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MONOTONE ITERATIVE TECHNIQUE
FOR FRACTIONAL DIFFERENTIAL EQUATIONS

WITH PERIODIC BOUNDARY CONDITIONS

Abstract. In this paper we develop Monotone Method using upper and lower solutions
for fractional differential equations with periodic boundary conditions. Initially we develop
a comparison result and prove that the solution of the linear fractional differential equa-
tion with periodic boundary condition exists and is unique. Using this we develop iterates
which converge uniformly monotonically to minimal and maximal solutions of the nonlinear
fractional differential equations with periodic boundary conditions in the weighted norm.
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1. INTRODUCTION

Study of fractional differential equations with initial and boundary conditions has
been represented as more appropriate models than its counterpart with integer deriva-
tives. See [2,8] and [10] for more details. However, the existence of solutions by using
upper and lower solutions or by monotone method, which is well established for integer
derivative in [3] and [9], is not available in literature, except in the recent monograph
[4] and [5–7] and [1].

In this paper we have developed a comparison result for the fractional differential
equation with periodic boundary conditions. Using this comparison result and the
property of Mittag-Leffler function we have proved that the solution to the linear
fractional, nonhomogeneous periodic boundary value problem satisfies local Hölder
continuity of order q. As an application of our comparison results, we prove the
existence of minimal and maximal solutions of fractional differential equations with
periodic boundary conditions, by combining the method of upper and lower solutions
and monotone method.
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2. COMPARISON THEOREM AND AUXILIARY RESULTS

In this section we develop some auxiliary results and comparison results relative to
fractional differential equations with periodic boundary conditions. This will be useful
to develop our main result. For that purpose we consider the Periodic Boundary Value
Problem (PBVP):

Dqu(t) = f(t, u(t)),
u(t)(t− a)1−q|t=a = u(b) = x0,

(2.1)

or
Dqu(t) = f(t, u(t)),

u(a) = u(t)(b− t)1−q|t=b = y0.
(2.2)

Here f ∈ C(J × R,R) where J = [a, b].
In (2.1), Dqu(t) is the Riemann-Liouville derivative (cf. [4]) for t ∈ [a, b] having a

singularity at t = a, and

u(t) =
1

Γ(1− q)
d

dt

t∫
a

u(s)ds
(t− s)q

,

where as in (2.2),

u(t) =
1

Γ(1− q)
d

dt

b∫
t

u(s)ds
(s− t)q

.

In particular, if q = 1 then (2.1) and (2.2) will reduce to the first order PBVP as
in [4].

We recall the following definitions.

Definition 2.1. A function f : (a, b] → R is Hölder continuous if there are nonneg-
ative real constants C,α such that |f(x)− f(y)| ≤ C|x− y|α for all x, y ∈ (a, b].

Definition 2.2. Let 0 < q < 1 and p = 1 − q. We denote by Cpa([a, b],R), the
function space

Cpa
([a, b],R) =

{
u ∈ C((a, b],R)

/
(t− a)pu(t) ∈ C([a, b],R)

}
.

Also, we denote by Cpb
([a, b],R), the function space

Cpb
([a, b],R) =

{
u ∈ C([a, b),R)

/
(b− t)pu(t) ∈ C([a, b],R)

}
.

Definition 2.3. For u ∈ Cpa we define the weighted norm as∣∣u(t)
∣∣
Cp

=
∣∣(t− a)1−qu(t)

∣∣.
Here and throughout this paper our results are all developed with this weighted

norm.



Monotone iterative technique for fractional differential equations. . . 291

Definition 2.4. Let v(t) be Cpa
continuous. Furthermore if

Dqv(t) ≤ f(t, v(t)),

Γ(q)v(t)(t− a)1−q|t=a ≤ v(b),

then v(t) is called a lower solution of (2.1). If the inequalities are reversed, then v(t)
is called an upper solution.

Note that any solution of (2.1) is Cpa
continuous and any solution of (2.2) is Cpb

continuous.
Next, we prove a comparison lemma relative to upper and lower solutions of (2.1).

For that purpose we recall a known comparison theorem from [4].

Lemma 2.5. Let m ∈ Cpa([a, b],R) be locally Hölder continuous with exponent
α > q and for any t1 ∈ (a, b] we have that on (a, t1), m(t) ≤ 0, m(t1) = 0 and
m(t)(t− a)1−q|t=a ≤ 0. Then Dqm(t1) ≥ 0.

Proof. The proof follows from [4].

Similarly, we have the following.

Lemma 2.6. Let m ∈ Cpa([a, b],R) be locally Hölder continuous with exponent
α > q and for any t1 ∈ (a, b] we have that on (t1, b], m(t) ≤ 0, m(t1) = 0 and
Γ(q)m(t)(t− a)1−q|t=a ≤ 0. Then Dqm(t1) ≤ 0.

Remark 2.7. Here and throughout this paper we have assumed Hölder continuity
of the function m(t) or of some appropriate functions as needed. However, this is not
really required. The Cpa

continuity of m(t) on [a, b] is enough for the conclusion of
Lemma 2.5 and its applications throughout this paper to hold. This is precisely what
we use in our main result on monotone method.

The following result is a comparison theorem which we will need for our main
result.

Theorem 2.8. Let f ∈ C([a, b] × R,R), v, w ∈ Cpa([a, b],R) and Hölder continuous
with exponent α > q, with 0 < α < 1 and for t ∈ (a, b),

Dqv(t) ≤ f(t, v(t)),
va = Γ(q)v(t)(t− a)1−q|t=a ≤ v(b), (2.3)

Dqw(t) ≥ f(t, w(t)),
wa = Γ(q)w(t)(t− a)1−q|t=a ≥ w(b). (2.4)

Suppose further that f(t, x) is strictly decreasing in x for all t ∈ [a, b], then

v(t) ≤ w(t) for all t ∈ (a, b]. (2.5)
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Proof. Assume that one of the inequalities is strict and let m(t) = v(t)−w(t). If the
conclusion of the theorem is not true, there exists t1 ∈ (a, b] such that m(t1) = 0,
m(t) ≤ 0 on (a, t1) and m(t)(t− a)1−q|t=a ≤ 0. Or t1 = a, in which case m(t1)(t1 −
a)1−q|t1=a = 0.

Consider the case when t1 ∈ (a, b], then m(t1) = 0, m(t) ≤ 0 on (a, t1) and
m(t)(t− a)1−q|t=a ≤ 0. So from Lemma 2.5 we get that Dqm(t1) ≥ 0. Thus

f(t1, v(t1)) > Dqv(t1) ≥ Dqw(t1) ≥ f(t1, w(t1)) = f(t1, v(t1)),

which is a contradiction. Therefore v(t) < w(t).
Suppose now that t1 = a, then

v(b) > va = wa > w(b) ≥ v(b),

which is also a contradiction.
To prove the nonstrict inequality, let

vε(t) = v(t)− ε
[
(t− a)q−1 +

(t− a)q

Γ(1 + q)

]
,

then

Γ(q)vε(t)(t− a)1−q|t=a = Γ(q)v(t)(t− a)1−q|t=a − εΓ(q),

therefore vε(t)(t− a)1−q|t=a < v(t)(t− a)1−q|t=a. Also vε(t) < v(t), for each ε > 0.
Thus, it follows from (2.3) and the fact that f(t, u(t)) is strictly decreasing, that

Dqvε(t) = Dqv(t)− ε < f(t, v(t)) < f(t, vε(t)),

and from the result for strict inequalities we have that vε(t) < w(t). Finally, by letting
ε→ 0, (2.5) is true.

As a special case, if f(t, u) = −Lu, with L > 0, then we have that

Dqv(t) ≤ −Lv(t),

Γ(q)v(t)(t− a)1−q|t=a ≤ v(b),

Dqw(t) ≥ −Lw(t),

Γ(q)w(t)(t− a)1−q|t=a ≥ w(b).

Therefore v(t) ≤ w(t).
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This also yields the following result:

Corollary 2.9. If L,M are positive constants, m : [a, b] → R is Hölder continuous
and satisfies

Dqm(t) ≤ −Lm(t), where a ≤ t ≤ b,

Γ(q)m(t)(t− a)1−q|t=a ≤ m(b),

then m(t) ≤ 0 for a ≤ t ≤ b.
Similarly, if

Dqm(t) ≥ −Mm(t), where a ≤ t ≤ b,

Γ(q)m(t)(t− a)1−q|t=a ≥ m(b),

then m(t) ≥ 0 for a ≤ t ≤ b.

In order to prove that the solution of the fractional linear problem with periodic
boundary conditions is well defined, we need to prove the following lemma. The next
result is to establish a property of the Mittag-Leffler function.

Lemma 2.10. If
(b− a)q−1

Γ(q)
<1 and λ(b−a)q≤1, then (b− a)q−1Eq,q[−λ(b− a)q]<1.

Proof. By definition

(b− a)q−1Eq,q[−λ(b− a)q] =
(b− a)q−1

Γ(q)
+
−λ(b− a)2q−1

Γ(2q)
+

+
(−λ)2(b− a)3q−1

Γ(3q)
+ · · ·+ (−λ)n−1(b− a)nq−1

Γ(nq)
+ · · ·

Note that this is an alternating series. Initially we prove that it is absolutely

convergent and, consequently, convergent to a number less than
(b− a)q−1

Γ(q)
< 1.

To show that the series is absolutely convergent we will use the ratio test, i.e., we
will evaluate

lim
n→∞

λ(b− a)qΓ(nq)
Γ((n+ 1)q)

.

We will do it by using the following definition of Γ,

Γ(x) =
1
x

∞∏
m=1

(1 + 1
m )x

(1 + x
m )

.
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Thus for each n ≥ 1

Γ((n+ 1)q)
Γ(nq)

=

1
(n+1)q

∞∏
m=1

(1+ 1
m )(n+1)q

(1+
(n+1)q

m )

1
nq

∞∏
m=1

(1+ 1
m )nq

(1+ nq
m )

=
n

n+ 1

∞∏
m=1

(1 +
1
m

)q
1 + nq

m

1 + (n+1)q
m

=

=
n

n+ 1

∞∏
m=1

(1 +
1
m

)q
m+ nq

m+ (n+ 1)q
>

>
n

n+ 1

∞∏
m=1

(1 +
1
m

)q
(

n

n+ 1

)
=

n2

(n+ 1)2

∞∏
m=1

(1 +
1
m

)q =

=
n2

(n+ 1)2

(
2
1

)(
3
2

)(
4
3

)
· · · (n+ 1)2 + 1

(n+ 1)2

∞∏
m=(n+1)2+1

(1 +
1
m

)q =

=
n2

(n+ 1)2
((n+ 1)2 + 1)

∞∏
m=(n+1)2+1

(1 +
1
m

)q >

> n2
∞∏

m=(n+1)2+1

(1 +
1
m

)q > 1 ≥ λ(b− a)q.

Note that the last result implies that
λ(b− a)qΓ(nq)

Γ((n+ 1)q)
→ 0 as n → ∞. Thus, by

the ratio test, the series is absolutely convergent. Furthermore the ratio test shows
that the absolute values are decreasing for each n ≥ 1, therefore the series converges

to a number less than
(b− a)q−1

Γ(q)
< 1 and

(b− a)q−1Eq,q[−λ(b− a)q] < 1.

Observe that in the above result we have obtained a set of conditions on the length
b− a of the interval. However it is feasible to obtain other conditions also.

The next lemma is related to the Mittag-Leffler function and shows that the so-
lution of the linear PBVP exists.

Lemma 2.11. Consider the linear Periodic Boundary Value Problem (PBVP),

Dqx(t) = −λx(t) + f(t),
Γ(q)x(t− a)1−q|t=a = x(b) = x0,

(2.6)

where λ>0 and f ∈ Cpa([a, b],R). Assume also that
(b− a)q−1

Γ(q)
<1 and λ(b− a)q≤1.

Then the solution to (2.6) exists and is unique.
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Proof. In order to compute the solution of the PBVP, we consider the solution of the
Initial Value Problem (IVP)

Dqx(t) = −λx(t) + f(t),

Γ(q)x(t− a)1−q|t=a = x0.

The solution x(t) to this problem can be obtained by induction, see [2] and [4]. It
is given as follows,

x(t) = x0(t− a)q−1Eq,q[−λ(t− a)q] +

t∫
a

(t− s)q−1Eq,q[−λ(t− s)q]f(s)ds,

then we have that

x(b) = x0(b− a)q−1Eq,q[−λ(b− a)q] +

b∫
a

(b− s)q−1Eq,q[−λ(b− s)q]f(s)ds.

Since x(b) = x0,

x0 = x0(b− a)q−1Eq,q[−λ(b− a)q] +

b∫
a

(b− s)q−1Eq,q[−λ(b− s)q]f(s)ds = x0.

Then,

x0

(
1− (b− a)q−1Eq,q[−λ(b− a)q]

)
=

b∫
a

(b− s)q−1Eq,q[−λ(b− s)q]f(s)ds,

therefore,

x0 =
1

1− (b− a)q−1Eq,q[−λ(b− a)q]

b∫
a

(b− s)q−1Eq,q[−λ(b− s)q]f(s)ds. (2.7)

Finally, the solution to the PBVP is,

x(t) = x0(t− a)q−1Eq,q[−λ(t− a)q] +

t∫
a

(t− s)q−1Eq,q[−λ(t− s)q]f(s)ds, (2.8)

where x0 is given above.
We will prove the uniqueness after Lemma 2.13.
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Remark 2.12. For the PBVP,

Dqx(t) = −λx(t) + f(t),
x0 = x(a) = Γ(q)x(t)(b− t)q−1|t=b,

one can show that the following expression will give explicit solution which can be
proved to be unique on [a, b],

x(t) = x0(b− t)q−1Eq,q[−λ(b− t)q] +

b∫
t

(s− t)q−1Eq,q[−λ(s− t)q]f(s)ds.

The following lemma gives some properties of x(t) for problem (2.6).

Lemma 2.13. Let x(t) be the solution of (2.6), which is given by (2.8), then x(t) ∈
Cpa

([a, b],R) and it is locally Hölder continuous of order q on (a, b].

Proof. One can see that the solution given by (2.8) is a Cpa continuous function. See
[2] for details.

Now we will prove that this solution is locally Hölder continuous of order q. This
means that we will prove that there exists a constant K such that for t1, t2 ∈ (a, b]
with t1 < t2, ∣∣(t2 − a)1−qx(t2)− (t1 − a)1−qx(t1)

∣∣≤ K|t2 − t1|q.
For this purpose we consider the equivalent Volterra fractional integral Equation

x(t) =
x0(t− a)q−1

Γ(q)
+

1
Γ(q)

t∫
a

(t− s)q−1
[
−λx(s) + f(s)

]
ds.

Thus,

∣∣(t2 − a)1−qx(t2)− (t1 − a)1−qx(t1)
∣∣=

=

∣∣∣∣∣ 1
Γ(q)

t2∫
a

(t2 − a)1−q(t2 − s)q−1
[
−λx(s) + f(s)

]
ds−

− 1
Γ(q)

t1∫
a

(t1 − a)1−q(t1 − s)q−1
[
−λx(s) + f(s)

]
ds

∣∣∣∣∣.
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Since x(t) and f(t) are Cpa
continuous functions, we will have that

(t− a)1−q[−λx(t) + f(t)] is bounded by, say, M1. Then using this bound we can now
write∣∣(t2 − a)1−qx(t2)− (t1 − a)1−qx(t1)

∣∣≤
≤M1

t1∫
a

∣∣∣ (t2 − a)1−q(t2 − s)q−1(s− a)q−1−

− (t1 − a)1−q(t1 − s)q−1(s− a)q−1
∣∣∣ds+

+M1

t2∫
t1

(t2 − a)1−q(t2 − s)q−1(s− a)q−1ds.

(2.9)

Since s− a > 0 for s in (t1, t2), then (s− a)q−1 is bounded by (t1 − a)q−1. Thus
we can now integrate the second term of (2.9)

M1

t2∫
t1

(t2 − s)q−1(t2 − a)1−q(s− a)q−1ds ≤ M1(t2 − a)1−q

(t1 − a)1−q

[
− (t2 − s)q

q

]t2
t1

=

=
M1(t2 − a)1−q(t2 − t1)q

(t1 − a)1−q
.

In order to integrate the first term of (2.9), we observe that

(t2 − a)1−q

(t2 − s)1−q
− (t1 − a)1−q

(t1 − s)1−q
≤ 0.

Then,

M1

∣∣∣ t1∫
a

[(t2 − a)1−q(t2 − s)q−1(s− a)q−1ds−

− (t1 − a)1−q(t1 − s)q−1(s− a)q−1]ds
∣∣∣≤

≤M1

t1∫
a

[
(t1 − a)1−q

(t1 − s)1−q
− (t2 − a)1−q

(t2 − s)1−q

]
(s− a)q−1ds =

= M1

t1∫
a

(t1 − a)1−q(s− a)q−1

(t1 − s)1−q
ds−M1

t1∫
a

(t2 − a)1−q(s− a)q−1

(t2 − s)1−q
ds =

= M1

t1∫
a

(t1 − a)1−q(s− a)q−1

(t1 − s)1−q
ds−M1

t2∫
a

(t2 − a)1−q(s− a)q−1

(t2 − s)1−q
ds+

+M1

t2∫
t1

(t2 − a)1−q(s− a)q−1

(t2 − s)1−q
ds.
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Now letting, σ = s− a we obtain

= M1(t1 − a)1−q
t1−a∫
0

σq−1

(t1 − a− σ)1−q
dσ−

−M1(t2 − a)1−q
t2−a∫
0

σq−1

(t2 − a− σ)1−q
dσ+

+M1

t2∫
t1

(t2 − a)1−q(s− a)q−1

(t2 − s)1−q
ds.

Then, letting σ = (t1 − a)u1, σ = (t2 − a)u2 and integrating the third term,

≤M1(t1 − a)1−q(t1 − a)2q−1

1∫
0

uq−1
1 (1− u1)q−1du1−

−M1(t2 − a)1−q(t2 − a)2q−1

1∫
0

uq−1
2 (1− u2)q−1du2+

+
M1(t2 − a)1−q

(t1 − a)1−q

[
− (t2 − s)q

q

]t2
t1

=

= M1B(q, q)
[
(t1 − a)q − (t2 − a)q

]
+
M1(t2 − a)1−q(t2 − t1)q

(t1 − a)1−q

where B is the Beta function, and since (t1 − a)q − (t2 − a)q < 0, the last expression
is less than

M1(t2 − a)1−q(t2 − t1)q

(t1 − a)1−q
.

Finally, we get that∣∣(t2 − a)1−qx(t2)− (t1 − a)1−qx(t1)
∣∣≤ K∣∣t2 − t1∣∣q,

for some constant K. Therefore x(t) is locally Hölder continuous.

Remark 2.14. The result of Lemma 2.13 is also valid if f(t) is the sum of a Cpa

continuous function and a continuous function.

Remark 2.15. It is now easy to see that the solution of (2.6) given by (2.8) is unique
by using Corollary 2.9 and Lemma 2.13.

For that purpose let x1(t) and x2(t) be any two solutions of (2.6). Then

Dq[x1(t)− x2(t)] = −λ[x1(t)− x2(t)],
Γ(q) [x1(t)− x2(t)] (t− a)1−q|t=a = x1(b)− x2(b).

Using Corollary 2.9, we have that x1(t) ≤ x2(t). Similarly, using (2.9) we have
that x2(t) ≤ x1(t). Therefore x1(t) = x2(t).
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3. MONOTONE ITERATIVE TECHNIQUE

In this section, we develop the monotone method for the nonlinear fractional differ-
ential equation with periodic boundary conditions of the form (3.1) which is given
below, by using upper and lower solutions of (3.1). Next we state our main result
related to the corresponding nonlinear fractional differential equation with periodic
boundary conditions. Consider the PBVP

Dqu(t) = f(t, u(t)),
u(t− a)1−q|t=a = u(b) =

x0

Γ(q)
, (3.1)

where f is continuous.

Theorem 3.1. Assume that:

(i) v0, w0 : [a, b]→ R are Cpa continuous on [a, b] such that

Dqv0 ≤ f(t, v0(t)),

v0(t)(t− a)1−q|t=a ≤ v0(b),

Dqw0 ≥ f(t, w0(t)),

w0(t)(t− a)1−q|t=a ≥ w0(b),

v0(t) ≤ w0(t) for t ∈ [a, b],
(b− a)q−1

Γ(q)
< 1 and λ(b− a)q ≤ 1.

(ii) there exists M > 0 such that f(t, u(t))−f(t, ξ(t)) ≥ −M(u(t)−ξ(t)), for t ∈ (a, b]
and v0(t) ≤ ξ(t) ≤ u(t) ≤ w0(t).

Then there exist monotone sequences {vn}, {wn} such that vn → v, wn → w as
n→∞ uniformly on [a, b] and v, w are extremal solutions of the PBVP (3.1) in the
weighted norm sense. That is if u(t) is any solution of the periodic boundary value
problem (3.1) such that v0(t) ≤ u ≤ w0(t) , then v ≤ u ≤ w.

Proof. From (3.1) we have the equivalent Volterra fractional integral equation given
by,

u(t) =
x0(t− a)q−1

Γ(q)
+

1
Γ(q)

t∫
a

(t− s)q−1f(s, u(s))ds.

Now define the sequences

Dqvn = f(t, vn−1(t))−M(vn − vn−1),

vn(t− a)1−q|t=a = vn(b) =
v0,n

Γ(q)
,

(3.2)

and
Dqwn = f(t, wn−1(t))−M(wn − wn−1),

wn(t− a)1−q|t=a = wn(b) =
w0,n

Γ(q)
.

(3.3)
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Then we have that

vn(t) =
v0,n(t− a)q−1

Γ(q)
+

1
Γ(q)

t∫
a

(t− s)q−1[f(s, vn−1(s))−M(vn(s)− vn−1(s))]ds,

and

wn(t) =
w0,n(t− a)q−1

Γ(q)
+

1
Γ(q)

t∫
a

(t− s)q−1[f(s, wn−1(s))−M(wn(s)− wn−1(s))]ds,

where v0,n, w0,n can be computed like x0 in (2.7) and vn, wn are unique by
Lemma 2.11.

Apply Lemma 2.13 to (3.2) and (3.3) for n = 1 and it follows that v1 and w1 are
Cpa

continuous. Proceeding inductively, we have that vn and wn are Cpa
continuous

functions.
Also, it follows inductively from Lemma 2.13 that vn and wn are locally Hölder

continuous.
Now define the mapping A by v1 = Av0, where v1 is the unique solution of (3.2)

and v0 is a lower solution of (3.1). Also set p(t) = v0(t) − v1(t), then from (i) and
(3.2), we get that

Dqp = Dqv0 −Dqv1 ≤ −M(v0 − v1) = −Mp,

p(t)(t− a)1−q|t=a = p(b), a ≤ t ≤ b.
From Corollary 2.9 p(t) ≤ 0 on (a, b] and p(t)(t−a)1−q|t=a ≤ 0, which means that

v0 ≤ Av0. Thus v0 ≤ v1 on (a, b] and v0(t)(t− a)1−q|t=a ≤ v1(t)(t− a)1−q|t=a.
By a similar argument, if w1 = Aw0, where w0 is an upper solution of (3.1), it can

be shown that w0 ≥ Aw0 = w1 on (a, b] and w0(t)(t−a)1−q|t=a ≤ w1(t)(t−a)1−q|t=a.
Let η and µ be any two solutions such that v0 ≤ η ≤ µ ≤ w0. Assume that

u1 = Aη, u2 = Aµ.
Letting p(t) = u1(t)− u2(t) and using assumption (ii), we have that

Dqp = Dqu1 −Dqu2 =
= f(t, η)−M(u1 − η)− f(t, u) +M(u2 − µ) ≤
≤M(µ− η)−M(u1 − η) +M(u2 − µ) =
= −M(u1 − u2) = −Mp

with p(t)(t − a)1−q|t=a = p(b). Hence p(t) ≤ 0 and u1(t) ≤ u2(t) on (a, b], u1(t)(t −
a)1−q|t=a ≤ u2(t)(t− a)1−q|t=a. This proves that A is monotone.

Define the sequences {vn}, {wn} such that vn = Avn−1, wn = Awn−1. Note
that since v0 ≤ Av0 = v1 and w0 ≥ Aw0 = w1, by monotonicity of A we have
that v0 ≤ v1 ≤ w1 ≤ w0. Repeating the process we have that v2 ≤ w2, and
v0 ≤ v1 ≤ v2 ≤ w2 ≤ w1 ≤ w0 Proceeding inductively it follows that vn ≤ u ≤ wn,
then

v0 ≤ v1 ≤ · · · ≤ vn ≤ wn ≤ · · ·w1 ≤ w0,



Monotone iterative technique for fractional differential equations. . . 301

on (a, b], where (t− a)1−qv0(t), (t− a)1−qw0(t) are bounded on [a, b] because they are
Cpa continuous functions.

Also by Cpa−continuity of {vn}, {wn}, we have that

(t− a)1−qv0(t) ≤ (t− a)1−qv1(t) ≤ · · · ≤ (t− a)1−qvn(t) ≤
≤ (t− a)1−qwn(t) ≤ · · · ≤ (t− a)1−qw1(t) ≤ (t− a)1−qw0(t),

where

(t−a)1−qvn(t)=
v0,n

Γ(q)
+

(t− a)1−q

Γ(q)

t∫
a

(t−s)q−1[f(s, vn−1(s))−M(vn(s)−vn−1(s))]ds,

and

(t−a)1−qwn(t)=
w0,n

Γ(q)
+

(t− a)1−q

Γ(q)

t∫
a

(t−s)q−1[f(s, wn−1(s))−M(wn(s)−wn−1(s))]ds.

Now we show that
{

(t− a)1−qvn(t)
}

and
{

(t− a)1−qwn(t)
}

are uniformly
bounded and equicontinuous.

First we show uniform boundedness. By hypothesis, both (t− a)1−qv0(t),
(t− a)1−qw0(t) are bounded on [a, b], then there exists M̄ such that for any t ∈ [a, b],
|(t − a)1−qv0(t)| ≤ M̄ and |(t − a)1−qw0(t)| ≤ M̄ . Since v0(t) ≤ vn(t) ≤ w0(t), it
follows that

(t− a)1−qv0(t) ≤ (t− a)1−qvn(t) ≤ (t− a)1−qw0(t),

thus
0 ≤ (t− a)1−qvn(t)− (t− a)1−qv0(t) ≤ (t− a)1−q(w0(t)− v0(t)),

and consequently,
{

(t− a)1−qvn(t)
}

is uniformly bounded. By a similar argument{
(t− a)1−qwn(t)

}
is also uniformly bounded.

To prove that
{

(t− a)1−qvn(t)
}

is equicontinuous, let a ≤ t1 ≤ t2 ≤ b. We
consider two cases.
Case 1. t1 = a.

Since t1 = a,

vn(t1)(t1 − a)1−q|t1=a =
v0,n

Γ(q)
,

and

(t2 − a)1−qvn(t2) =
v0,n

Γ(q)
+

(t2 − a)1−q

Γ(q)

t2∫
a

(t2 − s)q−1
[
f(s, vn−1(s))−

−M(vn(s)− vn−1(s))
]
ds.
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Then,

|(t2 − a)1−qvn(t2)− (t1 − a)1−qvn(t1)| =

=

∣∣∣∣∣ (t2−a)1−q

Γ(q)

t2∫
a

(t2−s)q−1(s−a)q−1(s−a)1−q[f(s, vn−1(s))−M(vn(s)−vn−1(s))]ds

∣∣∣∣∣,
Since f is continuous on [a, b] and {(t− a)1−qvn(t)} are uniformly bounded, there

exists M̄ such that

=

∣∣∣∣∣ (t2−a)1−q

Γ(q)

t2∫
a

(t2−s)q−1(s−a)q−1(s−a)1−q[f(s, vn−1(s))−M(vn(s)−vn−1(s))]ds

∣∣∣∣∣≤
≤ M̄(t2 − a)1−q

t2∫
a

(t2 − s)q−1(s− a)q−1ds.

Now, let σ = s− a, then the last expression becomes

M̄(t2 − a)1−q
t2−a∫
0

σq−1

(t2 − a− σ)1−q
dσ.

Next, let σ = (t2 − a)u, and the last expression gives us

M̄(t2 − a)1−q(t2 − a)q−1+q

1∫
0

uq−1(1− u)q−1du = M̄(t2 − a)qB(q, q),

where B is the Beta function.
Therefore since t1 = a, for any ε > 0 there exists δ > 0 such that for each n,

|(t2 − a)1−qvn(t2)− (t1 − a)1−qvn(t1)| < ε

provided that |t2 − t1| < δ.
Case 2. t1 > a.

In fact,

|(t2 − a)1−qvn(t2)− (t1 − a)1−qvn(t1)| =

=

∣∣∣∣∣ 1
Γ(q)

t2∫
a

(t2 − a)1−q(t2 − s)q−1
[
−M

(
vn(s)− vn−1(s)

)
+f(s, vn−1(s))

]
ds−

− 1
Γ(q)

t1∫
a

(t1 − a)1−q(t1 − s)q−1
[
−M

(
vn(s)− vn−1(s)

)
+f(s, vn−1(s))

]
ds

∣∣∣∣∣.
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Since {(t− a)1−qvn(t)} are uniformly bounded and f(t) is continuous on [a, b], we
will have that (t− a)1−q[f(t, vn−1(t))−M(vn − vn−1)] is bounded
by some constant M1. Then using this bound we can now write∣∣(t2 − a)1−qvn(t2)− (t1 − a)1−qvn(t1)

∣∣≤
≤M1

t1∫
a

∣∣∣ (t2 − a)1−q(t2 − s)q−1(s− a)q−1−

− (t1 − a)1−q(t1 − s)q−1(s− a)q−1
∣∣∣ds+

+M1

t2∫
t1

(t2 − a)1−q(t2 − s)q−1(s− a)q−1ds.

Proceeding as in Lemma 2.13, we have that∣∣(t2 − a)1−qvn(t2)− (t1 − a)1−qvn(t1)
∣∣≤ K̄∣∣t2 − t1∣∣q,

for some constant K̄.
Again, for any ε > 0 there exists δ > 0 such that for each n,

|(t2 − a)1−qvn(t2)− (t1 − a)1−qvn(t1)| < ε,

provided that |t2 − t1| < δ. This proves equicontinuity and by similar argument{
(t− a)1−qwn(t)

}
is equicontinuous.

This proves that {vn(t)} and {wn(t)} are equicontinuous and uniformly bounded
on [a, b] in the weighted norm. Hence by Arzela-Ascoli’s theorem there exist subse-
quences {vnk

(t)} and {wnk
(t)} which converge to v(t) and w(t), respectively. Since

the sequences are monotone, the entire sequences converge.
It is easy to observe that v0,n and w0,n converge to v0 and w0, respectively,

where v0 and w0 are given by (2.7) where f(t) is replaced by f(t, v(t)) +Mv(t) and
f(t, w(t)) + Mw(t). This proves that v(t) and w(t) are solutions of the periodic
boundary value problem (3.1).

It remains to show that v(t) and w(t) are extremal solutions of (3.1).
Assume that for some k > 0, vk−1 ≤ u ≤ wk−1 on [a, b] where u is a solution to

(2.6) such that v0 ≤ u ≤ w0. Then setting p = vk − u we get from condition (ii) that

Dqp = Dqvk −Dqu = f(t, vk−1)−M(vk − vk−1)− f(t, u) ≤
≤M(u− vk−1)−M(vk − vk−1) = −Mp

and p(t)(t− a)1−q|t=a = p(b).
By Corollary 2.9, p(t) ≤ 0 on a ≤ t ≤ b, hence vk ≤ u. By a similar argument

wk ≥ u on [a, b].
Since v0 ≤ u ≤ w0, it follows by induction that vn ≤ u ≤ wn on [a, b], for all n.

Hence v ≤ u ≤ w on [a, b], which shows that v and w are minimal and maximal
solutions of (3.1), respectively. This completes the proof.
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Remark 3.2. We can develop the above result for the fractional differential equation
with periodic boundary conditions (2.2) on similar lines.
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