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APPROXIMATION METHODS FOR A CLASS
OF DISCRETE WIENER-HOPF EQUATIONS

Abstract. In this paper, we consider approximation methods for operator equations of the
form

Au+Bu = f,

where A is a discrete Wiener-Hopf operator on lp (1 ≤ p <∞) which symbol has roots on the
unit circle with arbitrary multiplicities (not necessary integers). Conditions on perturbation
B and f are given in order to guarantee the applicability of projection-iterative methods.
Effective error estimates, and simultaneously, decaying properties for solutions are obtained
in terms of some smooth spaces.
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1. INTRODUCTION

In [9] projection-iterative methods were developed for operator equations (considered
in Banach space lp(N) (1 ≤ p <∞)) of the

Au+Bu = f, (1.1)

where A is a Toeplitz operator (or, in other terminology, a discrete Wiener-Hopf
operator), B is considered as a perturbation of A, and f is a given element. The
methods were adopted for the general situation of equations in which A need not be a
Fredholm operator, that means that the symbol A(z) of A vanishes on some points of
the unit circle. However, in [9] there was exclusively considered the case in which the
roots those belong to the unit circle can be only of integer multiplicities. The purpose
of this work is to extend the results of [9] to the general case of arbitrary multiplicities
(not necessary to be integer positive numbers) for the roots of A(z) lying on the unit
circle. This case is also interested by itself and in applications (in this respect, see
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[15, 16] and [20]), but, on the other hand additional difficulties occur in its analysis.
We would like to mention the works [1, 2, 11, 14] and [15] for the standard texts on
analysis of Toeplitz operators and [11, 16–18] and [20] in which (purely) projection
methods for Wiener-Hopf equations are developed. We note also [19] for an overview
on recent results on this topic.

The paper is organized as follows: in Section 2 (Preliminaries) we recall
projection-iterative methods proposed and developed in [9] for abstract operator
equations. These methods are applied in Section 3 to discrete Wiener-Hopf equations
mentioned above. In Section 4 we illustrate the obtained results by considering some
concrete examples for which error estimations with optimal constants are given.

2. PROJECTION-ITERATIVE METHODS. PRELIMINARIES

In this section we consider the projection-iterative methods developed in [9]. For
a convenience, we present the approximation procedure and the main result about
solution existence, convergence of methods and effective error estimation. We discuss
the following class of perturbed operator equations

Au+Bu = f, (2.1)

where A and B are linear bounded operators in a Banach space E, and f is a given
element in E. We assume that the operator A is invertible on the left, i.e. A(−1)A = I.
It should be stressed, however, that in general the operator A(−1) may be unbounded
but Dom(A(−1)) ⊃ Ran(A) (Dom(A(−1)) denotes the domain of A(−1) and Ran(A) is
the range of A). Moreover, we require that f ∈ Ran(A) and Bu ∈ Ran(A).

Next we introduce a family of operators (in general unbounded) Lτ (τ ≥ 0) with
the property that for each τ ≥ 0 the operator Lτ is one-to-one, i.e. KerLτ = 0, and
L0 = I (cf. [4], Assumption 4). On the domain Dτ = Dom(Lτ ) of the operator Lτ
(τ ≥ 0) we introduce a new norm

|u|τ = ‖Lτu‖, u ∈ Dτ .

(‖ · ‖ stands for the norm of the space E). The norm |u|τ turns the linear manifold
Dτ into a normed space, which we denote by Eτ . Clearly E0 = E.

Without any loss of generality we assume the monotonicity of the norms | · |τ with
respect to the parameter τ , i.e. for τ ′ ≥ τ ≥ 0 there holds

|u|τ ≤ |u|τ ′ , u ∈ Eτ ′ . (2.2)

The above condition implies in particular that in case Lτ is a closed operator the
space Eτ is complete.

We will give conditions on A and B such that the corresponding equation (2.1)
can be reduced to an equation of the form

u− Tu = g, (2.3)
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for which the projection-iterative method may be applicable. To this end, we intro-
duce several assumptions, which connect the family (Lτ ) with the operators A and B.

(i) There exists a number m > 0 and a constant a > 0 independent of τ such that
for every τ ≥ 0 the estimate

|A(−1)u|τ ≤ a|u|τ+m (u ∈ Eτ+m) (2.4)

holds for every τ ≥ 0.
(ii) There exists τ ≥ 0 such that

|A(−1)Bu|τ ≤ c(τ)|u|τ (u ∈ Eτ ) (2.5)

with 0 ≤ c(τ) < 1.
(iii) There exists an absolute constant b > 0 such that

|A(−1)Bu|τ ≤ b|u|τ−ε (u ∈ Eτ−ε) (2.6)

if τ ≥ ε > 0.
A prototype of the above assumptions (i)–(iii) was introduced in [5] (see also [6]).
Let assumptions (i) and (iii) be satisfied. If f ∈ Eτ0 with τ0 ≥ m, then each

solution of the equation (2.1) belongs to Eτ for τ ≤ τ0−m. In addition, if (ii) is also
satisfied with τ ≤ τ0−m, then for each f ∈ Eτ0 (τ0 ≥ m) the equation (2.1) can only
have a unique solution u and u ∈ Eτ for every τ ≤ τ0 −m (see [9]).

In what follows, E∞ denotes the set

E∞ :=
⋂
τ≥0

Eτ .

Remark 2.1. Let assumptions (i) and (iii) be satisfied.

(a) If f ∈ E∞, then each solution of the equation (2.1) belongs to E∞.
(b) In addition, if assumption (ii) is also fulfilled, then for each f ∈ E∞ the equation

(2.1) may only have a unique solution u and u ∈ E∞.

From the above arguments it is seen that under above assumptions, for f ∈ Eτ
with τ ≥ m, the equation (2.1) can be reduced to

u− Tu = g, (2.7)

where
g = A(−1)f and T = −A(−1)B. (2.8)

We are concerned with the approximate solution of the equation (2.1). The method,
which we apply, can be described as follows. Let (Pn) be a sequence of bounded
projections acting on X with the property that Pn → I strongly (I stands for the
identity operator on X) and ‖Pn‖ = 1 for each n = 1, 2, . . . We take an arbitrary
element u0 ∈ X, and define, successively, a sequence (un) of elements of X by

un = Tnun−1 + Png (n = 1, 2, . . . ), (2.9)
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where
Tn = PnTPn (n = 1, 2, . . . ).

If for each g ∈ X the sequence of the approximate solutions (un) converges in X to
a solution u of the equation (2.1), then one says that the projection-iterative method
is convergent in X.

We apply the projection-iterative method (2.9) to the equation (2.7) by supposing
that the projections Pn on E commute with weights Lτ , i.e.

PnLτ = LτPn for all n = 1, 2, . . . and τ ≥ 0.

The following theorem summarizes the projection-iterative methods for abstract
operators.

Theorem 2.2. [9] Let Assumptions (i), (ii) and (iii) be satisfied, and let (un) be
the approximating sequence determined by the process (2.9) for the equation (2.7),
with the initial element u0 chosen as above, i.e. u0 ∈ Eτ for τ as in assumption (ii).
If f ∈ Eτ0 (τ0 ≥ τ + m), then (un) converges in the norm of Eτ to the solution u of
(2.1) with the error estimate

|un − u|τ ≤
c(τ)

1− c(τ)
|un−1 − un|τ + |Rng|τ , (2.10)

where c(τ, ε) is defined by (2.5) and

Rn = (I − Tn)−1Sn(I − T )−1,

where
Sn := −I + Pn − PnT (I − Pn), n = 1, 2, . . . .

Corollary 2.3. [9] Under Assumptions (i), (ii) and (iii), in the particular case of
Pn = I (n = 1, 2, . . .), the standard iteration

un = Tun−1 + g (n = 1, 2, . . . )

for the equation (2.7), where f ∈ Eτ0 (τ0 ≥ τ +m; τ as in assumption (ii)), with an
arbitrary initial element u0 belonging to Eτ , converges in the norm Eτ with the error
estimate

|un − u|τ ≤ ∆n(τ), (2.11)

where
∆n(τ) :=

c(τ)
1− c(τ)

|un−1 − un|τ (c(τ) < 1).

As before, c(τ) is determined by (2.5). The error in the norm of the primary space E
can be estimate as follows

‖un − u‖ ≤ inf{∆n(τ) : 0 ≤ τ ≤ τ0 −m ; c(τ) < 1},

In particular, if f ∈ E∞, then

‖un − u‖ ≤ inf{∆n(τ) : τ ≥ 0 ; c(τ) < 1}.

(We assume that inf ∅ =∞).
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3. PERTURBED DISCRETE WIENER-HOPF EQUATIONS

In this section we apply the projection-iterative method recalled in Section 2 to a
concrete class of discrete Wiener-Hopf equations.

We denote by V the elementary shift in lp(N), i.e.

(V u)n = un−1 (n = 1, 2, . . . ; u0 = 0).

The operator V (−1) defined by

(V (−1)u)n = un+1 (n = 1, 2, . . . ; u = (un) ∈ lp(N))

is obviously an inverse on the left of V , i.e. V (−1)V = I.
In what follows, E stands for one of the Banach spaces lp(N) (1 ≤ p <∞), and A

is a Toeplitz operator defined on E by

(Au)n =
∞∑
k=1

an−kuk (u = (un) ∈ E), (3.1)

where an (n = 0,±1, . . .) are complex numbers such that
∞∑

n=−∞
|an| <∞. (3.2)

According to the theory of Toeplitz operators or, in other terms, discrete
Wiener-Hopf operators (see [1, 11, 15]) the operator A can be regarded as the value
of some function A(z) of the operator V , i.e. A = A(V ). Namely, the function A(z)
is given on the complex unit circle T = {z ∈ C : |z| = 1} and it is represented in the
form

A(z) =
∞∑

n=−∞
anz

n, z ∈ T.

The function A(z), z ∈ T, is called the symbol of the operator A. The complex
numbers an (n = 0,±1, . . .) are the Fourier coefficients of A(z), so that, in case where
A(z) is given, they can be computed by the formula

an =
1

2π

∫ 2π

0

A(eiφ)e−inφdφ (n = 0,±1, . . . ).

Condition (3.2) means that the symbol A(z) belongs to the Wiener algebra, which
we denote by W . The norm in this algebra is given by

‖A(z)‖W =
∞∑

n=−∞
|an|.

We denote by W+ a subalgebra of W , which elements are functions of the form
∞∑
n=0

bnz
n, z ∈ T.
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Similarly, we denote by W− subalgebra of W consisting of the elements of the form

0∑
n=−∞

bnz
n, z ∈ T.

Next we assume that the function A(z) has only a finite number of zeros on T, and
each of them has an arbitrary multiplicity. Let αj be the (pairwise distinct) roots
of A(z) on the unit circle T with multiplicities µj ≥ 0 (j = 1, . . . , r). (Note that
αj = α−1

j .) Now we denote

A0(z) = A(z)
r∏
j=1

(z−1 − αj)−µj , z ∈ T. (3.3)

In what follows, we assume that A0(z) belongs to the Wiener algebra W . Set

m := max{dµje : j = 1, . . . , r},

where for x ∈ R the symbol dxe stands for the smallest integer greater than or equal
to x. A sufficient condition for A(z) to guarantee that the function A0(z) belongs to
W is the following

∞∑
n=−∞

|nman| <∞

(cf. [15]). Clearly, A0(z) ∈ W is a continuous function on T such that A0(z) 6= 0
(z ∈ T). Let

κ = indA0(z) =
1

2π
[

argA0(eiφ)
]2π
φ=0

([ ]2πφ=0 means the increment of the function on the interval [0, 2π]). Then A0(z),
z ∈ T, can be written in the form (the Wiener-Hopf factorization, [14]):

A0(z) = A−(z)zκA+(z), (3.4)

where A+(z) and A−(z) are functions holomorphic inside and continuous up to the
boundary in domains |z| ≤ 1 and |z| ≥ 1, respectively, and A+(z) 6= 0 (|z| ≤ 1) and
A−(z) 6= 0 (∞ ≥ |z| ≥ 1), moreover A+(z) ∈W+ and A−(z) ∈W−.

Note that the functions A−(z) and A+(z) can be considered as symbols of some
Toeplitz operators. Let us denote them by A− and A+, respectively.

Thus, in view of (3.3) and (3.4), we may express the operator A in the form

A = RA−V
(κ)A+, (3.5)

where

R =
r∏
j=1

(V (−1) − αjI)µj , (3.6)

and where V (κ) stands for V κ if κ ≥ 0 and (V (−1))−κ if κ < 0.
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Throughout what follows, we use the notation(
µ

k

)
=
µ(µ− 1) . . . (µ− k + 1)

k!
for k = 1, 2, . . .

and
(
µ
0

)
= 1. Note that an operator

(V (−1) − αI)µ = (−α)µ
∞∑
k=0

(
µ

k

)
(−α)kV (−k),

where α ∈ T, is one-to-one, and there exists a closed and unbounded (for µ > 0)
operator (V (−1) − αI)−µ. For u = (un) ∈ Ran (V (−1) − αI)µ we can write

(V (−1) − αI)−µu = (−α)µ
∞∑
k=0

(
µ+ k − 1

k

)
αkV (−k)u

(cf. [15, 20]).
In what that follows, we assume that κ > 0. In this case the operator A admits

an inverse operator on the left A(−1) and via (3.5) we can write

A(−1)u = A−1
+ V (−κ)A−1

− R−1u, u ∈ Ran(A). (3.7)

Next, let B denote a bounded operator defined on the space E by B = [bnk]∞n,k=1,
i.e.

(Bu)n =
∞∑
k=1

bnkuk (n = 1, 2, . . . ;u = (un) ∈ E), (3.8)

where bnk ∈ C (n, k = 1, 2, . . .).
Our aim is to apply the general procedure recalled in Section 2 to the approximate

solution of the operator equation

(A+B)u = f, (3.9)

where f is a given element in E, and A and B are operators defined on E by (3.1) and
(3.8), respectively.

We note that the general case where the symbol A(z) of A contains a non-constant
factor A+(z) can be reduced to the case where the factor A+(z) is constant (cf. [9]).
So we assume that the factor A+(z) (3.4) is a constant (and equals to one). In
particular, this means that the symbol A(z) has no roots in the domain |z| ≥ 1. In
other words, we study the case where the symbol A(z) can be written in the form

A(z) = zκ
r∏
j=1

(z−1 − αj)µjA−(z), z ∈ T, (3.10)

where κ > 0 and A−(z) is a function holomorphic inside and continuous up to the
boundary in |z| ≥ 1, and A−(z) 6= 0 (∞ ≥ |z| ≥ 1), moreover A−(z) ∈W−.
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In order to apply the results of Section 2 we use the family of operators (Lτ )τ≥0

(cf. [9]) defined by

(Lτu)n = nτun (n = 1, 2, . . . ;u ∈ Dom(Lτ )),

where

Dom(Lτ ) = {u ∈ E :
∞∑
n=1

|nτun|p <∞}.

For the introduced family (Lτ )τ≥0 required conditions mentioned in Section 2 are
trivially satisfied and the corresponding spaces Eτ , τ ≥ 0, are complete.

We now proceed to the verification of assumption (i). To this end, we set m =
max{dµje : j = 1, . . . , r}. (Recall that µj are multiplicities of the zeros of the symbol
A(z) belonging to the unit circle T).

The following auxiliary assertions will be used.

Lemma 3.1. (i) For every τ ≥ 0 the operator V (−1) is bounded on Eτ , and

|V (−1)u|τ ≤ |u|τ (u ∈ Eτ ), (3.11)

(ii) For τ > 0 and ε > 0 there exists a0(τ, ε) > 0 such that a0(τ, ε) → 0 as τ → ∞,
and

|V (−1)u|τ ≤ a0(τ, ε)|u|τ+ε (u ∈ Eτ+ε), (3.12)

(iii) For every 0 < µ ≤ 1, τ ≥ 0 and every α ∈ T the estimate

|(V (−1) − αI)−µu|τ ≤ w(τ)|u|τ+1 (u ∈ Eτ+1) (3.13)

holds with w(τ) > 0 when E = lp(N) and 1
p + 1

q = 1.

Proof. The assertions (i) and (ii) were proved in [9] (see also [4]). The estimate (3.13)
in assertion (iii) is a kind of a Hardy type inequality with weights. Note that the
inequality (3.13) is equivalent to

‖Lτ (V (−1) − αI)−µL−1
τ+1ξ‖ ≤ w(τ)‖ξ‖ (ξ = (ξn) ∈ E).

We use the classical Hardy inequality (cf. [12])
∞∑
n=1

∣∣∣ ∞∑
k=n

ξk
k

∣∣∣p ≤ pp ∞∑
n=1

|ξn|p (ξ = (ξn) ∈ E).

Now we can estimate

‖Lτ (V (−1) − αI)−µL−1
τ+1ξ‖p =

∞∑
n=1

∣∣∣∣∣(−α)µ
∞∑
k=0

(
µ+ k − 1

k

)
αk
( n

n+ k

)τ ξn+k

n+ k

∣∣∣∣∣
p

≤

≤
∞∑
n=1

∣∣∣ ∞∑
k=0

ξn+k

n+ k

∣∣∣p =
∞∑
n=1

∣∣∣ ∞∑
k=n

ξk
k

∣∣∣p ≤
≤ pp

∞∑
n=1

|ξn|p = pp‖ξ‖p.
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So we have w(τ) = p. In fact the constant p can be replace by

w(τ) =
(
1− 1

2τq
)−1

, where
1
p

+
1
q

= 1

(see the methods developed in [7] and [8]).

Let us formulate a simple but important observation.

Lemma 3.2. If Φ is a Toeplitz operator with the symbol Φ(z) ∈W− then

|Φu|τ ≤ ‖Φ(z)‖W |u|τ (u ∈ Eτ ).

Proof. Let u ∈ Eτ . Since Φ(z) ∈W−, the symbol of operator Φ has the form

Φ(z) =
∞∑
n=0

c−nz
−n (z ∈ T).

Hence, using the assertion (i) of Lemma 3.1, we obtain

|Φu|τ = |
∞∑
n=0

c−nV
(−n)u|τ ≤

∞∑
n=0

|c−n||u|τ = ‖Φ(z)‖W |u|τ .

Next we note that, by virtue of the Wiener theorem [14] (see also [1]), the Toeplitz
operator A−1

− , just as A−, is upper triangular. In language of its symbol this means
that b−(z) = 1/A−(z) ∈W− and it can be represented in the form

b−(z) =
0∑

n=−∞
b−n z

n (z ∈ T), with ‖b−‖W =
0∑

n=−∞
|b−n | <∞.

Taking into account this fact, by Lemma 3.2 (i), we conclude that the operator
A−1
− is bounded in each space Eτ , and

|A−1
− u|τ ≤ ‖b−‖W |u|τ . (3.14)

In order to estimate R−1 we need the following two lemmas.

Lemma 3.3. If g1, . . . , gn are functions in algebra W−, which have no common zero
on the set {z ∈ C : |z| ≥ 1} ∪ {∞}, then there exist functions f1, . . . , fn in W− such
that

f1g1 + . . .+ fngn = 1.

Proof. Every maximal ideal in W− is of the form

Mλ = {f ∈W− : f(λ) = 0}

for some point λ in the set {z ∈ C : |z| ≥ 1} ∪ {∞} (see [10]). The set of all elements
of the form f1g1 + . . .+ fngn is an ideal. If it does not contain 1, it is a proper ideal
and must be contained in a maximal ideal. (cf. [13], p. 88).



280 Michał A. Nowak

Lemma 3.4. If R is given by (3.6) then

Ran(R) =
r⋂
j=1

Ran(V (−1) − αjI)µj (3.15)

and there exist operators Φj with symbols Φj(z) ∈ W− (j = 1, . . . , r) such that the
equality

R−1 =
r∑
j=1

Φj (V (−1) − αjI)−µj (3.16)

holds on Ran(R).

Proof. Since the roots αj (j = 1, . . . , r) of A(z) are pairwise distinct, we can use
Lemma 3.3 with

gj(z) =
r∏

i=1;i6=j

(z−1 − αi)µi (z ∈ T; j = 1, . . . , r ).

So there exist functions fj(z) ∈W− (j = 1, . . . , r) such that

r∑
j=1

fj(z)
r∏

i=1;i 6=j

(z−1 − αi)µi = 1 (z ∈ T). (3.17)

Thus
r∑
j=1

Fj

r∏
i=1;i 6=j

(V (−1) − αiI)µi = I, (3.18)

where Fj are the operators with symbols fj(z) (j = 1, . . . , r). Letting

φ = (V (−1) − αjI)µjφj , where φj ∈ E (j = 1, . . . , r).

From (3.18) we get φ = Rψ for ψ = F1φ1 + . . .+ Frφr. So we have the inclusion

r⋂
j=1

Ran(V (−1) − αjI)µj ⊂ Ran(R).

The converse inclusion is obvious. Note that equation (3.18) also implies (3.16) with
Φj = Fj (j = 1, . . . , r) (cf. [3]).

Now in view of (3.13), in the case of E = lp(N), we obtain

|(V (−1) − αjI)−µu|τ ≤ d(dµe; τ)|u|τ+dµe (u ∈ Eτ+dµe),

where

d(k; τ) :=
k−1∏
j=0

(
1− 1

2τ+jq

)−1

≤ pk (k = 1, 2, . . . ).
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Therefore, from (3.16) we derive the following estimate (recall that m =
max{dµje : j = 1, . . . , r})

|R−1u|τ ≤ c1(τ)|u|τ+m (u ∈ Eτ+m), (3.19)

where

c1(τ) :=
r∑
j=1

d(dµje; τ)‖Φj(z)‖W ≤
r∑
j=1

pdµje‖Φj(z)‖W =: c1.

Now, let u ∈ Eτ+m (τ ≥ 0). In view of (3.11), (3.14) and (3.19) we can estimate

|A(−1)u|τ ≤ |V (−κ)A−1
− R−1u|τ ≤ |A−1

− R−1u|τ ≤
≤ ‖b−‖W |R−1u|τ ≤ c1(τ)‖b−‖W |u|τ+m,

i.e.
|A(−1)u|τ ≤ a(τ)|u|τ+m ≤ a|u|τ+m, u ∈ Eτ+m (3.20)

with a(τ) = c1(τ)‖b−‖W and a = c1‖b−‖W . Thus assumption (i) is verified.
By similar arguments, one may also obtain the estimate

|A(−1)u|τ ≤ a(τ)|V (−κ)u|τ+m, (u ∈ Eτ+m), (3.21)

which will be used later. The constant a is the same as in (3.20).
Next, we find conditions on B such that assumptions (ii) and (iii) to be also

verified. Let u ∈ Eτ , τ ≥ 0. By virtue of (3.21) and (3.12), we have

|A(−1)Bu|τ ≤ a(τ)|V (−κ)Bu|τ+m ≤
≤ a(τ)a0(τ, ε)|V (−κ+1)Bu|τ+m+ε ≤ a(τ)a0(τ, ε)‖Bτ,ε‖|u|τ ,

where
Bτ,ε = Lτ+m+εV

(−κ+1)BL−1
τ .

Note that the operator Bτ,ε is induced on E by the matrix

Bτ,ε =
[
jτ+m+εk−τ bj+κ−1 k

]∞
j,k=1

.

It is seen that the operator Bτ,ε is, generally speaking, unbounded in the basic space
E, and even if it is bounded, its norm may increase as the parameter τ increases.
However, if we let

bjk = 0 for j > k + κ− 1

and require that the operator

Bm+ε =
[
jm+ε|bj+κ−1 k|

]∞
j,k=1

(3.22)

is bounded on the space E, then we have

‖Bτ,ε‖ ≤ ‖Bm+ε‖.
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In this way we obtain conditions for which estimates

|A(−1)Bu|τ ≤ c(τ, ε)|u|τ (3.23)

hold with
c(τ, ε) = a(τ)a0(τ, ε)‖Bm+ε‖.

Clearly, for a fixed ε > 0, c(τ, ε)→ 0 as τ → +∞. This ensures that assumption (ii)
is satisfied.

It turns out that under the same conditions assumption (iii) is also satisfied.
Indeed, let u ∈ Eτ−ε, τ ≥ ε > 0. Then, again by virtue of (3.21) and by (3.11), we
have

|A(−1)Bu|τ ≤ a(τ)|V (−κ+1)Bu|τ+m ≤ a(τ)‖Lτ+mV (−κ+1)BL−1
τ−ε‖|u|τ−ε.

As before, we show that under conditions bjk = 0 for j > k + κ − 1 if
the operator Bm+ε =

[
jm+ε|bj+κ−1 k|

]∞
j,k=1

is bounded on E, then the operator
Lτ+mV

(−κ+1)BL−1
τ−ε is bounded on E and its norm does not exceed ‖Bm+ε‖. There-

fore
|A(−1)Bu|τ ≤ b|u|τ−ε (τ ≥ ε > 0) (3.24)

with b = a‖Bm+ε‖. Assumption (iii) is verified.
According to Section 2, for a given element in Eτ with τ enough large, the equation

(3.9) can be reduced to an equation of the form (2.7), namely

u− Tu = g, (3.25)

where g = A(−1)f and T = −A(−1)B.
We apply the projection-iterative method (2.9) to the equation (3.25) by taking

for Pn canonical projections in the space E, that is

Pnu = (u1, . . . , un, 0, 0, . . . ) (u = (un) ∈ E).

Evidently, Pn → I strongly in E, ‖Pn‖ = 1 and PnLτ = LτPn for each n = 1, 2, . . ..
Hence, the required assumptions are fulfilled and Theorem 2.2 may be applied.

We set
Tn = PnTPn, gn = Png (n = 1, 2, . . . ).

Take an arbitrary element u0 ∈ Eτ (τ ≥ 0) and define the approximating sequence
(un) by

un = Tnun−1 + gn (n = 1, 2, . . .). (3.26)

We obtain the following result.

Theorem 3.5. Let A and B be operators defined by (3.1) and (3.8), respectively.
Assume that the symbol A(z) of A can be factorized as in (3.10), κ > 0 and m =
max{dµje : j = 1, . . . , r}. Furthermore, assume that for any f ∈ Eτ0 with sufficiently
large τ0 (for istance, τ0 ≥ τ + m; τ being as in assumption (ii)) the equation (3.9)
possesses a solution u in E. If under the conditions bjk = 0 for j > k + κ − 1 the
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operator Bm+ε defined by (3.22) is bounded on E, then the approximating sequence
(un) determined by the process (3.26) converges in the norm Eτ (τ ≤ τ0) to the
solution u of the equation (3.9) for any initial approximation u0 in Eτ . The error
estimate is given by

|un − u|τ ≤
c(τ, ε)

1− c(τ, ε)
|un−1 − un|τ +

1 + c(τ, ε)
1− c(τ, ε)

|hn|τ , (3.27)

where c(τ, ε) is as in (3.23) and hn = (I − Pn)(I − T )−1g.

Proof. That the approximating sequence (un) converges to the solution of the equation
(3.9) follows immediately from Theorem 2.2. Furthermore, since f ∈ Eτ0 with τ0
sufficiently large, by assumption (ii) it follows that g ∈ Eτ and also hn ∈ Eτ . The
error estimate (3.27) is a consequence of (2.10).

Corollary 3.6. In the particular case of Pn = I (n = 1, 2, . . .), under the hypotheses
of Theorem 3.5 the sequence (un) determined by the iterative process

un = Tun−1 + g (n = 1, 2, . . . )

converges in the norm of Eτ (τ ≤ τ0) to the solution u of the equation (3.9) for any
initial approximation u0 in Eτ . The error estimate is given by

|un − u|τ ≤ ∆n(τ, ε), (3.28)

where

∆n(τ, ε) :=
c(τ, ε)

1− c(τ, ε)
|un−1 − un|τ (c(τ, ε) < 1)

with c(τ, ε) given as in (3.23).

We can estimate the error in the norm of the primary space E as follows

‖un − u‖ ≤ inf{∆n(τ, ε) : 0 < ε ≤ τ ≤ τ0 −m ; c(τ, ε) < 1}.

In particular, if f ∈ E∞, then

‖un − u‖ ≤ inf{∆n(τ, ε) : τ ≥ ε > 0 ; c(τ, ε) < 1}.

4. EXAMPLE

Let E = l2(N) (p = 2) and let us consider in this space the operator

A =
∞∑
k=0

(
1/2
k

)
V (−2k+1).
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The matrix representation of A is the following

A =



0 1/2 0 −1/8 0 −1/16 0 −5/128 0 · · ·
1 0 1/2 0 −1/8 0 −1/16 0 −5/128 · · ·
0 1 0 1/2 0 −1/8 0 −1/16 0 · · ·
0 0 1 0 1/2 0 −1/8 0 −1/16 · · ·
0 0 0 1 0 1/2 0 −1/8 0 · · ·
0 0 0 0 1 0 1/2 0 −1/8 · · ·
0 0 0 0 0 1 0 1/2 0 · · ·
0 0 0 0 0 0 1 0 1/2 · · ·
0 0 0 0 0 0 0 1 0 · · ·
...

...
...

...
...

...
...

...
...

. . .


.

The Toeplitz operator A is generated on the space E (we preserve notations used in
the previous section) by the function (the symbol of A)

A(z) = z

∞∑
k=0

(
1/2
k

)
z−2k = z(z−2 + 1)1/2 (z ∈ T).

Let B be a bounded operator of the form (3.8) and consider the following equation

Au+Bu = f, f ∈ E. (4.1)

We describe conditions under which the scheme given in the previous section may
be applied to equation (4.1). The symbol A(z) has two roots on the unit circle T, and
we have the factorization

A(z) = z(z−1 − i)1/2(z−1 + i)1/2, z ∈ T. (4.2)

We can write

(z−1 − i)−1/2(z−1 + i)−1/2 = Φ1(z)(z−1 + i)−1/2 + Φ2(z)(z−1 − i)−1/2,

where
Φ1(z) =

1
2
i(z−1 − i)1/2 and Φ2(z) = −1

2
i(z−1 + i)1/2.

It is easy to see that

−
(
µ

k

)
(−1)k =

∣∣∣(µ
k

)∣∣∣ (k = 1, 2, . . . ), (4.3)

which implies
∞∑
k=1

∣∣∣(µ
k

)∣∣∣ = 1. (4.4)

Taking into account this fact we can compute

‖Φ1(z)‖W = ‖Φ2(z)‖W =
1
2

∞∑
k=0

∣∣∣(1/2
k

)∣∣∣ = 1.
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It is seen that Theorem 3.5 can be applied to the pair A and B. We have κ = 1,
m = 1. Therefore, if the perturbation B is such that bjk = 0 for j > k and the operator
defined by Bδ =

[
jδ|bjk|

]∞
j,k=1

is bounded on E with δ > 1, then the equation (4.1)
can be reduced to

u− Tu = g (4.5)

with g = A(−1)f and T = −A(−1)B, where A(−1) is a left inverse of A. The existence
of A(−1) follows from the representation (4.2). Actually, as in hypotheses of Theorem
3.5 we assume that the equation (4.1) possesses a solution u in E for f ∈ Eτ0 with
sufficiently large τ0.

Similarly as in Section 3 we set

Tn = PnTPn, gn = Png (n = 1, 2, . . . ).

Take an arbitrary element u0 ∈ Eτ (τ > 0) and define the approximating sequence
(un) by

un = Tnun−1 + gn (n = 1, 2, . . . ). (4.6)

By virtue of Theorem 3.5, we conclude that under above conditions on the per-
turbation B the approximating sequence (un) determined by (4.6) converges in the
norm Eτ (τ ≤ τ0) to the solution u of the equation (4.1). The error estimate is given
by the formula (3.27), where

c(τ, ε) = 2w(τ)a0(τ, ε)‖B1+ε‖, (4.7)

with a0(τ, ε) = τ τ εε(τ + ε)−τ−ε as in (3.12) and w(τ) =
(
1− 2−τ−1

)−1.
In order to illustrate the above results let us consider the equation (4.1) in the

case of

f(k) =

{
(1 + δ2)1/2, k = 1,(
1 + (1 + δ2)1/2

)
δk−1, k = 2, 3, . . . .

with a δ 6= 0. (Here we denote x(n) for the n-th term of the sequence x.) Then

g(k) = δk (k = 1, 2, . . . ).

It is easily seen that f ∈ E∞ and g ∈ E∞. Let B be a diagonal operator of the form

(Bu)(k) = b(k)u(k), b(k) = βρk (k = 1, 2, . . . ),

where |ρ| < 1 and β ∈ C. For the sake of simplicity, we put u0 = 0. Then the process
of the standard pure iteration gives us approximate solutions of the form

un =
n−1∑
l=0

T lg,

(T lg)(k) = γl(δρl)k (k = 1, 2, . . . ),

γl = (−β)l
l∏

j=1

δρj(
1 + (δρj)2

)1/2 .
(4.8)
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The error in the above approximation is given by the formula

|un − u|τ ≤ ∆n(τ, ε) :=
c(τ, ε)

1− c(τ, ε)
|Tn−1g|τ (c(τ, ε) < 1),

where c(τ, ε) is given by (4.7). It is not difficult to see that for a fixed τ , ∆n(τ, ε) has
minimum for

ετ :=
1
2
(
s− 1 +

√
(s− 1)2 + 4sτ

)
, where s := ln

1
|ρ|
.

Consequently,

|un − u|τ ≤ ∆n(τ) := ∆n(τ, ετ ).

Since f ∈ E∞, it can be estimated the error in the norm of the primary space E as
follows

‖un − u‖ ≤ inf{∆n(τ) : τ ≥ 0 }.

In turn, the norm ‖B1+ε‖ in formula (4.7) can be estimated as

‖B1+ε‖ = sup
j
|j1+εb(j)| ≤ sup

x≥0

(
|β||ρ|xx1+ε

)
= |β|

( 1 + ε

e ln 1
|ρ|

)1+ε

.

Table 1. Natural logarithm of |un−u|τ with optimal constants τ and ε for various iterations

n τ ε ln ∆n(τ, ε)
1 3.110 1.323 2.1
2 3.586 1.431 -0.6
4 4.780 1.677 -6.5
8 8.073 2.217 -25.3
16 15.616 3.140 -95.0
32 31.298 4.507 -366.3
64 63.017 6.457 -1439.9
128 126.747 9.221 -5714.3

In Table 1 the natural logarithm of error estimations with optimal constants τ
and ε for iterations n = 1, 2, 4, 8, 16, 32, 64, 128 is presented. The calculations were
done using constants β = 3, δ = 0.4 and ρ = 0.5.
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