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A MIXED INTEGER NONLINEAR
PROGRAMMING FORMULATION

FOR THE PROBLEM
OF FITTING POSITIVE EXPONENTIAL SUMS

TO EMPIRICAL DATA

Adalys Alvarez, Hugo Lara

Abstract. In this work we deal with exponential sum models coming from data acquisition
in the empirical sciences. We present a two step approach based on Tikhonov regularization
and combinatorial optimization, to obtain stable parameter estimations, which fit the data.
We develop properties of the solutions, based on their optimality conditions. Some numerical
experiments are shown to illustrate our approach.
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1. INTRODUCTION

Exponential sum models are frequently used, for example, in problems coming from
heat diffusion, diffusion of chemical compounds, time series in medicine, economics,
physics sciences and technology. For instance, in a positron annihilation lifetime ex-
periment (see [13]) the data collected is a multi-exponential decay spectrum. From
this data we wish to extract the intensity spectrum, that is the intensities of the
lifetimes present in a given decay curve of the form

D(t) =
k∑
l=1

ρl exp(−τlt).

Various approaches have been used to analyze lifetime spectra, and other
multi-exponential decay curves, including simple graphical methods [14, 15]; linear
and nonlinear least squares fitting [8]; Montecarlo methods and information theory
[2, 11]; Bayesian parameter estimation methods [10]; filtering methods by Fourier
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transform [10, 13], among other. Most of these methods involve some kind of regu-
larization technique, used to deal with the ill-posedness of the problem. A classical
regularization approach called Tikhonov regularization (see for example [6]) requires
minimizing the nonlinear least squares error plus a term involving the size of the
solutions. The aim is to build a better suited minimization problem with a unique
solution, and still having valuable information coming from the data. Two approaches
have been used to deal with Tikhonov regularization: A dimensional control approach
which leads us to a nonlinear regularized least squares problem, where the parameters
to be calculated are both the linear intensities ρ and the nonlinear lifetimes τ (see [8]);
and a more general regularization approach where a discretization of the τ domain is
taken, and a related regularized linear least squares problem is built, where only the
intensities ρ should be calculated. This approach seems to be more flexible to add prior
information to the problem (see [10]). In this work we develop a two step approach
for the treatment of the exponential sums problem by solving above regularized linear
least squares problem on the first step. When solving these regularized linear least
squares problems, we obtain inaccurate intensity values, because we are ignoring the
combinatorial nature of these solutions (see section 3 for details). To overcome those
difficulties, we construct a related regularization problem by adding constraints im-
posing these combinatorial conditions on our problem. The resulting model is a mixed
integer nonlinear programming problem, which is harder to solve, but more realistic
given the inherent problem conditions. Solving these problems leads us to the second
step of our approach. The remainder of this work is as follows: In the next section we
establish the problem of fitting k exponential sums to empirical data as a parameter
estimation problem to be solved by the Tikhonov regularization technique. Section 3
is devoted to setting up a combinatorial refinement of the Tikhonov problem to be
used on the second step. In section 4 we establish some properties of the solutions
for the intensities, by studding optimality conditions of the combinatorial problem
given in section 3. A linearization of the combinatorial problem, and properties of
their solutions are the topics of section 5. In section 6 we consolidate the two step
approach, while numerical results ran in test problems are in section 7. In the last
section we give some concluding remarks.

2. FITTING THE SUM OF K EXPONENTIALS

In some physics experiments the data collected {ti, yi}ni=1 consists of a decay curve
which can be modeled as a multi-exponential decay function (see for instance Fig-
ure 1).

D(t) =
k∑
l=1

ρl exp (−τlt) .

We wish to estimate ρ̂l, τ̂l, l = 1 . . . , k and k to fit the data, that is, we want to solve
the parameter estimation problem

yi = D(ti) + εi i = 1, . . . , n. (2.1)
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Fig. 1. Data experimental Steyn-Wyk

Two approaches have been used to deal with these kind of problems: (a) a dimen-
sional control approach which consists of a suitable choice of k, and then the linear
and nonlinear parameter ρl, τl are calculated to fit the data, by solving iteratively
a nonlinear least squares problem, like in [8]; or (b) the more general regularization
approach where N basis functions exp (−τ̄jt), j = 1 . . . , N are chosen, each one de-
fined at points {τ̄1, . . . , τ̄N}, a discretization of the τ domain; and then substituting
D(t) by D̄(t) =

∑N
j=1 ρj exp (−τ̄jt) which is for fixed t a linear function on the ρ

parameters. Ideally, if we choose the index set {j1, . . . , jk} ⊆ {1, . . . , N} such that
τjl ≈ τ̂l for l = 1, . . . , k then the corresponding linear parameter values ρjl should
be set to ρ̂l, and for j 6∈ {j1, . . . , jk}, ρj ≈ 0. This observation says that for good
choices of the parameters, function D̄(t) should be close to D(t). The linearity of the
resulting parameter estimation problem allows us to use robust tools to deal linear
inverse problems; and according to [10], this second approach is more flexible for
adding general prior information on the parameters. Our fitting problem is known to
be ill posed [6, 8, 10,13]. In this work we use the second approach.

Let us denote by M the matrix defining the linear relation in D̄(ti), that is Mij =
exp (−τ̄jti) with j = 1, . . . , N . Now problem (2.1) becomes

yi =
N∑
j=1

ρjMij + εi i = 1, . . . , n. (2.2)

We can write (2.2) in a compact way as

y = Mρ+ ε. (2a)
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It is known [8,10,13] that the sum of exponentials of the fitting problem is ill posed,
and regularization techniques to obtain approximate solutions are necessary. In a
regularization scheme, like Tikhonov [6, 7, 12], we choose ρ in a such way that

1
2

∥∥∥∥(MλL
)
ρ−

(
y
λLρ̄

)∥∥∥∥2

, (2.3)

is minimized, where λ is the Tikhonov regularization parameter, L is a known as the
scaling matrix, possibly the identity matrix, and ρ̄ is a default solution representing
our previous knowledge about the problem. Denote by ρ(λ) the solution of (2.3). If λ
approaches zero, then ρ(λ) tends to the least squares solution of (2a). If λ→∞, then
ρ(λ) → ρ̄, the default solution. In classic regularization, the parameter choice plays
a central role, because it controls the importance given to the regularization term in
the minimization; that is the quality of the regularized solution is tuned by λ. An
optimal regularization parameter value should adequately balance the importance of
the perturbation error and the regularization term in the minimization problem. There
are several strategies to define a selection criteria for the regularization parameter,
as the discrepancy principle, the cross-validation method and the maxima curvature
of the L-curve. The L-curve is a plot of the norm of the regularized solution versus
the residual norm [4–7, 12]. Typically this L-shaped parametrized curve has smooth
decreasing regions at the ends; an almost vertical part followed by an almost horizontal
part connected by a corner, where the curvature is a maxima (see Figure 2). Such
criteria looks for a value of the parameter λ next to the corner, where the importance
of the residual and the regularized solution norm is balanced.

Fig. 2. L-Curve
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3. REGULARIZED LEAST SQUARES SOLUTION

If we have the data {ti, yi}ni=1 and no additional information about the solutions is
available, then the Tikhonov problem we should solve is

minimize
1
2

∥∥∥∥( M
λI

)
ρ −

(
y
0

)∥∥∥∥2

=
1
2
‖y −Mρ‖2 +

λ2

2
‖ρ‖2 (3.1)

and by choosing the value of the regularization parameter by the L-curve criterium,
we obtain a regularized least squares solution, denoted by ρ̄(λ̄) = ρ̄. Solutions for (3.1)
can be found by solving a system of linear equations, the so called normal equations.
In this work we choose λ̄ by using the regularization toolbox of Hansen [4, 5], and ρ̄
by using the nonnegative least squares solver from the Matlab optimization toolbox.
If we plot ρ̄ versus the index set corresponding to the domain discretization of τ we
obtain a smooth curve, with amplitude values close to zero in points far from τ̂j , and
peaks around points τ̂l, with amplitudes ρ̂l given by the height of the peaks. Even
though this curve gives us some useful information, because approximated nonlinear
parameter values τ̂l are identified, the amplitude values ρ̂l result far from the true
values, because points near τ̂l are expected to obtain zero amplitude we have positive
values, which are possibly contributions for the amplitude at τ̂l disseminated at the
neighbours (see Figure 3). Some other considerations should be taken to prevent from
this behavior. In the next part we propose a combinatorial model to improve the
accuracy when calculating these parameters.

Fig. 3. Regularized least squares vs true solution

3.1. A COMBINATORIAL MODEL

In the spirit of the Tikhonov regularization scheme, with previous or historical in-
formation about the problem, we get additional elements in order to improve our
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model (3.1). We know that the amplitudes ρj should be non negatives and that only
k of them are strictly positive (represented by peaks at ρ̄). This behavior can be
modeled by imposing to each point of the sequence ρj the condition ρj = xjqj with

xj ≥ 0, qj ∈ {0, 1} and eT q ≤ k,

like in [3]. In this way the solutions should be less smooth than ρ̄, but closer to the
characteristics of the desired solutions; because in the case of qj = 0, the amplitude
should be zero, but if qj = 1 more accuracy of ρj should be achieved. We deal with
the condition that only k of the variables should be positives by imposing

∑
qi ≤

k (eT q ≤ k) as a constraint. In addition, if we calculate in a first step ρ̄(λ̄) = ρ̄, then
we can use this approximate solution as a default solution for the Tikhonov problem,
resulting

minimize 1
2 ‖y −Mρ‖2 + λ2

2 ‖ρ− ρ̄‖
2

subject to ρ = x • q
eT q ≤ k

x ≥ 0, ρ ≥ 0, q ∈ {0, 1}N ,

(3.2)

where • denotes the componentwise product between vectors. Problem (3.2) is a mixed
integer nonlinear programming problem (MINLP).

In practice, constraints of the type ρj = xjqj can produce tricky values. For
instance, if ρj is calculated as zero, this could happen either because qj = 0 or
because qj = 1, but xj approaches zero. The last behavior is undesired, since we
should be detecting a peak at qj , but with the xj value near zero. On the other hand,
if qj = 0, then ρj is also calculated as zero, but this time with a large value for the
corresponding xj , distorting the relationship among the variables. In order to prevent
the problem of these undesired behaviors, we can model the regularization term by
adding λ2

2 ‖x − ρ̄‖
2 + λ2

2 ‖q − ρ̄‖
2 to the objective function at (3.2). This allows us

to keep values of x and q close to a known approximate solution, and so avoid those
tricky behaviors. We establish our improved MINLP model as

minimize f(ρ, x, q) = 1
2 ‖y −Mρ‖2 + λ2

2 ‖ρ− ρ̄‖
2 + λ2

2 ‖x− ρ̄‖
2 + λ2

2 ‖q − ρ̄‖
2

subject to ρ = x • q
eT q ≤ k

x ≥ 0, ρ ≥ 0, q ∈ {0, 1}N .

(3.3)

Note that this formulation leads to an NP-hard problem. Since the original problem
is essentially easier, we can ask, why to construct a harder one? Two answers appear:
First, we get more accuracy in calculating the amplitudes, by avoiding assigning pos-
itive values to amplitudes corresponding to the nonlinear parameter values close to
the chosen ones; and secondly, we can use heuristics, or approximating solvers to deal
with the combinatorial problem (see for instance [1]), which are computationally less
expensive, providing efficient tools to cope with the problem.

3.2. CHARACTERIZATION OF THE SOLUTIONS

In this part we study some properties of the solutions of problem (3.3), and characte-
rize the amplitude values in terms of only continuous variables. To do so, we consider
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a dualization of problem (3.3). Let us denote by ψ = (xT , ρT , s)T the continuous
variables, by g(ψ, q) ∈ RN+1, the equality constraints after inclusion of the necessary
slack variable s and the objective function by φ̂(ψ, q) = φ(ψ) + λ2

2 ‖q − ρ̄‖
2, where

φ(ψ) is the portion of f independent of q. Let X = R2N+1
+ × {0, 1}N be the primal

feasible set. Then we write (3.3) as

minimize φ(ψ) + λ2

2 ‖q − ρ̄‖
2

subject to g(ψ, q) = 0
ψ ≥ 0

(ψ, q) ∈ X .

(3.4)

We also denote by µ = (µ1T , µ2, µ3T )T ∈ Y = RN ×R×R2N
+ the dual variables and

dual feasible set respectively. Then we establish the Lagrangean function as

L((ψ, q), µ) = φ(ψ) +
λ2

2
‖q − ρ̄‖2 −

(
µ1

µ2

)T
g(ψ, q)− µ3Tψ,

therefore the dual Lagrangean function is defined for µ ∈ Y as

L∗(µ) = inf
(ψ,q)∈X

L((ψ, q), µ),

and the Lagrangean dual problem for

maximize
µ∈Y

L∗(µ). (3.5)

The next result characterizes the Lagrangean dual function.

Lemma 3.1. Given X ,Y and L,L∗ defined as above. Then for µ ∈ Y

L∗(µ) = inf
(ψ,q)∈X

f1(ψ) + µT f2(ψ) +
(
f3(ψ)Tµ− λ2ρ̄+

λ2

2
q

)T
q,

where

f1(ψ) = φ(ψ) +
λ2

2
ρ̄T ρ̄ ∈ R, (3.6)

f2(ψ) = (−ρT , s− k,−ψT )T ∈ RN ×R×R2N , (3.7)

and

f3(ψ) = [X, e, 0]T ∈ RN×N ×RN×1 ×RN×2N , (3.8)

with X := diag(x) stands for the N ×N diagonal matrix which diagonal entries are
the components of vector x.
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Proof. First we write the Lagrangean function as

L((ψ, q), µ) = φ(ψ) +
λ2

2
‖q − ρ̄‖2 − (µ1Tµ2)g(ψ, q)− µ3Tψ =

= φ(ψ) +
λ2

2
(ρ̄T ρ̄− 2ρ̄T q + qT q)− (µ1T , µ2)

(
ρ− xq

k − eT q − s

)
− µ3Tψ =

= φ(ψ) +
λ2

2
ρ̄T ρ̄+ (µ1T , µ2, µ3T )

 −ρs− k
−ψ

+

+

λ2

2
qT − λ2ρ̄T + µT

XeT
0

 q =

= f1(ψ) + µT f2(ψ) +
[
λ2

2
qT − λ2ρ̄T + µT f3(ψ)

]
q.

By taking infimum on this expression for fixed µ we get the result.

We now analyze the minimization at the evaluation of L∗ with respect to the
binary variables. Suppose that (ψ̄, q̄) is an optimal solution of inf L ((ψ, q) , µ) for
fixed µ, and look at the minimization with respect to q. It is clear that

min
q
L
((
ψ̄, q

)
, µ
)

= L∗(µ). (3.9)

Let us study this minimization: The quadratic term(
f3(ψ̄)Tµ− λ2ρ̄+

λ2

2
q

)T
q

is minimized componentwise for qi = 0 if (µT f3(ψ̄)i − λ2ρ̄i + λ2

2 ) > 0 and qi = 1 in
the case (µT f3(ψ̄)i − λ2ρ̄i + λ2

2 ) ≤ 0. Therefore, the dual function can be evaluated
by

L∗(µ) = f1(ψ̄) + µT f2(ψ̄) +
∑

i∈I(ψ̄,µ)

(
µT f3(ψ̄)i − λ2ρ̄i +

λ2

2

)

for I(ψ, µ) =
{
i ∈ {1, . . . , N} : µT f3(ψ)i − λ2ρ̄i + λ2

2 ≤ 0
}
, where f3(ψ)i stands for

the i-th column of f3(ψ). This proves the following lemma:

Lemma 3.2. Given (ψ̄, q̄) the minimizer of (3.9);

I(ψ, µ) =
{
i ∈ {1, . . . , N} : µT f3(ψ)i − λ2ρ̄i +

λ2

2
≤ 0
}
,

for f3 defined as above, and fixed µ > 0, then

L∗(µ) = f1(ψ̄) + µT f2(ψ̄) +
∑

i∈I(ψ̄,µ)

(
µT f3(ψ̄)i − λ2ρ̄i +

λ2

2

)
.
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A simple consequence establishes that

L∗(µ) = min
ψ
f1(ψ) + µT f2(ψ) +

∑
i∈I(ψ,µ)

(
µT f3(ψ)i − λ2ρ̄i +

λ2

2

)
.

These relation expresses the dual objective function in terms of only continuous vari-
ables ψ and µ.

We now study the optimal solutions of problem (3.3) in terms of the continuous
primal and dual variables.

Theorem 3.3. Given (ψ∗, q∗), µ∗ primal and dual optimal solutions of (3.4), and
(3.5) respectively, then

ρ∗i =

{
x∗i if λ2

2 ≤ λ
2ρ̄i + x∗iµ

1∗
i + µ2∗,

0 if λ2

2 > λ2ρ̄i + x∗iµ
1∗
i + µ2∗.

Proof. Observe that q∗i = 1 if µT f3(ψ)i − λ2ρ̄i + λ2

2 ≤ 0 which is equivalent to
λ2

2 ≤ λ2ρ̄i + x∗iµ
1∗
i + µ2∗; and q∗i = 0 otherwise. Since ρ∗i = x∗i q

∗
i then we have the

result.

4. LINEARIZATION

In this section we transform problem (3.3) to a quadratic problem with linear cons-
traints, in order to get access to more efficient solvers. The constraints ρj = xjqj are
quadratic, but with the following substitution we can model it with linear constraints:

−γqj ≤ ρj ≤ γqj ,
−(1− qj)γ ≤ ρj − xj ≤ (1− qj)γ

with γ a large penalization value. If qj = 0, then the first group of constraints ensures
that ρj = 0. If qj = 1, then ρj − xj = 0 is a consequence of the second group of
constraints. In this way the constraints become linear, with continuous and binary
variables. Since ρj ≥ 0, then the first group of constraints can be written as 0 ≤ ρj ≤
γqj . Finally, we can express problem (3.3) equivalently as

minimize 1
2 ‖y −Mρ‖2 + λ2

2 ‖ρ− ρ̄‖
2 + λ2

2 ‖x− ρ̄‖
2 + λ2

2 ‖q − ρ̄‖
2

subject to ρ− γq ≤ 0
−ρ+ x+ γq ≤ γe
ρ− x+ γq ≤ γe

eT q ≤ k
x, ρ ≥ 0, q ∈ {0, 1}N ,

(4.1)

which is a mixed integer quadratic program with linear constraints.
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For problem (4.1) we denote φ̄(ψ) = 1
2 ‖y −Mρ‖2 + λ2

2 ‖ρ− ρ̄‖
2 + λ2

2 ‖x− ρ̄‖
2, the

portion of the objective function depending only on continuous variables ψ;

A =


I 0
−I I
I −I
0 0

 , B =


−γI
γI
γI
eT

 , b =


0
γe
γe
k

 and ψ =
[
ρ
x

]
,

denotes the matrices defining the linear constraints in the above problem; obtaining
the following quadratic program with linear constraints:

minimize φ̄(ψ) +
λ2

2
‖q − ρ̄‖2 (4.2)

subject to Aψ +Bq ≤ b,
ψ ≥ 0, q ∈ {0, 1}N .

In order to dualize this program, we consider X = R2N
+ × {0, 1}N as the primal

feasible set; we define µ ∈ Y = R3N+1
+ the Lagrange multipliers associated with linear

constraints Aψ +Bq ≤ b, and obtain the associated Lagrangean function:

L((ψ, q), µ) = φ(ψ) +
λ2

2
‖q− ρ̄‖2−µT (b−Aψ−Bq) for (ψ, q) ∈ X and µ ∈ Y.

We define the Lagrangean dual function as

L∗(µ) = inf
(ψ,q)∈X

L((ψ, q), µ),

for each µ ∈ Y. The associated dual problem is then:

sup
µ∈Y
L∗(µ). (4.3)

Let us observe in detail the optimization problem in the evaluation of L∗(µ):

L∗(µ) = inf
(ψ,q)∈X

φ(ψ) +
λ2

2
‖q − ρ̄‖2 − µT (b−Aψ −Bq) =

= inf
(ψ,q)∈X

φ(ψ) +
λ2

2
[ρ̄T ρ̄− 2ρ̄T q + qT q]− µT b+ µTAψ + µTBq =

= inf
(ψ,q)∈X

φ(ψ) +
λ2

2
ρ̄T ρ̄+ µT (−b+Aψ) +

(
−λ2ρ̄+ (µTB)T +

λ2

2
q

)T
q,

which proves the following result:

Lemma 4.1. Given problem (4.2) and its dual (4.3), we have

L∗(µ) = inf
(ψ,q)∈X

g1(ψ, µ) +
(
g2(µ) +

λ2

2
q

)T
q, (4.4)

where g1(ψ, µ) = φ(ψ) + λ2

2 ρ̄
T ρ̄+ µT (−b+Aψ) and g2(µ) = BTµ− λ2ρ̄.
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In the expression (4.4) we split the continuous and binary parts, to expose better
the structure of the problem. We use the lemma above to study the inherent mini-
mization. It is easy to verify that if the infimum is achieved at a point, say (ψµ, qµ)
then

L∗(µ) = min
ψ∈R2N

+

g1(ψ, µ) +
(
g2(µ) +

λ2

2
qµ

)T
qµ (4.5)

and also

L∗(µ) = min
q∈{0,1}N

g1(ψµ, µ) +
(
g2(µ) +

λ2

2
q

)T
q. (4.6)

The minimization in (4.6) is achieved componentwise with qi = 0 if g2(µ) + λ2

2 > 0,
and qi = 1 in the case that g2(µ) + λ2

2 ≤ 0. Therefore, the dual function can be
evaluated as:

L∗(µ) = g1(ψµ, µ) +
∑
i∈I(µ)

(
g2(µ)i +

λ2

2

)
=

= min
ψ∈R2N

+

g1(ψ, µ) +
∑
i∈I(µ)

(
g2(µ)i +

λ2

2

)

with I(µ) =
{
i ∈ {1, . . . , N} : g2(µ) + λ2

2 ≤ 0
}
. In this way, the dual function is eval-

uated by choosing the values of qi, according to ψ and µ. We shall study now a
characterization of the intensity values ρ∗i in terms of the primal-dual optimal values
for (4.2) and (4.3).

Theorem 4.2. Let us consider (ψ∗, q∗) an optimal solution for (4.2), and µ∗ an
optimal solution for (4.3). Then:

(i)
ρ∗i = x∗i > 0 if and only if µ1∗

i = 0, µ2∗

i , µ
3∗

i ≥ 0
and λ2

(
1
2 − ρ̄i

)
< γ(µ2∗

i + µ3∗

i ) + µ4∗ .
(4.7)

(ii)
ρ∗i = 0 if and only if µ1∗

i > 0, µ2∗

i , µ
3∗

i = 0
and λ2

(
1
2 − ρ̄i

)
≥ −γµ1∗

i + µ4∗ .
(4.8)

Proof. Let us take fixed q∗ and µ∗; and define the minimization problem in ψ.

minimize
ψ∈R2N

+

g1(ψ, µ∗) +
(
g2(ψ, µ∗) +

λ2

2
q∗
)T

q∗. (4.9)

Complementarity at the optimality conditions for problem (4.1) establish that

(ρi − γq∗i )µ1
i = 0, i = 1, . . . , N.

(xi − ρi + γ(q∗i − 1))µ2
i = 0, i = 1, . . . , N.

(−xi + ρi + γ(q∗i − 1))µ3
i = 0, i = 1, . . . , N,
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but if µ = µ∗ is an optimal solution for (4.3) then it should also verify these comple-
mentarity conditions. Let us prove (i). If ρ∗i = x∗i > 0 then for the second and third
inequality in (4.1), we conclude that q∗i = 1. Therefore, by the first complementarity
equation, µ1∗

i = 0, and for dual feasibility µ2∗

i , µ
3∗

i ≥ 0. The relation g2(µ)i + λ2

2 qi is
equivalent to

γ(−µ1
i + µ2

i + µ3
i ) + µ4 − λ2ρ̄i +

λ2

2
. (4.10)

Since µ1∗

i = 0, then the expression (4.10) evaluated at µ∗ becomes

γ(µ2
i + µ3

i ) + µ4 − λ2ρ̄i +
λ2

2

if this expression was strictly positive, then we could find a better solution with q∗i = 0,
therefore, it should be less than 0, which gives us

γ(µ2
i + µ3

i ) + µ4 < λ2

(
ρ̄i −

1
2

)
. (4.11)

Reciprocally, suppose that (4.11) holds and that µ1∗

i = 0, µ2∗

i , µ
3∗

i ≥ 0, then

g2(µ∗)i +
λ2

2
q∗i < 0;

therefore q∗i = 1 and for feasibility conditions ρ∗i = x∗i > 0. A proof for (ii) is similar,
taking into account that in this case

g2(µ∗)i + λ2q∗i = γ(−µ1
i ) + µ4 − λρ̄+

λ2

2
.

5. TWO STEPS APPROACH

In this section we consolidate the two steps approach to deal with the exponential sum
estimation problem. For the first step we solve the linear least squares problem with
Tikhonov regularization (3.1), with the parameter value given by the L-curve criterion
[4–7], fixing an approximated stable solution ρ̄ and also the regularization parameter
value λ̂. At the second step we get the information obtained at the first step, that
is the approximated solution ρ̄ and parameter value λ to then solve problem (4.1) in
order to refine values of ρ, which gives us a non smooth solution, but more realistic
than the one given by regularized least squares only. We present an algorithmic two
step scheme:

ALGORITHM

Step I
Input: {ti, yi}ni=1; data of model (3.1), M ∈ Rn×N .
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– For ρ̄ = 0, L = I calculate λ̂ by the L-curve criterion, and ρ(λ̂) as the solution of
(3.1).

Output: λ̂, ρ̄ = ρ(λ̂).
Step II

Input: M,y, k, λ̂, ρ̄, γ.

– Solve problem (4.1).

Output: ρ∗, τ∗, x∗, q∗, µ∗.

6. NUMERICAL EXPERIMENTS

We have perform several numerical experiments on problems involving parameter esti-
mation of exponential functions models, by using a Matlab code involving the two step
approach mentioned at the previous section. At the first for a given data and upper
bound on the nonlinear parameter, once the discretization of the nonlinear parameter
is done, the regularization parameter λ̂ is chosen by the corner of the L-curve criterion.
Without prior information about the intensities, we solve the Tikhonov problem (3.1),
obtaining intensities ρ̄ which constitute the entries for the second step. In this second
phase we use a quadratic mixed integer optimization routine given by Bemporad and
Mignone [1], which allows us to refine the values of ρ and τ coming from the first step.

For this presentation we use four data sets. The first two are obtained by simula-
ting, for t ∈ [0, 5] and ∆t = 0.0505, from

f(t) = exp(−1.5t) + 2 exp(−3t) + 4 exp(−2t),

and
f(t) = exp(−1.5t) + 4 exp(−3t) + 2 exp(−2t) + 3 exp(−6t).

The third one is the classical Lanczos serie [9], generated in time steps ∆t = 0.05 at
the interval [0, 1.15] from

f(t) = 0.0951 exp(−t) + 0.8607 exp(−3t) + 1.5576 exp(−5t).

The fourth problem corresponds with the empirical data given by Steyn and Wyk [14],
this data is shown in Figure 1, where 58 observations of the intensities of secondary
particles of neutrons coming from cosmic rays. Here the variation of the time is 20
ms in a range of 30 to 1170 ms.

The last two problems have been studied by Petersson and Holmström by using
the TOMLAB optimization environment [8].

7. RESULTS

In this section we present results for our four numerical experiments in two tables. At
the first column we identify the problem, give the size of the discretization and the
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used regularization parameter. The normalized true linear values are at the second
column and at the third one the nonlinear true values. Results of step one are given
at columns 4, 5 and 6; showing the indices of the discretization that results in positive
values for the linear parameters and values of both of the parameters at these indices.
Columns 7, 8 and 9 show second step results, and finally the two last columns con-
tain relative errors with respect to the true values. We also provide figures showing
comparative results. The diamond shaped mark indicates the true values of τ and ρ.
The pointed line showing the first step solution (RLSS) and the continuous line the
refinement of the second step (MINLS). At Table 1 we show results for problems 1
and 2 corresponding to models with three and four exponential functions respectively.

Table 1. Problems 1 and 2

Problem ρ τ j τj ρ̄j l ρ∗l τ∗l elin enl
Problem 1 0.1429 1.5000 18 1.4167 0.0676 1.0e-008 *

Data 3 exp -N 55 0.5714 2.0000 21 1.6667 0.0625 19 0.1429 1.5000 0.2042 0
0.2857 3.0000 24 1.9167 0.4782

λ = 1.5984e− 11 30 2.4167 0.1397 25 0.5714 2.0000 0.3898 0
36 2.9167 0.1510
39 3.1667 0.1010 37 0.2857 3.0000 0.1937 0

Problem 2 0.1000 1.5000 4 1.0800 0.0003
Data 4 exp -N 26 0.2000 2.0000 5 1.4400 0.0535 5 0.0908 1.4400 0.0169 0.0084

0.4000 3.0000 6 1.8000 0.1849
λ = 5.1560e− 014 0.3000 6.0000 8 2.5200 0.0772 7 0.3053 2.1600 0.1922 0.0223

9 2.8800 0.2802
10 3.2400 0.1013 10 0.3237 3.2400 0.1392 0.0335
17 5.7600 0.1158
18 6.1200 0.1868 18 0.2803 6.1200 0.0359 0.0168

For the first problem we obtain the exact solution at the second step, improving
substantially the regularized least squares solution (see Table 1 and Figure 4).

For the second problem (Table 1) we observe that the estimation clearly is better
at the second step. We get good approximated solutions for the first and fourth
components (see Figure 5). In general, models with four or more exponentials are
difficult to solve. Results for the Lanczos’ series (problem 3) are given in Table 2 and
Figure 6.

In general we obtain small relative errors, and particularly, at the third component
the exact solution was found. Our linear estimates are more precise when compared
with the best solution [0.0226; 0.2088; 0.7686], obtained by Holmström and Petersson
[8]. It is worth mentioning that for this problem that at the second step we perform
different simulations changing the values of k, the upper bound on the number of
exponential functions, testing with k = 3, 4, 5, 6, obtaining the same solution. This
means that the number of exponential functions probably does not depends on this
bound.

The data for problem 4, see Figure 1, comes from the Steyn-Wyk experiment.
The theoretical optimum is unknown, and we only can compare results with others
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Fig. 4. Problem 1: Simulated data 3 exponentials N = 55

Fig. 5. Problem 2: Simulated data 4 exponentials N = 26
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Table 2. Problems 3 and 4
Problem ρ τ j τj ρ̄j l ρ∗l τ∗l elin enl

Problem 3 0.0378 1.0000 4 0.9375 0.0276
Data Lanczos 0.3424 3.0000 5 1.2500 0.0107 5 0.0573 1.2500 0.0275 0.0423
3 exp - N 25 0.6197 5.0000 10 2.8125 0.1190

11 3.1250 0.2272 11 0.3309 3.1250 0.0163 0.0211
λ = 4e− 7 17 5.0000 0.6076

18 5.3125 0.0079 17 0.6118 5.0000 0.0111 0.0000
Problem 4 6 0.0342 2.1624

Data Experimental * * 7 0.0905 2.5949 10 0.9356 3.8923 0.0288 0.0043
Steyn-Wyk N=60 8 0.1114 3.0274

9 0.1137 3.4599 22 1.0464 9.0821 0.3082 0.3073
λ = 0.1109 10 0.1072 3.8923

11 0.0974 4.3248
12 0.0875 4.7573
13 0.0787 5.1898
14 0.0717 5.6223
15 0.0666 6.0548
16 0.0631 6.4872
17 0.0610 6.9197
18 0.0600 7.3522
19 0.0597 7.7847
20 0.0599 8.2172
21 0.0604 8.6497
22 0.0610 9.0821
23 0.0615 9.5146
24 0.0618 9.9471
25 0.0620 10.3796
26 0.0618 10.8121
27 0.0614 11.2446
28 0.0606 11.6770
29 0.0596 12.1095
30 0.0582 12.5420
31 0.0566 12.9745
32 0.0546 13.4070
33 0.0525 13.8395
34 0.0501 14.2719
35 0.0476 14.7044
36 0.0449 15.1369
37 0.0420 15.5694
38 0.0391 16.0019
39 0.0360 16.4344
40 0.0329 16.8668
41 0.0298 17.2993
42 0.0266 17.7318
43 0.0234 18.1643
44 0.0202 18.5968
45 0.0170 19.0293
46 0.0139 19.4617
47 0.0108 19.8942
48 0.0078 20.3267
49 0.0048 20.7592
50 0.0019 21.1917

* theoretical optimum unknown
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Fig. 6. Problem 3: Simulated data Lanczos N = 25

authors. By using graphical methods, Steyn and Wyk [14] found the two components
solution for nonlinear parameter, τ∗ = [3.858; 17.011]t.

Holmström and Petersson [8] reported the values ρ∗ = [0.976; 1.479]t and τ∗ =
[3.832; 13.350]t also detecting two exponential components. Our results for this pro-
blem are shown at Table 2. In Figure 7 we plot the first step curve (smooth curve) and
our solution with two peaks. Our result is closer to the Holmström-Petersson solution
when compared with that reported by Steyn-Wyk. We ran this model with k = 3
the bound on the number of exponential components, but for the second detected
component, the linear parameter value was zero. This suggests that the correct model
for this series should have two exponential terms.

It is worth mentioning that the values we obtain for the intensities in each of the
studied problems satisfy the characterization established in the Theorem 4.2 in terms
of the respective primal-dual optimal values.

8. CONCLUDING REMARKS

We propose a two step procedure to find estimations of linear and nonlinear parame-
ters in exponential sum models. For the first step we solve a Tikhonov regularized
problem which gives us the information to be refined in a second step. At this second
stage we solve a mixed integer nonlinear programming problem obtaining good esti-
mates for the parameters. We study properties of the solutions for this problem by
exposing the combinatorial nature of the problem. Our procedure requires less initial
information to successfully estimate the solution. It is enough to have the data, and
an upper bound on the nonlinear parameters. We do not require the initial values to
be known.
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Fig. 7. Problem 4: Experimental data Steyn-Wyk N = 58

Sometimes all the data we have is a decay curve, and so estimating the number
of exponential functions can be necessary. Our approach allows us to estimate this
number by just giving a possible large upper bound, and the selecting k as the number
of positive values for the intensities. As for further work we believe that our approach
can be complemented with efficient algorithms to deal with the combinatorial nature
of the problem, and exploiting the dual properties of the solutions to develop an
algorithm which uses the special structure of the problem.
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