PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monotone iterative technique for fractional differential equations with periodic boundary conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we develop Monotone Method using upper and lower solutions for fractional differential equations with periodic boundary conditions. Initially we develop a comparison result and prove that the solution of the linear fractional differential equation with periodic boundary condition exists and is unique. Using this we develop iterates which converge uniformly monotonically to minimal and maximal solutions of the nonlinear fractional differential equations with periodic boundary conditions in the weighted norm.
Rocznik
Strony
289--304
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
Bibliografia
  • [1] Z. Denton, A. Vatsala, Fractional integral inequalities and applications, Computers and Mathematics with Applications (to appear).
  • [2] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, North Holland, 2006.
  • [3] G. Ladde, V. Lakshmikantham, A. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman Publishing Inc., 1985.
  • [4] V. Lakshmikantham, S. Leela, D. Vasundhara, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.
  • [5] V. Lakshmikantham, A. Vatsala, Theory of fractional differential inequalities and applications, Communication in Applied Analysis 11 (2007), 395-402.
  • [6] V. Lakshmikantham, A. Vatsala, Basic theory of fractional differential equations, Non-linear Analysis TMAA 69 (2008), 3837-3343.
  • [7] V. Lakshmikantham, A. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Applied Mathematics Letter 21 (2008), 828-834.
  • [8] B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York-London, 1974.
  • [9] C. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, 1992.
  • [10] I. Podlubny, Fractional Di_erential Equations, Academic Press, San Diego, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHS-0001-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.