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A DOUBLE INDEX TRANSFORM
WITH A PRODUCT

OF MACDONALD’S FUNCTIONS REVISITED

Abstract. We prove an inversion theorem for a double index transform, which is associated

with the product of Macdonald’s functions Kiτ

“p
x2 + y2 − y

”
Kiτ

“p
x2 + y2 + y

”
, where

(x, y) ∈ R+ × R+ and iτ, τ ∈ R+ is a pure imaginary index. The results obtained in the
sequel are applied to find particular solutions of integral equations involving the square and
the cube of the Macdonald function Kiτ (t) as a kernel.
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1. INTRODUCTION AND PRELIMINARY RESULTS

In [8, 9] it was proved that the double integral transform

F (τ) = lim
N→∞

N∫
1/N

N∫
1/N

Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
G(x, y)

dxdy

x
(1.1)

represents a left-inverse operator for the index transform

G(x, y) =
(

2
π

)4

lim
N→∞

N∫
0

τ sinh 2πτKiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
F (τ)dτ,

(1.2)
which, in turn, is a bounded operator

G : L2 (R+; τ sinh 2πτdτ)→ L2

(
R+ × R+;x−1dxdy

)
,
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where the convergence in (1.1), (1.2) is by norms in Hilbert spaces
L2 (R+; τ sinh 2πτdτ), L2

(
R+ × R+;x−1dxdy

)
, respectively. Its range does not coin-

cide with L2

(
R+ × R+;x−1dxdy

)
, however the isometric Parseval equality holds

∞∫
0

∞∫
0

|G(x, y)|2 dxdy
x

=
(

2
π

)4
∞∫
0

τ sinh 2πτ |F (τ)|2dτ. (1.3)

In this paper we will find sufficient conditions for absolute and uniform convergence
with respect to τ ≥ 0 of the double integral in (1.1), representing a right-inverse
operator for (1.2), meaning

G(x, y) =
25

π4
lim
α→π−

∞∫
0

τ sinhατ coshπτ×

×Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
F (τ)dτ,

(1.4)

where the convergence is pointwise. These results will be applied to find solutions in
the closed form of Lebedev’s type integral equations of the first kind [6, 7]

∞∫
0

S(τ, t)Kiτ (t)f(t)dt = F (τ), τ > 0, (1.5)

where Kν(z) in (1.1), (1.2), (1.4), (1.5) is the modified Bessel function or Macdonald’s
function [2, vol. II] and S(τ, t) is generally a special function of hypergeometric type
[2, vol. I]. In particular, we will consider an integral equation involving the cube of
the Macdonald function

∞∫
0

K3
iτ (t)f(t)dt = F (τ), τ > 0. (1.6)

We note that the equation

∞∫
0

Kiτ (t)f(t)dt = F (τ), τ > 0 (1.7)

is called the Kontorovich-Lebedev integral equation or transformation [6,7]. The case
of the square of Macdonald’s function as the kernel

π

coshπτ

∞∫
0

K2
iτ (t)f(t)dt = F (τ), τ > 0 (1.8)

was considered for the first time by Lebedev [3].
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The modified function Kν(z) satisfies the differential equation

z2 d
2u

dz2
+ z

du

dz
− (z2 + ν2)u = 0, (1.9)

for which it is a solution that remains bounded as z tends to infinity on the real line.
It has the asymptotic behaviour [2, vol. II]

Kν(z) =
( π

2z

)1/2

e−z[1 +O(1/z)], z →∞, (1.10)

and near the origin

Kν(z) = O
(
z−|Reν|

)
, z → 0, (1.11)

K0(z) = O

(
log

1
z

)
, z → 0. (1.12)

When |τ |→∞ and x>0, γ∈R are fixed, the kernelKγ+iτ (x) behaves as (cf. [7, ch. 1])

Kγ+iτ (x) =
√

2πeγπi

|τ |γ+1/2

(x
2

)γ
e−π|τ |/2 sin

(
τ

(
log

2|τ |
x
− 1
)

+
(
γ +

1
2

)
π

2
+

x2

4|τ |

)
×

×
(

1 +O

(
1
|τ |

))
.

(1.13)

The modified Bessel function can be given by the following integral [2, vol. II]

Kν(z) =

∞∫
0

e−z coshu cosh νudu, Rez > 0. (1.14)

The product of these functions of different arguments can be represented by the
Macdonald formula (cf. [2, vol. II], [7])

Kν(x)Kν(y) =
1
2

∞∫
0

e
− 1

2

“
u x

2+y2

xy + xy
u

”
Kν(u)

du

u
. (1.15)

Letting ν = iτ in (1.15) we obtain the following representation for the kernel of
transformation (1.1)

Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
=

1
2

∞∫
0

e
−

“
2 y

2

x2
+1

”
u− x22uKiτ (u)

du

u
. (1.16)
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In the sequel we are going to employ the following useful relations (see [5], formulas
(2.16.51.8), (2.16.53.1), (2.16.6.5))

∞∫
0

τ sinhατKiτ (x)Kiτ (y)dτ =

=
π

2
xy sinα

K1((x2 + y2 + 2xy cosα)1/2)
(x2 + y2 + 2xy cosα)1/2

, x, y > 0, 0 ≤ α < π,

(1.17)

∞∫
0

τ sinh 2πτΓ (ν + iτ) Γ (ν − iτ)Kiτ (x)Kiτ (y)dτ =

=
2νπ5/2

Γ(1/2− ν)
(xy)ν |x− y|−νKν(|x− y|), 0 ≤ Reν <

1
2
,

(1.18)

where Γ(z) is Euler’s gamma-function [2, vol. I],

∞∫
0

tα−1etKiτ (t)dt =
coshπτ
2α
√
π

Γ (α+ iτ) Γ (α− iτ) Γ(1/2− α), (1.19)

where 0 ≤ Reα < 1
2 .

We will also appeal to the theory of the one- and two-dimensional Mellin trans-
forms [1], [2, vol. I], [4, 6]. In fact, the Mellin transform of one variable is defined by
the integral

fM(s) = f∗(s) =

∞∫
0

f(x)xs−1dx, s = γ + it, (1.20)

for f ∈ L1(R+;xγ−1dx), i.e.

‖f‖1 =

∞∫
0

|f(x)|xγ−1dx < +∞,

which maps this space into the space of bounded continuous functions vanishing at
infinity. However, if f ∈ L2(R+;x2γ−1dx) with the norm

‖f‖2 =

 ∞∫
0

|f(x)|2x2γ−1dx

1/2

< +∞,

then it forms an isometric isomorphism

fM : L2(R+;x2γ−1dx)↔ L2((γ − i∞, γ + i∞); dt),
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and integral (1.10) converges in the mean square sense. The inverse operator is given
by the integral

f(x) =
1

2πi

γ+i∞∫
γ−i∞

fM(s)x−sds, s = γ + it, x > 0, (1.21)

which is convergent in the mean square sense too. Moreover, the following Parseval
equality holds

∞∫
0

|f(x)|2x2γ−1dx =
1

2π

∞∫
−∞

|fM(γ + it)|2dt. (1.22)

If f ∈ L2(R+;x2γ−1dx), g ∈ L2(R+;x1−2γdx), then

∞∫
0

f(x)g(x)dx =
1

2π

γ+i∞∫
γ−i∞

f∗(s)g∗(1− s)ds. (1.23)

In particular, we have the following reciprocal Mellin transforms [2, 5, 7]

zν/2Kν/2(2z) =
1

8πi

γ+i∞∫
γ−i∞

Γ(w)Γ
(
w + ν

2

)
z−wdw, γ > max(0,−Re ν), (1.24)

∞∫
0

Kν/2(2t)tw+ν/2−1dt =
1
4

Γ(w)Γ
(
w + ν

2

)
, Re w > 0. (1.25)

Further, by relation (2.16.33.10) in [5] we get the Mellin transform (1.10) of the kernel
(1.1)

∞∫
0

xs−1Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
dx =

=
√
π

2
ys/2Ks/2(2y)

Γ
(
s
2 + iτ

)
Γ
(
s
2 − iτ

)
Γ((1 + s)/2)

,

(1.26)

which is true for all y, τ > 0 and γ = Res > 0. Hence multiplying both sides of (1.26)
by yω−1, Reω > 0, we integrate with respect to y > 0. Then by using (1.25) we arrive
at the value of the double Mellin transform [1,4] for the kernel (1.1) as

∞∫
0

∞∫
0

xs−1yω−1Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
dxdy =

=
√
π

8
Γ (ω) Γ

(
s+ ω

2

)
Γ
(
s
2 + iτ

)
Γ
(
s
2 − iτ

)
Γ((1 + s)/2)

.

(1.27)
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So according to [1, 4] the double Mellin transform

f∗(s, w) =

∞∫
0

∞∫
0

f(x, y) xs−1yw−1dxdy, (s, w) ∈ C× C (1.28)

is well defined for any f(x, y) ∈ L1

(
R+ × R+; xγ1−1yγ2−1dxdy

)
, γ1 = Res, γ2 =

Rew. When f∗(s, w) ∈ L1((γ1 − i∞, γ1 + i∞)× (γ2 − i∞, γ2 + i∞)), i.e.

γ1+i∞∫
γ1−i∞

γ2+i∞∫
γ2−i∞

|f∗(s, w) dsdw| <∞,

then the inversion formula

f(x, y) =
1

(2πi)2

γ1+i∞∫
γ1−i∞

γ2+i∞∫
γ2−i∞

f∗(s, w) x−sy−w dsdw (1.29)

is true for all (x, y) ∈ R+ ×R+. Analogously to the one-dimensional case, the double
Mellin transform (1.28) with the convergence in the mean square sense

f∗ : L2

(
R+ × R+; x2γ1−1y2γ2−1dxdy

)
↔ L2((γ1−i∞, γ1 +i∞)×(γ2−i∞, γ2 +i∞))

is an isometric isomorphism between these spaces (see [1]) and

∞∫
0

∞∫
0

|f(x, y)|2x2γ1−1y2γ2−1dxdy =
1

(2π)2

∞∫
−∞

∞∫
−∞

|f∗(γ1 + iu, γ2 + iv)|2dudv. (1.30)

More generally, for

f ∈ L2

(
R+ × R+;x2γ1−1y2γ2−1dxdy

)
, g ∈ L2

(
R+ × R+;x1−2γ1y1−2γ2dxdy

)
it has

∞∫
0

∞∫
0

f(x, y)g(x, y)dxdy =
1

(2πi)2

γ1+i∞∫
γ1−i∞

γ2+i∞∫
γ2−i∞

f∗(s, w)g∗(1− s, 1− w)dsdw. (1.31)

2. AN INVERSION THEOREM

We define functions G(x, y) in (1.1) belonging to a class of double Mellin integrals

G(x, y) =
1

(2πi)2

γ+i∞∫
γ−i∞

1
2+i∞∫

1
2−i∞

Γ (ω) Γ ((s+ ω)/2)
Γ((1 + s)/2)

ϕ(s) x−sy−wdsdw, (2.1)
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where x > 0, y > 0, 0 < γ < 1, ϕ(s), s = γ + it is analytic in the strip |Res| < 1.
Moreover, it belongs to the Hardy weighted space H(−1,1)

1 (R; (|t|+ 1)3/2dt) satisfying
the condition

sup|Res|<1

∞∫
−∞

|ϕ (Res + it) |(|t|+ 1)3/2dt <∞. (2.2)

First we observe that the integral (2.1) converges absolutely and uniformly for all
x ≥ x0, y ≥ y0. In fact, with condition (2.2) and elementary inequality for Euler’s
beta-function |B(a, b)| ≤ B(Re a, Re b) [2, vol. I] we find from (2.1)

|G(x, y)|≤ 1
(2π)2

γ+i∞∫
γ−i∞

1
2+i∞∫

1
2−i∞

∣∣∣∣Γ (ω) Γ ((s+ ω)/2)
Γ((1 + s)/2)

ϕ(s) x−sy−wdsdw
∣∣∣∣ ≤

≤ x−γ0 y
−1/2
0

(2π)2

γ+i∞∫
γ−i∞

1
2+i∞∫

1
2−i∞

|Γ (ω)|
∣∣∣∣Γ ((s+ ω)/2)

Γ((1 + s)/2)
ϕ(s)

∣∣∣∣ |dsdw| =

=
x−γ0 y

−1/2
0

(2π)2

γ+i∞∫
γ−i∞

1
2+i∞∫

1
2−i∞

∣∣∣∣ Γ (ω)
Γ((1−w)/2)

∣∣∣∣ |B ((s+ω)/2, (1−w)/2)| |ϕ(s)||dsdw|<

<
x−γ0 y

−1/2
0

(2π)2
B ((2γ + 1)/4, 1/4)

1
2+i∞∫

1
2−i∞

∣∣∣∣ Γ (ω)
Γ((1− w)/2)

dw

∣∣∣∣×
×

γ+i∞∫
γ−i∞

|ϕ(s)|(|s|+ 1)3/2 |ds| <∞.

Hence appealing to (1.24) we calculate the integral with respect to w in (2.1) and
write it as follows

G(x, y) =
2
πi

γ+i∞∫
γ−i∞

ys/2Ks/2(2y)
Γ((1 + s)/2)

ϕ(s) x−sds. (2.3)

This integral is also absolutely convergent for each x > 0, y > 0. Indeed, with
condition (2.2), asymptotic behavior (1.13) and asymptotic Stirling’s formula for
gamma-functions [2, vol. I] we obtain

γ+i∞∫
γ−i∞

∣∣∣∣∣ys/2Ks/2(2y)
Γ((1 + s)/2)

ϕ(s) x−sds

∣∣∣∣∣ < Cx−γyγ/2
γ+i∞∫
γ−i∞

|ϕ(s)|(|s|+ 1)−γ−1/2|ds| <

< Cx−γyγ/2
γ+i∞∫
γ−i∞

|ϕ(s)|(|s|+ 1)3/2|ds| <∞,



320 Semyon B. Yakubovich

where C > 0 is an absolute constant. However, since |ϕ (Res + it) |(|t| + 1)3/2 is
bounded (see (2.2)), we return to (2.1) and easily verify, that its integrand belongs
to L2((−γ − i∞,−γ + i∞)× (1/2− i∞, 1/2 + i∞)), |γ| < 1. This means via (1.30),
that G(x, y) ∈ L2

(
R+ × R+; x−2γ−1dxdy

)
. Taking into account that the right-hand

side of equality (1.27) belongs to L2((γ − i∞, γ + i∞) × (1/2 − i∞, 1/2 + i∞)) we
apply (1.31) to write the double transformation (1.1) in the form

F (τ) =
1

(2πi)2

√
π

8

γ+i∞∫
γ−i∞

1/2+i∞∫
1/2−i∞

Γ
(s

2
+ iτ

)
Γ
(s

2
− iτ

) Γ (ω) Γ ((s+ ω)/2)
Γ((1 + s)/2)

×

× Γ (1− ω) Γ ((1− ω − s)/2)
Γ((1− s)/2)

ϕ(−s)dsdw.

(2.4)

Meanwhile, the inner integral with respect to w in (2.4) equals (see (1.23), (1.24),
relation (2.16.33.2) in [5])

1
2πi

1/2+i∞∫
1/2−i∞

Γ (ω) Γ ((s+ ω)/2) Γ (1− ω) Γ ((1− ω − s)/2) dw =

= 16

∞∫
0

K2
s/2(2v)dv = 2π Γ

(
1 + s

2

)
Γ
(

1− s
2

)
.

Therefore, similarly to (2.3), after calculation with respect to w we write (2.4) in the
form

F (τ) =
√
π

8i

γ+i∞∫
γ−i∞

Γ
(s

2
+ iτ

)
Γ
(s

2
− iτ

)
ϕ(−s)ds. (2.5)

In order to continue our consideration we will first investigate the following index
integral (see (1.4))

I(α, s) =

∞∫
0

τ sinhατ coshπτKiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
×

× Γ
(s

2
+ iτ

)
Γ
(s

2
− iτ

)
dτ, 0 ≤ α ≤ π, 0 < Res < 1

(2.6)

for any fixed (x, y) ∈ R+×R+. Taking into account (1.18) and Abel’s test we observe
that (2.6) converges uniformly with respect to α ∈ [0, π]. When 0 ≤ α < π we employ
representation (1.19), asymptotic behavior by index (1.13) of the Macdonald function
and Fubini’s theorem to obtain

I(α, s) =
√
π2s/2

Γ((1− s)/2)

∞∫
0

∞∫
0

τ sinhατ ts/2−1etKiτ (t)×

×Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
dτ dt.

(2.7)
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Hence (1.14) and Fubini’s theorem yield

I(α, s) =
√
π Γ(s/2)

Γ((1− s)/2)

∞∫
0

∞∫
0

τ sinhατ cosuτ
sinhs(u/2)

×

×Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
dτ du.

(2.8)

Denoting by a =
√
x2 + y2 − y, b =

√
x2 + y2 + y, which are fixed numbers and

integrating by parts in the inner integral with respect to u, we rewrite (2.8) in the
form

I(α, s) =
√
π Γ(1 + s/2)

Γ((1− s)/2)

∞∫
0

sinhατKiτ (a)Kiτ (b)h(τ, s)dτ, (2.9)

where

h(τ, s) =

∞∫
0

sinuτ cosh(u/2)
sinhs+1(u/2)

du, 0 < γ = Res < 1. (2.10)

Moreover, the integral (2.10) converges absolutely and uniformly with respect to s in
the strip {s = γ + it; 0 ≤ γ < 1, t ∈ R} and with respect to τ on any compact in
R+. Furthermore, we have the estimate

|h(τ, s)| = τγ

∣∣∣∣∣∣
∞∫
0

(
u/τ

sinh(u/(2τ))

)s+1

cosh(u/(2τ))
sinu
us+1

du

∣∣∣∣∣∣ ≤
≤ Cγτγ

∞∫
0

| sinu|
uγ+1

du = O(τγ), τ →∞, 0 < γ < 1,

(2.11)

where Cγ > 0 is a constant, which is not depending on τ , since the function

ξs(v) =

cosh(v/2)
(

v
sinh(v/2)

)s+1

, if v 6= 0,

2s+1, if v = 0,

is bounded for all v ≥ 0, 0 < Res < 1. Further, expanding ξs(v) in a Taylor series
near zero we find ξ(v) = 2s+1 +O(v2), 0 ≤ v ≤ 1. Therefore, (2.10) becomes

h(τ, s) = τγ
1∫

0

ξγ

(u
τ

) sinu
us+1

(
u/τ

sinh(u/(2τ))

)it+1

du+

+

∞∫
1

sinuτ cosh(u/2)
sinhs+1(u/2)

du = O(τγ) +O
(
τγ−2

)
+O(1), τ → +∞

(2.12)
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uniformly by s in the strip {s = γ + it; 0 < γ < 1, t ∈ R}. Hence choosing a
sufficiently big and fixed number A > 0 we split the integral (2.9) into

∫ A
0
,
∫∞
A

.
Denoting by

I1(α, s) =
√
π Γ(1 + s/2)

Γ((1− s)/2)

A∫
0

sinhατKiτ (a)Kiτ (b)h(τ, s)dτ

we observe, appealing again to the Stirling asymptotic formula for gamma-functions,
that the following estimate is true

|I1(α, s)| <
√
π

∣∣∣∣ Γ(1 + s/2)
Γ((1− s)/2)

∣∣∣∣
A∫

0

τ sinhατ |Kiτ (a)Kiτ (b)|dτ×

×
∞∫
0

u cosh(u/2)
sinhγ+1(u/2)

du < Ca,b,γ |s|γ+1/2 = O
(
|s|γ+1/2

)
, |s| → ∞,

where Ca,b,γ > 0 is a constant, which does not depend on α ∈ [0, π]. Meanwhile, the
integral

I2(α, s) =
√
π Γ(1 + s/2)

Γ((1− s)/2)

∞∫
A

sinhατKiτ (a)Kiτ (b)h(τ, s)dτ

can be treated by (2.12) and the asymptotic formula (1.13). So, we have

I2(α, s) =
π
√

2 Γ(1 + s/2)
Γ((1− s)/2)

∞∫
A

e−πτ
sinhατ
τ

h(τ, s) sin
(
τ

(
log

2τ
a
− 1
)

+
π

4
+
a2

4τ

)
×

× sin
(
τ

(
log

2τ
b
− 1
)

+
π

4
+
b2

4τ

)(
1 +O

(
1
τ

))2

dτ =

=
π Γ(1 + s/2)√
2Γ((1− s)/2)

∞∫
A

e−πτ sinhατ
h(τ, s)
τ
×

× cos
(
τ log

b

a
+

(a2 − b2)
4τ

)(
1 +O

(
1
τ

))2

dτ+

+
π Γ(1 + s/2)√
2Γ((1− s)/2)

∞∫
A

e−πτ sinhατ
h(τ, s)
τ
×

× sin
(

2τ
(

log
2τ√
ab
− 1
)

+
(a2 + b2)

4τ

)(
1 +O

(
1
τ

))2

dτ =

= J1(α, s) + J2(α, s).
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Hence by using the second mean value theorem, the estimate (2.12), the Schwarz
inequality, the Parseval equality for the sine Fourier transform and the Dirichlet
convergence test for integrals we derive the uniform estimate by α ∈ [0, π] and
s = γ + it, 0 < γ < 1, t ∈ R, namely

|J1(α, s)|<e(α−π)A

∣∣∣∣ Γ(1 + s/2)
Γ((1− s)/2)

∣∣∣∣
O
 A1∫
A

(τγ−1+τγ−3) cos
(
τ log

b

a
+

(a2 − b2)
4τ

)
dτ

+

+ const.

A1∫
A

dτ

τ

∣∣∣∣∣∣
∞∫
1

sinuτ cosh(u/2)
sinhs+1(u/2)

du

∣∣∣∣∣∣
 <

<

∣∣∣∣ Γ(1 + s/2)
Γ((1− s)/2)

∣∣∣∣
O(1) + const.

 ∞∫
1

cosh2(u/2)

sinh2(γ+1)(u/2)
du

1/2
 =

= O
(
|s|γ+1/2

)
.

We similarly treat J2(α, s) to establish the uniform relation J2(α, s) = O
(
|s|γ+1/2

)
by [0, π]. Thus returning to (2.6), (2.8), (2.9) and taking into account the above
discussions we prove that I(α, s) = O

(
|s|γ+1/2

)
uniformly by α ∈ [0, π] and s = γ+it,

0 < γ < 1, t ∈ R.
Multiplying both sides of (2.5) by

25

π4
τ sinhατ coshπτKiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
and integrating through with respect to τ over R+ we change the order of integration
by Fubini’s theorem for each α ∈ [0, π). Then we pass to the limit α → π− due
to the obtained estimates, condition (2.2) and the Lebesgue dominated convergence
theorem. Hence the uniform convergence of the integral (2.6) and relation (1.18) lead
us to the formula

25

π4
lim
α→π−

∞∫
0

τ sinhατ coshπτKiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
F (τ)dτ =

=
2
πi

γ+i∞∫
γ−i∞

y−s/2Ks/2(2y)
Γ((1− s)/2)

ϕ(−s)xsds.

(2.13)

Our goal is to prove that the right-hand side of (2.13) is equal to G(x, y), x, y > 0 and
we will arrive at the inversion formula (1.4). In fact, by virtue of (2.3), the analyticity
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of the integrand in the strip |Res| < 1 and Cauchy’s theorem we have

2
πi

γ+i∞∫
γ−i∞

y−s/2Ks/2(2y)
Γ((1− s)/2)

ϕ(−s)xsds =
2
πi

−γ+i∞∫
−γ−i∞

ys/2Ks/2(2y)
Γ((1 + s)/2)

ϕ(s)x−sds =

=
2
πi

γ+i∞∫
γ−i∞

ys/2Ks/2(2y)
Γ((1 + s)/2)

ϕ(s)x−sds = G(x, y)

since for all x, y > 0

lim
B→∞

∓γ±iB∫
±γ±iB

ys/2Ks/2(2y)
Γ((1 + s)/2)

ϕ(s)x−sds = 0

via condition (2.2). Thus we summarize our results by the following

Theorem 2.1. Under condition (2.2) the (1.1) is well-defined in the class of double
Mellin integrals (2.1) and the inversion formula (1.4) holds for all x, y > 0, where the
convergence in α is pointwise.

Corollary 2.2. Under the conditions of Theorem 2.1 the transformation (1.1) is
a bounded continuous function on [0,∞) and behaves as O

(
τγ−1e−πτ

)
, τ → +∞,

0 < γ < 1.

Proof. In fact (1.1) can be written as an absolutely and uniformly convergent integral

F (τ) =

∞∫
0

∞∫
0

Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
G(x, y)

dxdy

x

since the Macdonald function satisfies the inequality |Kz(x)| ≤ KRez(x), x > 0 and
therefore for all τ ≥ 0

|F (τ)| ≤
∞∫
0

∞∫
0

K0

(√
x2 + y2 − y

)
K0

(√
x2 + y2 + y

)
|G(x, y)|dxdy

x
<∞.

Hence returning to the representation (2.5) and employing (1.14), (1.19), (2.10) we
derive

τ1−γ cosh(πτ)F (τ) =
τ1−γπ

8i

γ+i∞∫
γ−i∞

∞∫
0

ts/2−1e−tKiτ (t)
ϕ(−s)2s/2

Γ((1− s)/2)
dtds =

=
τ−γπ

8i

γ+i∞∫
γ−i∞

ϕ(−s) Γ(1 + s/2)
Γ((1− s)/2)

h(τ, s)ds.
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Consequently (see (2.2), (2.11)),

τ1−γ cosh(πτ)|F (τ)| ≤ τ−γπ

8

γ+i∞∫
γ−i∞

∣∣∣∣ϕ(−s) Γ(1 + s/2)
Γ((1− s)/2)

h(τ, s)ds
∣∣∣∣ <

< Cγ sup|Res|<1

∞∫
−∞

|ϕ (Res+ it) |(|t|+ 1)3/2dt = O(1)

and we prove Corollary 2.2.

3. INTEGRAL EQUATIONS OF THE LEBEDEV TYPE

In this section we will apply the inversion theorem for the transformation (1.1) to find
particular solutions of integral equation (1.5) and its particular cases in the class of
double integrals (2.1). Precisely, we consider equation (1.5), where the kernel S(τ, t)
is represented by the Kontorovich-Lebedev integral (1.7)

S(τ, t) =

∞∫
0

Kiτ (u)ψ(u, t)du, (3.1)

where ψ(u, t) 6= 0, (u, t) ∈ R+ × R+ is a continuous function. Substituting (3.1) into
(1.5) and making change of variables u =

√
x2 + y2 − y, t =

√
x2 + y2 + y we write

this equation in terms of the double integral (1.1)

∞∫
0

∞∫
0

Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
×

×ψ
(√

x2 + y2 − y,
√
x2 + y2 + y

)
f
(√

x2 + y2 + y
) 2x√

x2 + y2
dxdy = F (τ),

(3.2)
letting

G(x, y) = ψ
(√

x2 + y2 − y,
√
x2 + y2 + y

)
f
(√

x2 + y2 + y
) 2x2√

x2 + y2
, (3.3)

which is, in turn, being represented by (2.1), (2.3). So, writing t =
√
x2 + y2 + y =

r(1 + sinλ), u =
√
x2 + y2 − y = r(1 − sinλ), r > 0, λ ∈ [0, π/2), and letting

ρ = 1−sinλ
1+sinλ , z = r(1 + sinλ) we seek a desired solution of equation (1.5) in the form

(cf. (2.3))

f(z) =
(1 + ρ)

2zρ ψ(ρz, z)πi

γ+i∞∫
γ−i∞

Ks/2(z(1− ρ))
Γ((1 + s)/2)

ϕ(s)
(

2ρz
1− ρ

)−s/2
ds
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under the conditions of Theorem 2.1. Then from (1.4) it has a family of solutions

f(t) =
4(1 + ρ)
π4ψ(ρt, t)ρ

∞∫
0

τ sinh 2πτKiτ (t)Kiτ (ρt)F (τ)dτ, t > 0, (3.4)

for any ρ ∈ (0, 1], where the convergence of the integral (3.4) is understood by (1.4).
As an example let ψ(u, t) ≡ 1 in (3.1). Then via relation (2.16.2.1) in [5] we get

S(τ, t) = π
2 [cosh(πτ/2)]−1. Hence the corresponding integral equation (1.5) takes the

form of the modified Kontorovich-Lebedev integral equation (see (1.7))

π

2 cosh(πτ/2)

∞∫
0

Kiτ (t)f(t)dt = F (τ),

which has a solution

f(t) =
4(1 + ρ)
π4ρ

∞∫
0

τ sinh 2πτKiτ (t)Kiτ (ρt)F (τ)dτ, t > 0, (3.5)

for any ρ ∈ (0, 1] in the class (2.1), where

G(x, y) = f
(√

x2 + y2 + y
) 2x2√

x2 + y2
.

Combining with the direct Mellin transform (1.28) we derive the equality

2

∞∫
0

∞∫
0

f
(√

x2 + y2 + y
)

√
x2 + y2

xs+1yw−1dxdy =
Γ (ω) Γ ((s+ ω)/2)

Γ((1 + s)/2)
ϕ(s). (3.6)

Hence (see (1.20)) with the change of variables the left-hand side of (3.6) is equivalent
to relations

2

∞∫
0

∞∫
0

f
(√

x2 + y2 + y
)

√
x2 + y2

xs+1yw−1dxdy = 2f∗(s+ w + 1)

π/2∫
0

coss+1 λ sinw−1 λ

(1 + sinλ)s+w+1
dλ =

= 21−wf∗(s+ w + 1)
Γ (ω) Γ

(
s
2 + 1

)
Γ(w + s

2 + 1)
.

Therefore from (3.6) and the duplication formula for gamma-functions [2, vol. I] we
obtain that the Mellin transform of f satisfies the following condition

f∗(s+ w + 1) =
2w+s−1

√
π

Γ
(
w +

s

2
+ 1
)

Γ
(
s+ ω

2

)
ϕ(s)

Γ(1 + s)
. (3.7)
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Denoting by

g(z) =
√
πf∗(z + 1)
2z−1Γ

(
z
2

) ,

we apply the reduction formula for gamma-functions [2, vol. I] to write finally from
(3.7) a functional equation for g(z)

g(s+ w) =
(
w +

s

2

)
g(s+ w − 1).

The Lebedev equation (1.8) can be treated employing relation (2.16.52.10) in [5] and
an inversion formula of the Kontorovich-Lebedev transform [6, 7]. As a result we get
the following equation for the modified Bessel function

π

coshπτ
Kiτ (t) =

√
t

∞∫
0

Kiτ (u)√
u

e−u−t

u+ t
du,

which transforms the left-hand side of (1.8) after the change of variables (see above)
into the double integral

∞∫
0

∞∫
0

Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

) e−2
√
x2+y2

x2 + y2
×

×

√√
x2 + y2 + y√
x2 + y2 − y

f
(√

x2 + y2 + y
)
x dxdy = F (τ).

Hence it has a solution

f(t) =
4(1 + ρ)2t
π4√ρ

et(1+ρ)
∞∫
0

τ sinh 2πτKiτ (t)Kiτ (ρt)F (τ)dτ, t > 0,

for any ρ ∈ (0, 1] in the class (2.1), where

G(x, y) =
e−2
√
x2+y2

x2 + y2

√√
x2 + y2 + y√
x2 + y2 − y

f
(√

x2 + y2 + y
)
x2.

Furthermore, making substitutions in polar coordinates, condition (3.6) for this case
takes the form

∞∫
0

π/2∫
0

e−2r(1+sinλ)−1 coss+1 λ sinw−1 λ√
1− sinλ(1 + sinλ)s+w−1/2

f (r) rs+w−1drdλ =

=
Γ (ω) Γ ((s+ ω)/2)

Γ((1 + s)/2)
ϕ(s). (3.8)
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Integration by λ in (3.8) leads to the equality (cf. (3.7))

∞∫
0

e−rΦ1

(
1 +

s

2
, 1, 1 +

s

2
+ w,−1, r

)
f (r) rs+w−1dr =

=
2s+w−1

√
π

Γ
(
1 + ω + s

2

)
Γ ((s+ ω)/2)

Γ(1 + s)
ϕ(s),

where Φ1 (a, b, c, x, y) is a hypergeometric function of two variables from the Horn list
[2, vol. I].

Finally we consider equation (1.6). We treat it with the use of the representation
(1.15). It takes the form (1.5), where ψ(u, t) = 1

2ue
−u− t2

2u for the kernel (3.1) S(τ, t) =
K2
iτ (t). Thus from (3.4) we find a family of its solutions

f(t) = 8(1 + ρ)et(ρ+
1
2ρ ) t

π4

∞∫
0

τ sinh 2πτKiτ (t)Kiτ (ρt)F (τ)dτ, ρ ∈ (0, 1],

and the corresponding equality (3.6) will be in the form

∞∫
0

1∫
0

e−r(x+
1
2x )f(r)(r(1− x))ω−1(r

√
x)s

dxdr

x
=

2ωΓ (ω) Γ ((s+ ω)/2)
Γ((1 + s)/2)

ϕ(s).
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