≥ 2 for all u ∈ N(v),
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then {v} is a ntd-set of G and hence γnt(G) = 1, which is a contradiction. Hence
deg u = 1 for some u ∈ N(v), so that v is a support vertex of H.
Case ii. G is disconnected.

Let G1, G2, . . . , Gk be the components of G and let |V (Gi)| = ni. If ∆ = 1, then
γnt = n and each Gi is isomorphic to K2. Suppose ∆ ≥ 2. Let v ∈ V (G1) be such
that deg v = ∆. Since γnt(G) = n−∆ + 1 it follows that γnt(G1) = n1 −∆ + 1 and
γnt(Gi) = ni for all i ≥ 2. Hence by Case i, G1 is isomorphic to H where H is any
graph having a support vertex v with deg v = |V (H)| − 1 and Gi is isomorphic to K2

for all i ≥ 2.

Theorem 2.15. Let G be a connected graph with ∆ < n− 1. Then γnt(G) ≤ n−∆.
Further, for a tree T with ∆ < n− 1 the following are equivalent.

(i) γnt(T ) = n−∆.
(ii) γnc(T ) = n−∆.
(iii) T can be obtained from a star by subdividing k of its edges, k ≥ 1 once or by

subdividing exactly one edge twice.

Proof. Let v ∈ V (G) and deg v = ∆. Since G is connected and ∆ < n − 1, there
exist two adjacent vertices u and w such that u ∈ N(v) and w /∈ N [v]. Let S =
(N(v)− {u}) ∪ {w}. Then V − S is a ntd-set of G and hence γnt(G) ≤ n−∆.

Now, let T be a tree with ∆ < n − 1. Suppose γnt(T ) = n − ∆. Then n − ∆ =
γnt(T ) ≤ γnc(T ) ≤ n−∆. Hence γnc(T ) = n−∆, so that (i) implies (ii).

It follows from Theorem 1.4 that (ii) implies (iii). We now prove (iii) implies (i).
Consider the star K1,∆, where V (K1,∆) = {v, v1, v2, . . . , v∆} with deg v = ∆.
Case i. T is obtained from K1,∆ by subdividing the k edges vv1, vv2, . . . , vvk. Let ui

be the vertex subdividing uvi, 1 ≤ i ≤ k. Clearly, n − ∆ = k + 1. Also any ntd-set
S of T contains either ui or vi for each i, 1 ≤ i ≤ k and also contains the vertex v.
Hence it follows that |S| ≥ k + 1 = n−∆ and γnt(T ) = n−∆.
Case ii. T is obtained from K1,∆ by subdividing the edge vv1 twice.

Let u1, u2 be the vertices subdividing vv1. Then n−∆ = 3 and S = {v, u1, u2} is
a minimum ntd-set of T. Thus γnt(T ) = n−∆.

Corollary 2.16. For a forest G, γnt(G) = n − ∆ if and only if G is isomorphic to
K2 ∪ T , where T is a tree with γnt(T ) = |V (T )| −∆(T ).

Theorem 2.17. For each γnt-set S of a connected graph G, let tS denote the number
of vertices v such that v is not a pendant vertex of G and v is isolated in 〈S〉 . Let
t = min{tS : S is a γnt-set of G}. Then γnc(G) ≤ γnt(G) + t.

Proof. Let S be a γnt-set of G such that the number of vertices in S which are
non-pendant vertices of G and are isolated in 〈S〉 is t.

Let X = {v ∈ S : d(v) = 0 in 〈S〉 and d(v) > 1 in G} so that |X| = t. For each
v ∈ X, choose a vertex f(v) ∈ V (G) which is adjacent to v. Then S1 = S ∪ {f(v) :
v ∈ X} is a ncd-set of G and hence γnc(G) ≤ |S| ≤ γnt(G) + t.

Theorem 2.18. Let G be a connected graph with diam G = 2. Then γnt(G) ≤ 1+δ(G)
and the bound is sharp.
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Proof. If v ∈ V (G) and deg v = δ, then N [v] is an ntd-set of G and hence the result
follows. The bound is attained for K1,n and C5.

Theorem 2.19. Let G be a connected graph with diam G = 2 and γnt(G) = 1+δ(G).
Then for every vertex v ∈ V (G) with deg v = δ(G), N(v) is an independent set and
for all u ∈ N(v) there exists a vertex w /∈ N(v) such that w is adjacent only to u.

Proof. Let S1 = N(v). Clearly S1 is a dominating set of G. Now, suppose N(v) is not
an independent set. Then 〈N(v)〉 contains an edge e = xy. Hence v is not isolated
in 〈N(S1)〉 and since diam G = 2, every vertex w /∈ N [v] is adjacent to either x or
a neighbour of x. Thus w is not isolated in 〈N(S1)〉 . Hence S1 is a ntd-set of G and
γnt(G) ≤ δ(G) which is a contradiction. Thus N(v) is an independent set.

Now, suppose there exists a vertex u ∈ N(v) such that u has no private neighbour
in V − N [v]. Then N [v] − {u} is a ntd-set of G with cardinality δ(G) which is a
contradiction. Hence the result follows.

Remark 2.20. The converse of Theorem 2.19 is not true. Consider the graph G given
in Figure 1.

qq q
q

q
q

q
Fig. 1

Here δ(G) = 2 and γnt(G) = 2. However, the unique vertex v with deg v = δ = 2
satisfies the conditions given in Theorem 2.19.

Theorem 2.21. Let G be a graph such that both G and G have no isolated vertices.
Then γnt(G) + γnt(G) ≤ n + 2. Further, equality holds if and only if G or G is
isomorphic to sK2, where s > 1.

Proof. If G and G are both connected, then γnt(G) ≤ γnc(G) ≤
⌈

n
2

⌉
and γnt(G) ≤⌈

n
2

⌉
, so that γnt(G) + γnt(G) ≤ n+ 1.
If G is disconnected, then γnt(G) = 2 and hence γnt(G) + γnt(G) ≤ n+ 2.
Now, let G be any graph with γnt(G) + γnt(G) = n + 2. Then G or G is discon-

nected. Suppose G is disconnected. Then γnt(G) = n and γnt(G) = 2 and hence G is
isomorphic to sK2 where s > 1. The converse is obvious.

The bound given by Theorem 2.21 can be substantially improved when G and G
are both connected, as shown in the following theorem.

Theorem 2.22. Let G be any graph such that both G and G are connected. Then

γnt(G) + γnt(G) ≤

{⌈
n
2

⌉
+ 2 if diam G ≥ 3,⌈

n
2

⌉
+ 3 if diam G = 2.



526 S. Arumugam, C. Sivagnanam

Proof. Since γnt ≤ γnc the result follows from Theorem 1.3

Remark 2.23. The bounds given in Theorem 2.22 are sharp. The graph G = C5 has
diameter 2, γnt(G) = γnt(G) = 3 and γnt(G) + γnt(G) = 6 =

⌈
n
2

⌉
+ 3. For the graph

G = Ck ◦K1 diam G ≥ 3 and γnt(G) + γnt(G) =
⌈

n
2

⌉
+ 2.

Problem 2.24. Characterize graphs which attain the bounds given in Theorem 2.22.

Theorem 2.25. For any connected graph G, γnt(G) + κ(G) ≤ n − ∆ + δ + 1 and
equality holds if and only if G contains a support vertex v with deg v = n− 1.

Proof. We have γnt ≤ n−∆ + 1 and κ ≤ δ. Hence γnt + κ ≤ n−∆ + δ + 1.
Let G be a connected graph and let γnt(G) + κ(G) = n − ∆ + δ + 1. Then

γnt(G) = n−∆ + 1 and κ = δ and the result follows from Theorem 2.14.

Theorem 2.26. For any graph G, γnt(G) + κ(G) = n if and only if G is isomorphic
to one of the graphs sK2, s > 1, P3 or C5 or Kn or K2a − X, a ≥ 3 and X is a
1-factor of K2a.

Proof. Let G be a graph with γnt(G) + κ(G) = n.
Case i. G is connected.

Suppose ∆ = n− 1. Then γnt = 1 or 2. If γnt = 1, then κ = n− 1 and hence G is
isomorphic to Kn. If γnt = 2 then G contains a support vertex of degree n − 1 and
hence κ = 1, n = 3. Hence G is isomorphic to P3.

Suppose ∆ < n− 1. Then γnt ≤ γc and γnt + κ ≤ γc + κ so that γc + κ ≥ n. Since
γc +κ ≤ n we get γc +κ = n and γnt = γc. Therefore by Theorem 1.2 G is isomorphic
to C5 or K2a −X where X is a 1-factor in K2a.
Case ii. G is disconnected.

Then κ = 0. Hence γnt = n so that G is isomorphic to sK2, s > 1. The converse
is obvious.

3. NEIGHBOURHOOD TOTAL DOMATIC NUMBER

The maximum order of a partition of the vertex set V of a graph G into dominating
sets is called the domatic number of G and is denoted by d(G). For a survey of results
on domatic number and their variants we refer to Zelinka [10]. In [2] we have initiated
a study of the neighbourhood connected domatic number of a graph. In this section
we present a few basic results on the neighbourhood total domatic number of a graph.

Definition 3.1. Let G be a graph without isolated vertices. A neighbourhood total
domatic partition (nt-domatic partition) of G is a partition {V1, V2, . . . , Vk} of V (G)
in which each Vi is a ntd-set of G. The maximum order of an nt-domatic partition of
G is called the neighbourhood total domatic number (nt-domatic number) of G and
is denoted by dnt(G).

Observation 3.2. Since any domatic partition of Kn, where n ≥ 3, is also a
nt-domatic partition, we have dnt(Kn) = d(Kn) = n. Similarly dnt(Kr,s) = d(Kr,s) =

min{r, s}. Also for the wheel Wn, dnt(Wn) = d(Wn) =
{

4 if n ≡ 1(mod 3),
3 otherwise.
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Observation 3.3. Since any total domatic partition of G is a nt-domatic partition
and any nc-domatic partition is a nt-domatic partition, we have dt(G) ≤ dnc(G) ≤
dnt(G) ≤ d(G).

Observation 3.4. Let v ∈ V (G) and deg v = δ. Since any ntd-set of G must contain
either v or a neighbour of v, it follows that dnt(G) ≤ δ(G) + 1.

Definition 3.5. A graph G is called nt-domatically full if dnt(G) = δ(G) + 1.

Example 3.6. The graph G given in Figure 2 is nt-domatically full. In fact
{{v1}, {v2, v4, v6, v8}, {v3, v5, v7, v9}} is a nt-domatic partition of G of maximum order
and dnt(G) = 3 = 1 + δ(G).

s

s s
s

s
ss

s

s
v1

v2v3

v4

v5

v6 v7

v8

v9

Fig. 2. nt-domatically full graph

Observation 3.7. Given two positive integers n and k with n ≥ 4 and 1 ≤ k ≤ n,
there exists a graph G with n vertices such that dnt(G) = k. We take

G =


Kn if k = n, n ≥ 3,
K1,n−1 if k = 1,
B(n1, n− 2− n1) if k = 2,
Kk−1 +Kn−k+1 otherwise.

Theorem 3.8. For the path Pn, n ≥ 2, we have

dnt(Pn) =

{
1 if n = 2, 3 or 5,
2 otherwise.

Proof. Let Pn = (v1, v2, . . . , vn). The result is trivial for n = 2, 3 or 5. Suppose
n 6= 2, 3, 5. It follows from Observation 3.4 that dnt(Pn) ≤ 2.

Now let S = {vi : i ≡ 1(mod 3)} and let

V1 =


S if n ≡ 1(mod 3),
S ∪ {vn−2} if n ≡ 2(mod 3),
S ∪ {vn−1} if n ≡ 0(mod 3).
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Then {V1, V − V1} is a nt-domatic partition of Pn and hence dnt(Pn) = 2.

Theorem 3.9. For the cycle Cn with n ≥ 4 we have

dnt(Cn) =


1 if n = 5,
3 if n ≡ 0(mod 3),
2 otherwise.

Proof. Let Cn = (v0, v1, . . . , vn−1, v0). The result is trivial for n = 5. Suppose n 6= 5.
It follows from Observation 3.4 that dnt(Cn) ≤ 3. If n ≡ 0(mod 3), let n = 3k and
let Si = {vj : 0 ≤ j ≤ n − 1 and j ≡ i(mod 3)}, i = 0, 1, 2. Then {S0, S1, S2} is a
nt-domatic partition of Cn and hence dnt(Cn) = 3. Now, suppose n 6≡ 0(mod 3). Let
n = 3k + r where r = 1 or 2.

Let S1 =
{
{vi : i ≡ 1(mod 3)} if n ≡ 1(mod 3),
{vi : i ≡ 2 or 3(mod 4)} if n ≡ 2(mod 3).

Then {S1, V −S1} is a nt-domatic partition of Cn and hence dnt(Cn) ≥ 2. Also it
follows from Theorem 2.6 that dnt(Cn) ≤ 2 and hence dnt(Cn) = 2.

Observation 3.10. If {V1, V2, . . . , Vdnt
} is a nt-domatic partition of G, then |Vi| ≥

γnt for each i and hence γnt(G)dnt(G) ≤ n.

Example 3.11. (i) If G ∼= sKr r ≥ 3, s ≥ 1, then dnt(G) = r and γnt(G) = s and
hence dnt(G)γnt(G) = sr = n.

(ii) If G ∼= sKr,r r ≥ 2, s ≥ 1, then dnt(G) = r, γnt(G) = 2s and hence
dnt(G)γnt(G) = 2sr = n.

(iii) IfG ∼= G1◦K1 whereG1 is any connected graph, then dnt(G) = 2 and γnt(G) = n
2

and hence dnt(G)γnt(G) = n.

Problem 3.12. Characterize the class of graphs for which dnt(G)γnt(G) = n.

Theorem 3.13. Let G be a graph of order n ≥ 5 with ∆ = n−1 and let k denote the
number of vertices of degree n−1. Then dnt(G) ≤ 1

2 (n+k). Further dnt(G) = 1
2 (n+k)

if and only if G = Kk +H where either H is isomorphic to 2Kn−k
2

or H is a connected
graph with V (H) = X1 ∪X2 ∪ · · · ∪Xr, r = n−k

2 , |Xi| = 2, Xi ∩Xj = ∅ for all i 6= j
and the subgraph induced by the edges of H with one end in Xi and the other end in
Xj has a perfect matching.

Proof. Let {V1, V2, . . . , Vs} be any nt-domatic partition of G with |Vi| = 1, 1 ≤ i ≤ k.
Since |Vj | ≥ 2 for all j with k + 1 ≤ j ≤ s, it follows that s ≤ k + n−k

2 = n+k
2 . Hence

dnt(G) ≤ 1
2 (n+ k).

Now, let G be a graph with dnt(G) = 1
2 (n + k). Then there exists a nt-domatic

partition {V1, V2, . . . , Vk, Vk+1, . . . , Vn+k
2
} such that |Vi| = 1 if 1 ≤ i ≤ k and |Vj | = 2

if k+1 ≤ j ≤ n+k
2 . Clearly, 〈V1 ∪ V2 ∪ · · · ∪ Vk〉 ∼= Kk. Let H =

〈
Vk+1 ∪ · · · ∪ Vn+k

2

〉
.

Case i. H is disconnected.
Since |Vj | = 2 for all j with k + 1 ≤ j ≤ n+k

2 , it follows that H has exactly two
components H1, H2 and each Vj contains one vertex from H1 and one vertex from
H2. Since Vj is a ntd-set of G, it follows that H1 and H2 are complete graphs and
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|V (H1)| = |V (H2)| = n−k
2 . Hence H is isomorphic to 2Kn−k

2
. If k = 1, then each H1

and H2 must contain at least two vertices. Hence n ≥ 5.
Case ii. H is connected.

Let Xi = Vk+i, 1 ≤ i ≤ r = n−k
2 . Then V (H) = X1∪X2∪· · ·∪Xr and Xi∩Xj = ∅

when i 6= j. Now, since each Xi is a dominating set of G, it follows that the subgraph
induced by the edges of H with one end in Xi and the other end in Xj has a perfect
matching.

Conversely, suppose G is of the form given in the theorem. Let u1, u2, . . . , uk be
the vertices of G with deg ui = n− 1, 1 ≤ i ≤ k.

Suppose G = Kk +H where H is isomorphic to 2Kn−k
2

with n ≥ 5 when k = 1.

Let H1 and H2 be the two components of H with V (H1) = {xi : k+ 1 ≤ i ≤ n+k
2 }

and V (H2) = {yi : k + 1 ≤ i ≤ n+k
2 }. Let

Vi =

{
{ui} if 1 ≤ i ≤ k,
{xi, yi} where xi ∈ V (H1) and yi ∈ V (H2), if k + 1 ≤ i ≤ n+k

2 .

Then {V1, V2, . . . , Vn+k
2
} is a nt-domatic partition of G. Also if G = Kk + H,

where H is a connected graph satisfying the conditions stated in the theorem,
then {{u1}, {u2}, . . . , {uk}, X1, X2, . . . , Xr} is a nt-domatic partition of G. Thus
dnt(G) ≥ k + r = n+k

2 and hence dnt(G) = n+k
2 .

Corollary 3.14. Let G be a graph with ∆ < n − 1. Then dnt(G) ≤ n
2 . Further

dnt(G) = n
2 if and only if V = X1 ∪ X2 ∪ · · · ∪ Xn

2
, where |Xi| = 2 for all i,

Xi ∩Xj = ∅ if i 6= j, the subgraph induced by the edges of G with one end in Xi and
the other end in Xj has a perfect matching and 〈V −Xi〉 has no isolated vertex if Xi

is independent.

Theorem 3.15. Let G be any graph such that both G and G are connected. Then
dnt(G)+dnt(G) ≤ n. Further equality holds if and only if V (G) = X1∪X2∪· · ·∪Xn

2
,

where Xi ∩Xj = ∅ and 〈Xi ∪Xj〉 is C4 or P4 or 2K2 for all i 6= j.

Proof. Since both G and G are connected, it follows that ∆ < n−1. Hence dnt(G) ≤ n
2

and dnt(G) ≤ n
2 , so that dnt(G) + dnt(G) ≤ n.

Now, suppose dnt(G) + dnt(G) = n. Then dnt(G) = n
2 and dnt(G) = n

2 . Since
dnt(G) ≤ δ(G) + 1, it follows that δ(G) ≥ n

2 − 1 and δ(G) ≥ n
2 − 1 and hence

deg v = n
2 − 1 or n

2 for all v ∈ V (G).
Now, let V = X1∪X2∪· · ·∪Xn

2
be a nt-domatic partition of G. Then the subgraph

induced by the edges of G with one end in Xi and the other end in Xj has a perfect
matching. Further, if 〈Xi ∪Xj〉 has more than four edges, then at least one vertex v
of 〈Xi ∪Xj〉 has degree at least 3. Since there are n

2 − 2 ntd-sets other than Xi and
Xj , deg v ≥ n

2 + 1 which is a contradiction. Thus 〈Xi ∪Xj〉 contains at most four
edges and hence is isomorphic to C4 or P4 or 2K2. The converse is obvious.
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4. CONCLUSION AND SCOPE

In this paper we have introduced a new type of domination, namely, neighbourhood
total domination. We have also discussed the corresponding neighbour total domatic
partition. The following are some interesting problems for further investigation.

Problem 4.1. Characterize the class of graphs for which γnt(G) = n−∆.

Problem 4.2. Characterize graphs for which γnt(G) =
⌈

n
2

⌉
.

Problem 4.3. Characterize the class of graphs for which γnt(G) = n− 1 or n− 2.

Problem 4.4. Characterize nt-domatically full graphs.

Problem 4.5. Characterize graphs for which dnt(G) = d(G).
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