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A NOTE
ON THE MAXIMUM LIKELIHOOD ESTIMATOR

IN THE GAMMA REGRESSION MODEL

Abstract. This paper considers a nonlinear regression model, in which the dependent
variable has the gamma distribution. A model is considered in which the shape parameter
of the random variable is the sum of continuous and algebraically independent functions.
The paper proves that there is exactly one maximum likelihood estimator for the gamma
regression model.

Keywords: gamma regression, nonlinear regression, maximum likelihood estimator, shape
parameter.

Mathematics Subject Classification: 62J02, 62F10.

1. INTRODUCTION

In classical models of regression the following relationship is adopted

xi = ati + b+ εi,

where the random variables εi are independent and have a normal distribution with
average equal to zero. A somewhat more general form of this model can be expressed
by the formula

xi = ϕ(ti, θ) + εi,

where ϕ(·, θ) is a function depending on the estimated parameter θ. This model can
also be expressed in a different way, by assuming that the random variable xi has a
distribution of the form N(ϕ(ti, θ), σ2).

In some situations it is not natural to assume that the variable can take any real
value. It may happen that the variable takes values only from a certain interval (see
[2] and [3]), or only positive values. In this paper we will deal only with the latter
case.
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We assume that the random variable xi has a distribution of the form
f(ϕ(θ1, ti), θ2), where ϕ(θ1, ti) is the distribution mean and θ2 is another parame-
ter. A model of gamma regression is considered, i.e., the random variable xi has
a distribution of the form γ(p, r). The random variable density function xi with a
gamma distribution has the form

f(t, p, r) =
rp

Γ(p)
tp−1e−rt, t > 0,

where r > 0 is the scale parameter, p > 0 is the shape parameter, and Γ(·) is the
gamma function. The expected value of the random variable X with the gamma
distribution is E(X) = p

r , and the variance V ar(X) = p
r2 .

Questions of existence and uniqueness of the maximum likelihood estimates of the
shape parameter in generalized linear models for one–parameter gamma distributed
random variables have been studied by Wedderburn [5]. This paper gives a general-
ization of some of his results because the scale parameter is estimated as well.

The maximum likelihood estimation for two–parameter gamma distribution was
widely discussed by Bowman and Shenton [1]. The authors did not, however, discuss
the model, where shape or scale parameter is modelled by a function. The results are
not covered by the Wei’s monograph on exponential family nonlinear models (see [6]
pp. 2–3).

Maximum likelihood estimation in different nonlinear models, as well as references
to this literature, are given by Seber and Wild [4].

In our model we substitute p with a function of variable ti, which depends on
the multidimensional parameter A. Precisely, we use the set of m continuous and
algebraically independent functions. Then,

p(A, t) =
m∑

k=1

Akfk(t).

Let x1, x2, . . . , xn be independent random variables with a gamma distribution. It
follows from the assumptions made that the expected values of the random variables
xj have the form

E(xj) =
m∑

k=1

αkfk(tj), j = 1, 2, . . . , n,

with αk = Ak

r .
To determine the parameters we will use the maximum likelihood estimation. In

our gamma regression model, the likelihood function has the form

L(x1, x2, . . . , xn, t1, t2, . . . , tn, A, r) =
n∏

j=1

1
Γ(p(A, tj))

rp(A,tj)x
p(A,tj)−1
j e−rxj , (1.1)

and hence the logarithm of the likelihood function is

logL =
n∑

j=1

(
− log Γ(p(A, tj)) + p(A, tj) log r + (p(A, tj)− 1) log xj − rxj

)
. (1.2)
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We can write out our parameters in a different way, taking advantage of the properties
of the gamma distribution. Let a = (α1, α2, . . . , αm). Then,

ϕ(a, tj) =
p(A, tj)

r
=

m∑
k=1

αkfk(tj).

Obviously

logL(ra, r) =
n∑

j=1

logLj(ra, r),

where

logLj(ra, r) = − log Γ (rϕ(a, tj)) + rϕ(a, tj) log r + (rϕ(a, tj)− 1) log xj − rxj .

In such a case the expected value of the variable xj has the form E(xj) = p
r = ϕ(a, tj),

where |ϕ(a, tj)| < M for a fixed M and j = 1, 2, . . . , n.
Later on, we will prove that the maximum likelihood estimator is determined

uniquely.

2. MAXIMUM LIKELIHOOD ESTIMATION

Lemma 2.1. Let [c, d] be a closed and bounded interval. Let f1, f2, . . . , fm be the set
of algebraically independent functions continuous on [c, d]. The set of all parameters
A of the form (A1, . . . , Am, r) ∈ Rm+1 such that for any t ∈ [c, d] ,

0 ≤
m∑

k=1

Akfk(t) ≤Mr (2.1)

is non-empty, closed and convex in Rm+1.

Proof. The fact that A is a non-empty set is obvious. Let At be the set
(A1, . . . , Am, r) ∈ Rm+1 satisfying condition (2.1) for a fixed t. The set⋂

t∈[c,d]

At

is closed as the intersection of closed sets.
Let A1 = (A10, A11, . . . , A1m, r1) ∈ A and A2 = (A20, A21, . . . , A2m, r2) ∈ A be

two vectors, and let λ ∈ [0, 1]. It can be easily shown that λA1 + (1− λ)A2 ∈ A.

Lemma 2.2. Let f1, f2, . . . , fm : R −→ R be the set of continuous and algebraically
independent functions. The set a of all parameters a = (α1, α2, . . . , αm) ∈ Rm satis-
fying the equation

0 ≤
m∑

k=1

αkfk(t) ≤M (2.2)

for any t ∈ R is non-empty and compact in Rm.
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Proof. By reductio ad absurdum, if the set a is unbounded, then there exists a sequence
{(αn

1 , α
n
2 , . . . , α

n
m)}n∈N of elements of the set a such that

(αn
1 , α

n
2 , . . . , α

n
m) −→ +∞, n→ +∞.

We have
(αn

1 , α
n
2 , . . . , α

n
m)

‖ (αn
1 , α

n
2 , . . . , α

n
m) ‖

∈ Sm−1,

where Sm−1 is a unit m−dimensional sphere. We can choose a subsequence
(
αln

1 , α
ln
2 , . . . , α

ln
m

)
‖
(
αln

1 , α
ln
2 , . . . , α

ln
m

)
‖


n∈N

convergent to some
(
α0

1, α
0
2, . . . , α

0
m

)
, and we get

∀t ∈ R 0 ≤
m∑

k=1

αln
k fk(t) ≤M.

We have

0 ≤
∑m

k=1 α
ln
k fk(t)

‖ (αn
1 , α

n
2 , . . . , α

n
m) ‖

≤ M

‖ (αn
1 , α

n
2 , . . . , α

n
m) ‖

.

As n→ +∞, we get
∑m

k=1 α
0
kfk(t) = 0. Taking m suitable values t1, t2, . . . , tm gives

α0
k = 0 for k = 1, 2, . . . ,m, which contradicts the fact that

(
α0

1, α
0
2, . . . , α

0
m

)
∈ Sm−1.

From this it follows that the set a is bounded. Clearly, it is also non-empty and
closed.

Lemma 2.3. Exactly one of the conditions specified below is true

(i) For all j = 1, 2, . . . , n

xj =
m∑

k=1

αkfk(tj).

(ii)

lim
r→+∞

d

dr
logL(ra, r) < 0.

Proof. Let yj = ϕ(a, tj). Then

d

dr
logLj(ra, r) = −yjΨ (ryj) + yj log r + yj + yj log xj − xj ,

where Ψ(x) = d
dx log Γ(x). We have

lim
x→+∞

(Ψ(x)− log x) = 0,
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and hence

lim
r→+∞

d

dr
logLj(ra, r) = −yj log yj + yj + yj log xj − xj .

Let
g(x) = −yj log x+ x.

The function g takes the smallest value at x = yj , and hence

lim
r→+∞

n∑
j=1

d

dr
logLj(ra, r) ≤ 0

and if for at least one j we have xj 6= yj , then we obtain

lim
r→+∞

n∑
j=1

d

dr
logLj(ra, r) < 0.

Lemma 2.4. The function logL(ra, r) as a function of the parameter r is strictly
concave.

Proof. We have

logL(ra, r) =
n∑

j=1

(
− log Γ(rϕ(a, tj)) + rϕ(a, tj) log r + (rϕ(a, tj)− 1) log xj − rxj

)
.

Hence

d

dr
logL(ra, r) =

n∑
j=1

(
− d

dr
(log Γ(rϕ(a, tj)))+ϕ(a, tj) log r+ϕ(a, tj)(1+log xj)−xj

)
and

d2

dr2
logL(ra, r) =

n∑
j=1

(
− d2

dr2
(log Γ(rϕ(a, tj))) +

ϕ(a, tj)
r

)
=

=
n∑

j=1

(
− (ϕ(a, tj))2 Ψ′(rϕ(a, tj)) +

ϕ(a, tj)
r

)
.

It is sufficient to check if

Ψ′(rϕ(a, tj)) >
1

rϕ(a, tj)
, j = 1, . . . , n.

It is known that

Ψ′(y) =
+∞∑
n=0

1
(y + n)2

,
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and
+∞∑
n=0

1
(y + n)2

>

∫ +∞

0

ds

(y + s)2
=

1
y
,

which proves the lemma.

Let J ∈ Rn×m be a real matrix

f1(t1) f2(t1) · · · fm(t1)

f1(t2) f2(t2) · · · fm(t2)

...
...

. . .
...

f1(tn) f2(tn) · · · fm(tn)


. (2.3)

Lemma 2.5. If the number n of observations is sufficient, i.e., n ≥ m, and the rank
of the matrix J is maximal, i.e., rankJ = m, then the function logL(A1, . . . , Am, r)
is strictly concave.

Proof. Let
F (x, r) = − log Γ(x) + x log r.

The Hessian matrix of the function F is

HF =
[
− x

r2
1
r

1
r −Ψ′(x)

]
.

As xΨ′(x) > 1, the matrix HF is negative definite and thus F (x, r) is strictly concave.
From (1.2) we have

logL =
n∑

j=1

logLj .

Each function logLj is the sum of a linear function and a function, which is the
composition of F and the multilinear function p(A1, . . . , Am, tj). Using only the
definition of concavity we can easily prove that each logLj is concave. Since we have
assumed that the rank of the matrix J is maximal, the intersection of all hyperplanes

p(A1, . . . , Am, tj) = const

is at most a single point. Thus logL(A1, . . . , Am, r) is a strictly concave function.

Theorem 2.6. Let n ≥ m and for given t1, t2, . . . , tn ∈ [c, d] let the rank of matrix
J defined in (2.3) be maximal. Then for given t1, t2, . . . , tn ∈ [c, d] and x1, x2, . . . , xn

there exists exactly one (Â, r̂) ∈ A such that

L(Â, r̂) = max
(A,r)∈A

L(A, r)

with probability 1, where L is the likelihood function defined in (1.1).
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Proof. It follows from Lemma 2.3 that, with probability one, condition (ii) of the
Lemma holds true. Let

g (a) = lim
r→+∞

d

dr
logL(ra, r),

and
K(r) =

{
a ∈ a :

d

dr
logL(ra, r) ≥ g (a) +

|g (a) |
2

}
.

The function g (a) is continuous, as the proof of Lemma 2.3 shows. This, and
Lemma 2.2 give us that every set K(r) is compact. The function d

dr logL(ra, r) is
decreasing as a derivative of a strictly concave function. The set–valued map K is
also decreasing. From Lemma 2.3 we obtain that⋂

r>0

K(r) = ∅.

As every set K(r) is compact, by the Riesz theorem there exists r0 > 0, such that
K(r0) = ∅. Using Lemma 2.5, we get that there exists exactly one

(
Â, r̂

)
∈ A, such

that
logL(Â, r̂) = max

(A,r)∈A0

logL(A, r),

where A0 = {(A, r) ∈ A : r ≤ r0} is a convex and compact set.
Let (A, r) ∈ A\A0 and αi = Ai

r , for i = 1, . . . ,m. As K is a decreasing set–valued
map, for any r ≥ r0 we have K(r) = ∅. Consequently, for any r ≥ r0 and for any
a ∈ a we have d

dr logL(ra, r) < 0 and thus logL(ra, r) is a decreasing function of the
argument r for r ≥ r0. From this we find that

logL(A, r) = logL(ra, r) < logL(r0a, r0) ≤ logL(Â, r̂).

By proving that there exists a global maximum of the function logL we completed
the proof of Theorem 2.1.
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