Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For a densely defined nonnegative symmetric operator A = L*(2)L1 in a Hilbert space, constructed from a pair L1 ⊂ L2 of closed operators, we give expressions for the Friedrichs and Krein nonnegative selfadjoint extensions. Some conditions for the equality (L*(2)L1)* = L*(1)L2 are obtained. Applications to 1D nonnegative Hamiltonians, corresponding to point interactions, are given.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
501--517
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
autor
- East Ukrainian National University Department of Mathematical Analysis Kvartal Molodyozhny 20-A, Lugansk 91034, Ukraine, yury_arlinskii@yahoo.com
Bibliografia
- [1] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable models in quantum mechanics, Texts and Monographs in Physics, Springer-Verlag, New York, 1988.
- [2] T. Ando, K. Nishio, Positive selfadjoint extensions of positive symmetric operators, Tohoku Math. J. 22 (1970), 65–75.
- [3] Yu.M. Arlinskii, Positive spaces of boundary values and sectorial extensions of a nonnegative symmetric operator, Ukrainian Math. Zh. 40 (1988) 1, 8–14, [in Russian]. English translation in Ukr. Math. J. 40 (1988) 1, 5–10.
- [4] Yu.M. Arlinskiı, Maximal sectorial extensions and associated with them closed forms, Ukrainian Math.Zh. 48 (1996) 6, 723–739. [in Russian]. English translation in Ukr. Math. 48 (1996) 6, 809–827.
- [5] Yu.M. Arlinskiı, Extremal extensions of sectorial linear relations, Matematichnii Studii 7 (1997) 1, 81–96.
- [6] Y.M. Arlinskiı, On functions connected with sectorial operators and their extensions, Int. Equat. Oper. Theory 33 (1999) 2, 125–152.
- [7] Yu. Arlinskiı Abstract boundary conditions for maximal sectorial extensions of sectorial operators, Math. Nachr. 209 (2000), 5–36.
- [8] Yu. Arlinskiı, S. Hassi, Z. Sebestyen, H. de Snoo, On the class of extremal extensions of a nonnegative operators, Operator Theory: Advan., and Appl. 127 (2001), 41–81.
- [9] Yu.M. Arlinskiı, E.R. Tsekanovskiı, On von Neumann’s problem in extension theory of nonnegative operators, Proceedings of the American Mathematical Society 10 (2002) 10, 3143–3154.
- [10] Yu.M. Arlinskiı, E.R. Tsekanovskiı, The von Neumann problem for nonnegative symmetric operators, Int. Equat. Oper. Theory 51 (2005) 3, 315–356.
- [11] P.A. Deift, Applications of a commutation formula, Duke Math. J. 45 (1977) 2, 267–310.
- [12] V.A. Derkach, M.M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. (New York) 73 (1995), 141–242.
- [13] V. Derkach, M. Malamud, E. Tsekanovski˘ı, Sectorial extensions of positive operator, Ukrainian Math. Zh. 41 (1989) 2, 151–158 [in Russian]. English translation in Ukr. Math. J. 41 (1989) 2, 136–142.
- [14] V.I. Gorbachuk, M.L. Gorbachuk, Boundary value problems for operator differential equations, Kluwer Acad. Publ., Dordrecht–Boston–London, 1991. Russian edition:Naukova Dumka, Kiev, 1984.
- [15] S. Hassi, A. Sandovichi, H. de Snoo, H. Winkler, A general factorization approach to the extension theory of nonnegative operators and relations, J. Oper. Theory 58 (2007) 2, 351–386.1
- [16] T. Kato, Perturbation theory for linear operators, Springer-Verlag, 1966.
- [17] A.N. Kochubei, On extensions of symmetric operators and symmetric binary relations, Math. Zametki 17 (1975) 1, 41–48 [in Russian]. English translation in Math. Notes 17 (1975), 25–28.
- [18] A.N. Kochubei, On extensions of a positive definite symmetric operators, Dokl. Akad. Nauk. Ukrain. SSR 3 (1979), 148–171.
- [19] M.G. Kreın, The theory of selfadjoint extensions of semibounded Hermitian transformations and its applications, I, Mat. Sbornik 20 (1947) 3, 431–495 [in Russian].
- [20] M.G. Kreın, The theory of selfadjoint extensions of semibounded Hermitian transformations and its applications, II, Mat. Sbornik 21 (1947) 3, 365–404 [in Russian].
- [21] A.V. Kuzhel, S.A. Kuzhel, Regular extensions of Hermitian operators, VSP, the Netherlands, 1998.
- [22] S.A. Kuzhel, On some properties of abstract wave equation, Methods Funct. Anal. Topol. 3 (1997) 1, 82–88.
- [23] V.E. Lyantse, O.G. Storozh, Methods of the theory of unbounded operators, Naukova Dumka, Kiev, 1983 [in Russian].
- [24] M.M. Malamud, Certain classes of extensions of a lacunary Hermitian operator, Ukrainian Mat. Zh. 44 (1992) 2, 215–234 [in Russian]. English translation in Ukr Math. J. 44 (1992) 2, 190–204.
- [25] M.M. Malamud, H. Neidhard, On the unitary equivalence of absolutely continuous parts of selfadjoint extensions, Journ. Funct. Anal. 260 (2011) 3, 613–638.
- [26] V. Prokaj, Z. Sebestyen, On Friedrichs extensions of operators, Acta Sci. Math. (Szeged) 62 (1996), 243–246.
- [27] Z. Sebestyen, J. Stochel, Restrictions of positive selfadjoint operators, Acta Sci. Math. (Szeged) 55 (1991), 149–154.
- [28] Z. Sebestyen, J. Stochel, Characterizations of positive selfadjoint extensions, Proceedings of the AMS 135 (2007) 5, 1389–1397.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHS-0003-0002