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IN PIECEWISE LINEAR FRACTIONAL
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Abstract. In this paper, we study how changes in the coefficients of objective function
and the right-hand-side vector of constraints of the piecewise linear fractional program-
ming problems affect the non-degenerate optimal solution. We consider separate cases when
changes occur in different parts of the problem and derive bounds for each perturbation,
while the optimal solution is invariant. We explain that this analysis is a generalization of
the sensitivity analysis for LP , LFP and PLP . Finally, the results are described by some
numerical examples.
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1. INTRODUCTION

In practice, numerical results are subject to errors and the exact solution of the
problem under consideration is not known. The results obtained by some methods,
although being approximations of the solutions of the problem, could be considered as
the exact results of the corresponding perturbed problem and this is the motivation
to investigate the sensitivity analysis. We would like to know the effect of data per-
turbation on the optimal solution. Hence, the study of sensitivity analysis is of great
importance. Generally, independent and simultaneous perturbations are investigated.
The materials presented in the rest of this section are selected from [10].

The piecewise linear fractional programming problem (PLFP ) is defined as fol-
lows:
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min Z(x) =
P (x)
D(x)

=

α0 +
n∑
j=1

fj(xj)

β0 +
n∑
j=1

gj(xj)

s.t: Ax = b (PLFP )
0 ≤ x ≤ u,

where fj(xj) and gj(xj), j = 1, 2, . . . , n, are continuous piecewise linear convex and

concave functions, respectively, such that β0 +
n∑
j=1

gj(xj) > 0 for any feasible solution

x, A is an m× n matrix of full row rank, b is an m-vector and u is an n-vector.
Let 0 = δj0 < δj1 < . . . < δjτj < δjτj+1 = uj be an ascending order of the breakpoints

of both fj(xj) and gj(xj). Then within each subinterval [δji , δ
j
i+1], i = 0, 1, . . . , τj ,

both fj(xj) and gj(xj) are linear functions. Therefore fj(xj) and gj(xj) can be
written as

fj(xj) = cjixj + αji , δji ≤ xj ≤ δ
j
i+1; i = 0, 1, 2, . . . , τj , (1.1)

and

gj(xj) = djixj + βji , δji ≤ xj ≤ δ
j
i+1; i = 0, 1, 2, . . . , τj , (1.2)

for some real numbers cji , α
j
i , d

j
i and βji , i = 0, 1, . . . , τj , j = 1, 2, . . . , n.

The following lemmas determine the convexity and the concavity conditions for a
continuous piecewise linear function [6].

Lemma 1.1. A continuous piecewise linear function is convex if and only if its slope
is nondecreasing with respect to xj; that is, cj0 ≤ c

j
1 ≤ . . . ≤ cjτj , j = 1, 2, . . . , n.

Lemma 1.2. A continuous piecewise linear function is concave if and only if its slope
is non-increasing with respect to xj; that is, dj0 ≥ d

j
1 ≥ . . . ≥ djτj , j = 1, 2, . . . , n.

Let x0 be an optimal solution to PLFP . For each j = 1, 2, . . . , n, choose an index
ji such that δjji ≤ x

0
j ≤ δ

j
ji+1. Then any optimal solution to the LFP problem:

(LFP ) min

α∗ +
n∑
j=1

cjjixj

β∗ +
n∑
j=1

djjixj

s.t: Ax = b
δjji ≤ xj ≤ δ

j
ji+1, j = 1, 2, . . . , n,

is also an optimal solution to the PLFP where α∗ = α0 +
n∑
j=1

αjji , β
∗ = β0 +

n∑
j=1

βjji .



Sensitivity analysis in piecewise linear fractional programming problem. . . 255

Definition of a basic feasible solution (BFS) for PLFP is introduced as follows:
Let A = [A.1, . . . , A.n] be the coefficients matrix and B = {B1, . . . , Bm} ⊂

{1, . . . , n} be a subset of the indices of the columns of the matrix A, such that
B = [A.B1 , . . . , A.Bm ] is a non-singular matrix with inverse B−1 = [βij ]. Let
N = {1, 2, . . . , n} \ B. The variables xBi , i = 1, . . . ,m, are called basic variables
and xj , j ∈ N , are referred to as non-basic variables. These vectors are denoted by
xB and xN , respectively. Consequently, the solution x = (xB ,xN ), such that

xj = δjνj , j ∈ N, νj ∈ {0, 1, . . . , τj + 1},

xB = B−1b−
∑
j∈N

B−1A.jxj , (1.3)

is called a basic solution. If, in addition 0 ≤ xB ≤ uB , then x is a basic feasible
solution (BFS). Moreover, if xBi ∈ {δ

Bi
0 , δBi1 , . . . , δBiτBi+1

} for some i, then x is a

degenerate BFS. If xBi 6∈ {δ
Bi
0 , δBi1 , . . . , δBiτBi+1

} for any i, then it is a non-degenerate
BFS.

It is showed in [10] that there exists an optimal solution of PLFP which is a
BFS. The optimality criterion given by Punnen and Pandey [10] for PLFP using
the simplex algorithm is stated as follows:

Let B denote the optimal basis matrix and let x∗ = (x∗B ,x
∗
N ) be the corresponding

non-degenerate basic feasible solution for PLFP . This solution will be optimal if

η−j (x∗) = (cjνj−1 − cBB−1A.j)− Z(x∗)(djνj−1 − dBB−1A.j) ≤ 0,

and
η+
j (x∗) = (cjνj − cBB−1A.j)− Z(x∗)(djνj − dBB−1A.j) ≥ 0,

for j = 1, 2, . . . , n, where Z(x∗) is the objective function value at the optimal solution
x∗, cB and dB are the sub-vectors of c and d such that their ith coordinates corre-
sponding to B are cBiµ(Bi)

and dBiµ(Bi)
, respectively. If νj = τj + 1 then η+

j is defined as
0. Similarly, when νj = 0 then η−j is defined as 0. Note that µ(Bi) denotes the index
for which δBiµ(Bi)

≤ x∗Bi ≤ δ
Bi
µ(Bi)+1.

The sensitivity analysis has been done for linear fractional programming [1, 2].
These results have been extended to the variations for both numerator and denom-
inator of the objective function as well as with right-hand-side of the constraints.
Then a primal-dual algorithm proposed to parametric right-hand-side analysis and
this algorithm suggests a branch-bound method for integer linear programming [4].
An alternative procedure studied for multi-parametric sensitivity analysis in linear
programming by the concept of a maximum volume in the tolerance region, which
is bounded by a symmetrically rectangular parallelepiped and can be solved by a
maximization problem [13]. For the example of linear fractional programming prob-
lem we refer the reader to the examples given in [3]. In Example 2 of [3] let the
goods be two sets like (i)-beans, lentils and pea, (ii)-celery, lettuce and cabbages,
the prices of which can vary in two different policies. Thus the problem is how we
can manage this problem after it has been solved before the changes occur and this
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leads to piecewise linear fractional problem. In [8,9], the sensitivity analysis with the
maximum volume in the tolerance region is provided for PLFP when the variations
include both numerator and denominator of the objective function, right-hand-side
and the coefficients matrix.

In the present paper, sensitivity analysis investigated in [1, 2] for the PLFP has
been extended. Therefore, we consider separate cases when changes occur in different
parts of the problem and derive bounds for each perturbation, while the optimal
solution is invariant. Since linear programming (LP )[5], piecewise linear programming
problems (PLP )[7] and linear fractional programming problems (LFP )[3, 11, 12] are
all special cases of the PLFP , therefore a unified framework of sensitivity analysis is
presented which covers almost all approaches that have appeared in the literature.

The paper is organized as follows. In Section 2, we obtain bounds for the pa-
rameter when the right hand side vector is perturbed. In Section 3 we consider the
perturbation in the coefficients of the numerator of the objective function. Section 4
contains changes in the coefficients of the denominator of the objective function.

2. CHANGES IN RHS VECTOR b

Let us replace the entry bγ by b
′

γ = bγ+δ in the RHS vector b = (b1, . . . , bγ , . . . , bm)T

and investigate how the optimal basis B, optimal solution x∗ and the optimal value
of objective function Z(x) are affected. So from (1.3) we will have

x̄B = B−1(b1, . . . , bγ + δ, . . . , bm)T −
∑
j∈N

B−1A.jδ
j
νj =

= B−1b−
∑
j∈N

B−1A.jδ
j
νj + δβ.γ = x∗B + δβ.γ ,

where β.γ is the ith column of the matrix B−1. Now the ith component of x̄B is
given by

x̄Bi = x∗Bi + δβiγ , i = 1, . . . ,m.

This new basic solution x̄B will be feasible if

δBiµ(Bi)
≤ x∗Bi + δβiγ ≤ δBiµ(Bi)+1, i = 1, . . . ,m.

Therefore, we obtain the following range for δ:

max

{
max
βiγ<0
1≤i≤m

δBiµ(Bi)+1 − x
∗
Bi

βiγ
, max
βiγ>0
1≤i≤m

δBiµ(Bi)
− x∗Bi

βiγ

}
≤ δ ≤

≤ min

{
min
βiγ>0
1≤i≤m

δBiµ(Bi)+1 − x
∗
Bi

βiγ
, min
βiγ<0
1≤i≤m

δBiµ(Bi)
− x∗Bi

βiγ

}
.

(2.1)

The new solution x̄ is an optimal solution for the perturbed PLFP problem if

η+
j (x̄) = (cjνj − cBB−1A.j)− Z(x̄)(djνj − dBB−1A.j) ≥ 0, j ∈ N, (2.2)
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and

η−j (x̄) = (cjνj−1 − cBB−1A.j)− Z(x̄)(djνj−1 − dBB−1A.j) ≤ 0, j ∈ N. (2.3)

Consider formulas (2.2) and (2.3). Observe that the reduced costs cjνj−1 −
cBB−1A.j , d

j
νj−1−dBB−1A.j , cjνj −cBB−1A.j and djνj −dBB−1A.j do not depend

on b and x̄ directly. So, any change in b may affect only the value of the objective
function Z(x). Hence, we have

Z(x̄) =

cBB−1b
′
+
∑
j∈N

(cjνj − cBB−1A.j)δjνj + α0

dBB−1b′ +
∑
j∈N

(djνj − dBB−1A.j)δjνj + β0

=
P (x∗) + δcBβ.γ
D(x∗) + δdBβ.γ

. (2.4)

By the assumption, D(x) > 0 for any feasible solution x. Thus, to preserve this
condition we need to have

D(x∗) + δdBβ.γ > 0, (2.5)

which implies

δ


>
−D(x∗)
dBβ.γ

, if dBβ.γ > 0,

<
−D(x∗)
dBβ.γ

, if dBβ.γ < 0.
(2.6)

Moreover, by using (2.4) we can re-write (2.2) in the following form

η+
j (x̄) = (cjνj − cBB−1A.j)−

P (x∗) + δcBβ.γ
D(x∗) + δdBβ.γ

(djνj − dBB−1A.j) ≥ 0. (2.7)

From (2.5), the relation (2.7) is satisfied if

(cjνj − cBB−1A.j)(D(x∗) + δdBβ.γ)− (P (x∗) + δcBβ.γ)(djνj − dBB−1A.j) ≥ 0,

which implies

δ(∆
′

jdBβ.γ −∆
′′

j cBβ.γ) ≥ −D(x∗) η+
j (x∗), j ∈ N,

where ∆
′

j = cjνj − cBB−1A.j and ∆
′′

j = djνj − dBB−1A.j .
From the latter relation we obtain

max
j∈N

{
−D(x∗) η+

j (x∗)
∆′jdBβ.γ −∆′′j cBβ.γ

: ∆
′

jdBβ.γ −∆
′′

j cBβ.γ > 0

}
≤ δ ≤

≤ min
j∈N

{
−D(x∗) η+

j (x∗)
∆′jdBβ.γ −∆′′j cBβ.γ

: ∆
′

jdBβ.γ −∆
′′

j cBβ.γ < 0

}
.

(2.8)
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Similarly, if η−j (x̄) ≤ 0 we obtain

max
j∈N

{
−D(x∗) η−j (x∗)

∆̄′jdBβ.γ − ∆̄′′j cBβ.γ
: ∆̄

′

jdBβ.γ − ∆̄
′′

j cBβ.γ < 0

}
≤ δ ≤

≤ min
j∈N

{
−D(x∗) η−j (x∗)

∆̄′jdBβ.γ − ∆̄′′j cBβ.γ
: ∆̄

′

jdBβ.γ − ∆̄
′′

j cBβ.γ > 0

}
,

(2.9)

where ∆̄
′

j = cjνj−1 − cBB−1A.j and ∆̄
′′

j = djνj−1 − dBB−1A.j . Thus, we have proved
the following theorem:

Theorem 2.1. If δ satisfies (2.1), (2.6), (2.8) and (2.9) then x̄ =
(x̄B , x̄N ) where x̄B = x∗B+δβ.γ is an optimal solution of the perturbed PLFP problem
(with bγ → b

′

γ = bγ + δ).

Remark 2.2. Lower and upper bounds given in Theorem 2.1 are generalizations of
the corresponding bounds for LP , PLP and LFP . Indeed,

1. If β0 = 1 and gj(xj) = 0, j = 1, 2, . . . , n, then the PLFP reduces to PLP and this
means that D(x∗) = 1, ∆

′′

j = djνj − dBB−1A.j = 0, η+
j (x̄) = cjνj − cBB−1A.j =

∆
′

j , η
−
j (x̄) = cjνj−1− cBB−1A.j = ∆̄

′

j , j ∈ N, and Z(x̄) = P (x∗) + δcBβ.γ . Thus,
bounds (2.1) in the current form are valid for PLP too, and restrictions (2.8)
and (2.9) are not present in the bounds since ∆

′

jdBβ.γ −∆
′′

j cBβ.γ = ∆̄
′

jdBβ.γ −
∆̄
′′

j cBβ.γ = 0. Therefore, if δ satisfies (2.1) then x̄ = (x̄B , x̄N ) where x̄B = x∗B +
δβ.γ is an optimal solution of the perturbed PLP problem (when bγ → b

′

γ = bγ+δ).
2. If β0 = 1, gj(xj) = 0 and fj(xj), j = 1, 2, . . . , n, are linear functions then the
PLFP reduces to LP with bounded variables. In this case, optimality conditions
(2.8) and (2.9) and feasibility condition (2.1) are respectively as follows

η+
j (x∗) = cjνj − cBB−1A.j = cj − cBB−1A.j ≥ 0, if xj = 0,

η−j (x∗) = cjνj−1 − cBB−1A.j = cj − cBB−1A.j ≤ 0, if xj = uj ,

max

(
max
βiγ<0
1≤i≤m

uBi − x∗Bi
βiγ

, max
βiγ>0
1≤i≤m

−x∗Bi
βiγ

)
≤ δ ≤ min

(
min
βiγ>0
1≤i≤m

uBi − x∗Bi
βiγ

, min
βiγ<0
1≤i≤m

−x∗Bi
βiγ

)
.

3. If both gj(xj) and fj(xj), j = 1, 2, . . . , n, are linear functions then the PLFP

reduces to LFP and this means that cjνj = cj , d
j
νj = dj , ∆

′

j = cj −cBB−1A.j and
∆
′′

j = dj − dBB−1A.j . Therefore (2.6) in the current form is valid for LFP and
feasibility and optimality conditions are respectively as follows

max
βiγ>0

−x∗Bi
βiγ

≤ δ ≤ min
βiγ<0

−x∗Bi
βiγ

, i = 1, 2, . . . ,m,
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max
j∈N

{
−D(x∗) ηj(x∗)

∆′jdBβ.γ −∆′′j cBβ.γ
: ∆

′

jdBβ.γ −∆
′′

j cBβ.γ > 0

}
≤ δ ≤

≤ min
j∈N

{
−D(x∗) ηj(x∗)

∆′jdBβ.γ −∆′′j cBβ.γ
: ∆

′

jdBβ.γ −∆
′′

j cBβ.γ < 0

}
,

where ηj(x∗) = (cj − cBB−1A.j)− Z(x∗)(dj − dBB−1A.j).

Example 2.3. Consider the problem (PLFP ):

min Z(x) =

∑4
j=1 fj(xj)∑4
j=1 gj(xj)

s.t 3x1+ 4x2+ x3+ 2x4 = 21
x1+ 3x2+ x3+ 3x4 = 13
2x1+ x2+ 2x3+ 3x4 = 14

0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 5, 0 ≤ x4 ≤ 5

where

f1(x1) =
{

3x1, 0 ≤ x1 ≤ 1,
4x1 − 1, 1 ≤ x1 ≤ 5, g1(x1) =

{
4x1 + 1, 0 ≤ x1 ≤ 1,
3x1 + 2, 1 ≤ x1 ≤ 5,

f2(x2) =
{

2x2 + 1, 0 ≤ x2 ≤ 1,
3x2, 1 ≤ x2 ≤ 3, g2(x2) =

{
3x2 + 1, 0 ≤ x2 ≤ 1,
2x2 + 2, 1 ≤ x2 ≤ 3,

f3(x3) =

 x3 + 3, 0 ≤ x3 ≤ 2,
2x3 + 1, 2 ≤ x3 ≤ 3,
3x3 − 2, 3 ≤ x3 ≤ 5,

g3(x3) =

 3x3 + 1, 0 ≤ x3 ≤ 2,
2x3 + 3, 2 ≤ x3 ≤ 3,
x3 + 6, 3 ≤ x3 ≤ 5,

f4(x4) =

 x4 + 1, 0 ≤ x4 ≤ 1,
2x4, 1 ≤ x4 ≤ 3,
3x4 − 3, 3 ≤ x4 ≤ 5,

g4(x4) =

 4x4 + 1, 0 ≤ x4 ≤ 1,
2x4 + 3, 1 ≤ x4 ≤ 3,
x4 + 6, 3 ≤ x4 ≤ 5.

Using the simplex algorithm of Punnen and Pandey [10], the initial and the final
simplex tables are given as follows (see Tab. 1 and 2).

Table 1. Initial simplex

cB dB xB x1 x2 x3 x4 x5 x6 x7 b̄

M 0 x5 3 4 1 2 1 0 0 21
M 0 x6 1 3 1 3 0 1 0 13
M 0 x7 2 1 2 3 0 0 1 14
η+
j 2− 54M −7−176M

4
−11−160M

4
4− 56M 0 0 0 z = 5+48M

4

η−j 0 0 0 0 0 0 0

xj 0 0 0 0 21 13 14
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Table 2. Final simplex

cB dB xB x1 x2 x3 x4 x5 x6 x7 b̄

3 2 x2 0 1 −3/10 0 3/20 1/4 −7/20 3/2
1 4 x4 0 0 1/2 1 −1/4 1/4 1/4 3/2
4 3 x1 1 0 2/5 0 3/10 −1/2 3/10 4
η+
j 0 0 1.031 0 M − 2.623 M + 1 M − 1.438 z= .885

η−j 0 0 −.854 0 0 0 0

xj 32/10 21/10 2 1/2 0 0 0

The optimal solution is x∗ = (32/10, 21/10, 2, 1/2, 0, 0, 0)t. Here B = {2, 4, 1)}

and the matrix of the optimal basis is

0@ 4 2 3
3 3 1
1 3 2

1A and its inverse β = B−1 =0@ 3/20 1/4 −7/20
−1/4 1/4 1/4
3/10 −1/2 3/10

1A .

If b1 → b
′

1 = b1 + δ, then by using (2.1), (2.6), (2.8) and (2.9) we get

max
{

max{−2}, max{−22
3 , −22

3 }
}
≤ δ ≤ min

{
min{6, 6}, min{2}

}
⇒ −2 ≤ δ ≤ 2,

dBβ.1 = 1
5 > 0⇒ δ >

−278
10
1
5

= −139,

∆
′

3dBβ.1 −∆
′′

3cBβ.1 = 1 > 0⇒ δ ≥
−278
10 (1.031)

1
= −28.66,

∆̄
′

3dBβ.1 − ∆̄
′′

3cBβ.1 = −3
5 < 0⇒ δ ≥

−278
10 (−0.854)

−3
5

= −39.57.

Therefore, the following range is obtained for δ,

−2 ≤ δ ≤ 2.

3. CHANGES IN THE COEFFICIENTS OF NUMERATOR
OF THE OBJECTIVE

In this section our goal is to determine the lower and upper bounds for δ, which
guarantee that the replacement cji → c

′ j

i = cji + δ does not affect the optimal basis,
and the original optimal solution x∗ remains feasible and optimal.

By this replacement, we have to distinguish the following two cases:
Case 1. cji ∈

{
cjνj : νj ∈ {0, 1, . . . , τj}

}
,

Case 2. cji ∈
{
cB1
µ(B1)

, . . . , cBmµ(Bm)

}
.
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Case 1. cji is the coefficient of a non-basic variable. Thus, this change of the coefficient
does not affect feasibility of the vector x∗. However, it may affect the optimal value
of Z(x) and hence, can change the reduced costs η+

j (x∗) and η−j (x∗). So, by replacing
cγνγ → cγνγ + δ we have

Z̄(x∗) =
P (x∗) + δδγνγ

D(x∗)
. (3.1)

Now, the optimal solution x∗ of the original PLFP problem remains optimal for the
perturbed PLFP problem if we have

η̄+
j (x∗)=


(cjνj − cBB−1A.j)−

P (x∗) + δδγνγ
D(x∗)

(djνj − dBB−1A.j) ≥ 0, j 6= γ, j ∈ N,

(cγνγ + δ − cBB−1A.γ)−
P (x∗) + δδγνγ

D(x∗)
(dγνγ − dBB−1A.γ) ≥ 0, j = γ,

or 
∆
′

j −
P (x∗) + δδγνγ

D(x∗)
∆
′′

j ≥ 0, j 6= γ , j ∈ N,

∆
′

γ + δ −
P (x∗) + δδγνγ

D(x∗)
∆
′′

γ ≥ 0, j = γ.

(3.2)

From D(x∗) > 0, the relation (3.2) is satisfied if{
∆
′

jD(x∗)− (P (x∗) + δδγνγ )∆
′′

j ≥ 0, j 6= γ, j ∈ N,
(∆
′

γ + δ)D(x∗)− (P (x∗) + δδγνγ )∆
′′

γ ≥ 0, j = γ.
(3.3)

Therefore, we will get

max
j∈N
j 6=γ

{
D(x∗) η+

j (x∗)
δγνγ∆′′j

: ∆
′′

j < 0

}
≤ δ ≤ min

j∈N
j 6=γ

{
D(x∗) η+

j (x∗)
δγνγ∆′′j

: ∆
′′

j > 0

}
, (3.4)

and

δ


≥
−D(x∗) η+

γ (x∗)
D(x∗)− δγνγ∆′′γ

, if D(x∗)− δγνγ∆
′′

γ > 0,

≤
−D(x∗) η+

γ (x∗)
D(x∗)− δγνγ∆′′γ

, if D(x∗)− δγνγ∆
′′

γ < 0.

(3.5)

Similarly, if η̄−j (x∗) ≤ 0, we will get

max
j∈N
j 6=γ

{
D(x∗) η−j (x∗)

δγνγ ∆̄′′j
: ∆̄

′′

j > 0

}
≤ δ ≤ min

j∈N
j 6=γ

{
D(x∗) η−j (x∗)

δγνγ ∆̄′′j
: ∆̄

′′

j < 0

}
, (3.6)

and

δ


≤
−D(x∗) η−γ (x∗)
D(x∗)− δγνγ ∆̄′′γ

, if D(x∗)− δγνγ ∆̄
′′

γ > 0,

≥
−D(x∗) η−γ (x∗)
D(x∗)− δγνγ ∆̄′′γ

, if D(x∗)− δγνγ ∆̄
′′

γ < 0.

(3.7)
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Therefore, we have proved the following theorem.

Theorem 3.1. If δ satisfies (3.4), (3.5), (3.6), (3.7) and the convexity condition
for fj(xj) holds, then optimal solution x∗ of the original PLFP problem is also an
optimal solution of the perturbed PLFP problem (where cγνγ → cγνγ + δ).

Remark 3.2. Lower and upper bounds given in Theorem 2.1 are generalizations of
the corresponding bounds for LP , PLP and LFP . Indeed,

1. If both fj(xj) and gj(xj), j = 1, 2, . . . n, are linear functions then the PLFP
reduces to LFP . Therefore from (3.4) and (3.6) we conclude that −∞ ≤ δ ≤
∞ and from (3.5) and (3.7) it follows that δ ≤ −ηγ(x∗) where ηγ(x∗) = cγ −
cBB−1A.γ − Z(x∗)(dγ − dBB−1A.γ).

2. If β0 = 1 and gj(xj) = 0, j = 1, 2, . . . , n, then the PLFP reduces to PLP . In this
case, from (3.4), (3.6) and from (3.5), (3.7) we have, respectively,

−∞ ≤ δ ≤ ∞,

−∆
′

γ ≤ δ ≤ −∆̄
′

γ .

Case 2. cji is the coefficient of a basic variable. Then the replacement cBkµ(Bk)
→

c
′
Bk
µ(Bk)

= cBkµ(Bk)
+ δ affects the optimal value of P (x) as well as Z(x)

P̃ (x∗) = cBB−1b + δβk.b +
∑
j∈N

(cjνj − cBB−1A.j)δjνj − δ
∑
j∈N

βk.A.jδ
j
νj + α

= P (x∗) + δβk.(b−
∑
j∈N

A.jδ
j
νj ).

In addition, the replacement cBkµ(Bk)
→ c

′
Bk
µ(Bk)

has an affect on the non-basic reduced
costs:

cjνj − c
′

BB−1A.j = cjνj − cBB−1A.j − δβk.A.j = ∆
′

j − δβk.A.j ,

cjνj−1 − c
′

BB−1A.j = cjνj−1 − cBB−1A.j − δβk.A.j = ∆̄
′

j − δβk.A.j .

Therefore, to satisfy the optimality condition, we can determine the new values
η+
j and η−j as

η̃+
j (x∗) = ∆

′

j − δβk.A.j −

P (x∗) + δβk.(b−
∑
j∈N

A.jδ
j
νj )

D(x∗)
∆
′′

j =

=

(∆
′

j − δβk.A.j)D(x∗)−
(
P (x∗) + δβk.(b−

∑
j∈N

A.jδ
j
νj )
)

∆
′′

j

D(x∗)
≥ 0. (3.8)
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The relation (3.8) is satisfied if

(∆
′

j − δβk.A.j)D(x∗)−
(
P (x∗) + δβk.(b−

∑
j∈N

A.jδ
j
νj )
)

∆
′′

j ≥ 0,

which implies

δβk.

(
A.jD(x∗) + (b−

∑
j∈N

A.jδ
j
νj )∆

′′

j

)
≤ D(x∗)η+

j (x∗), j ∈ N.

Thus

max
j∈N

(
D(x∗) η+

j (x∗)

βk.
“
A.jD(x∗) + (b−

X
j∈N

A.jδ
j
νj )∆

′′
j

” : βk.
“
A.jD(x∗) + (b−

X
j∈N

A.jδ
j
νj )∆

′′
j

”
< 0

)

≤ δ ≤

min
j∈N

(
D(x∗) η+

j (x∗)

βk.
“
A.jD(x∗) + (b−

X
j∈N

A.jδ
j
νj )∆

′′
j

” : βk.
“
A.jD(x∗) + (b−

X
j∈N

A.jδ
j
νj )∆

′′
j

”
> 0

)
.

(3.9)

Similarly, if η̃−j (x∗) ≤ 0, we will get

max
j∈N

(
D(x∗) η−j (x∗)

βk.
“
A.jD(x∗) + (b−

P
j∈N

A.jδ
j
νj )∆̄

′′
j

” : βk.
“
A.jD(x∗) + (b−

X
j∈N

A.jδ
j
νj )∆̄

′′
j

”
> 0

)

≤ δ ≤

min
j∈N

(
D(x∗) η−j (x∗)

βk.
“
A.jD(x∗) + (b−

P
j∈N

A.jδ
j
νj )∆̄

′′
j

” : βk.
“
A.jD(x∗) + (b−

X
j∈N

A.jδ
j
νj )∆̄

′′
j

”
< 0

)
.

(3.10)

Therefore, we have proved the following theorem.

Theorem 3.3. If δ satisfies (3.9), (3.10) and the convexity condition for fj(xj) holds
then optimal solution x∗ of the original PLFP problem is also an optimal solution of

the perturbed PLFP problem (with cBkµ(Bk)
→ c

′
Bk
µ(Bk)

).

Remark 3.4. Observe that the range obtained in Theorem 3.3 may be considered
as a generalization of the corresponding range for the LFP , PLP and LP problems.
Thus we have

1. If both fj(xj) and gj(xj), j = 1, 2, . . . n, are linear functions then the PLFP
reduces to LFP . In this case, the restrictions (3.9) and (3.10) reduce to

max
j∈N

{
D(x∗) ηj(x∗)

βk.

(
A.jD(x∗) + b∆′′j

) : βk.

(
A.jD(x∗) + b∆

′′

j

)
< 0

}
≤ δ ≤

≤ min
j∈N

{
D(x∗) ηj(x∗)

βk.

(
A.jD(x∗) + b∆′′j

) : βk.

(
A.jD(x∗) + b∆

′′

j

)
> 0

}
,

where ηj = ∆
′

j − Z(x∗)∆
′′

j .
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2. If β0 = 1 and gj(xj) = 0, j = 1, 2, . . . , n, then the PLFP reduces to PLP .
Therefore the relations (3.9) and (3.10) exchange to

max
j∈N

{
∆
′

j

βk.A.j
: βk.A.j < 0

}
≤ δ ≤ min

j∈N

{
∆
′

j

βk.A.j
: βk.A.j > 0

}
,

max
j∈N

{
∆̄
′

j

βk.A.j
: βk.A.j > 0

}
≤ δ ≤ min

j∈N

{
∆̄
′

j

βk.A.j
: βk.A.j < 0

}
.

Example 3.5. Consider Example 2.3. For the given optimal basis and solution we
consider the following two cases:

Non-basic index: Let c31 → c31 + δ. In this case, γ = 3 and N = {3}. Since
γ 6= j ∈ N , the relations (3.4) and (3.6) are not applicable. Hence, from (3.5), (3.7)
and the convexity of fj(xj) we have

D(x∗)− δ31∆
′′

3 = 29 > 0 ⇒ δ ≥
−139

5 (1.031)

29 = −0.99,

D(x∗)− δ31∆̄
′′

3 = 27 > 0 ⇒ δ ≤
−139

5 (−0.854)

27 = 0.88,

1 ≤ 2 + δ ≤ 3 ⇒ −1 ≤ δ ≤ 1.

Finally, we obtain the following bounds for δ:

−0.99 ≤ δ ≤ 0.88.

Basic index: Let c11 → c11+δ. In this case by using (3.9), (3.10) and the convexity
of fj(xj) we have

β3.

(
A.3D(x∗) + (b−A.3δ3ν3)∆

′′

3

)
= 9.2 > 0⇒

⇒ δ ≤ min
j∈{3}

{ D(x∗)η+
j (x∗)

β3.

(
A.3D(x∗) + (b−A.3δ3ν3)∆′′3

)} =
139
5 (1.031)

9.2
= 3.115,

β3.

(
A.3D(x∗) + (b−A.3δ3ν3)∆̄

′′

3

)
=

62
5
> 0⇒

⇒ δ ≥ max
j∈{3}

{ D(x∗)η−j (x∗)

β3.

(
A.3D(x∗) + (b−A.3δ3ν3)∆̄′′3

)} =
139
5 (−0.854)

62
5

= −1.915,

3 ≤ 4 + δ ⇒ δ ≥ −1

Hence, we obtain the following bounds for δ:

−1 ≤ δ ≤ 3.115.
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4. CHANGES IN THE COEFFICIENTS OF THE DENOMINATOR
OF THE OBJECTIVE

In this section, our goal is to determine the lower and upper bounds for δ, which
guarantee that the replacement dji → d

′ j

i = dji + δ does not affect the optimal basis,
and the original optimal solution x∗ remains feasible and optimal.

By considering this replacement, we have to distinguish the following two cases:
Case 1. dji ∈

{
djνj : νj ∈ {0, 1, . . . , τj}

}
,

Case 2. dji ∈
{
dB1
µ(B1)

, . . . , dBmµ(Bm)

}
.

Case 1. dji is the coefficient of a non-basic variable. Thus, this change of the coefficient
does not affect the feasibility of the vector x∗. However, it may affect the optimal
value of Z(x) and hence, can change the reduced costs η+

j (x∗) and η−j (x∗). So, by
replacing dγνγ → dγνγ + δ we will have

Z̃(x∗) =
P (x∗)

D(x∗) + δδγνγ
. (4.1)

To preserve the strict positivity of the denominator D(x), we need to have

D(x∗) + δδγνγ > 0⇒ δ >
−D(x∗)
δγνγ

. (4.2)

Now, the optimal solution x∗ of the original PLFP problem remains optimal for the
perturbed PLFP problem if we have

η̃+
j (x∗)=


(cjνj − cBB−1A.j)−

P (x∗)
D(x∗) + δδγνγ

(djνj − dBB−1A.j) ≥ 0, j 6= γ, j ∈ N,

(cγνγ − cBB−1A.γ)− P (x∗)
D(x∗) + δδγνγ

(dγνγ + δ − dBB−1A.γ) ≥ 0, j = γ,

or 
∆
′

j −
P (x∗)

D(x∗) + δδγνγ
∆
′′

j ≥ 0, j 6= γ, j ∈ N,

∆
′

γ −
P (x∗)

D(x∗) + δδγνγ
(∆
′′

γ + δ) ≥ 0, j = γ.
(4.3)

From (4.2), the relation (4.3) is satisfied if

{
∆
′

j

[
D(x∗) + δδγνγ

]
− P (x∗)∆

′′

j ≥ 0, j 6= γ, j ∈ N,
∆
′

γ

[
D(x∗) + δδγνγ

]
− P (x∗)

[
∆
′′

γ + δ
]
≥ 0, j = γ.

(4.4)
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Therefore, we will get

max
j∈N
j 6=γ

{
−D(x∗) η+

j (x∗)
δγνγ∆′j

: ∆
′

j > 0

}
≤ δ ≤ min

j∈N
j 6=γ

{
−D(x∗) η+

j (x∗)
δγνγ∆′j

: ∆
′

j < 0

}
, (4.5)

and

δ


≥
−D(x∗) η+

γ (x∗)
δγνγ∆′γ − P (x∗)

, if δγνγ∆
′

γ − P (x∗) > 0,

≤
−D(x∗) η+

γ (x∗)
δγνγ∆′γ − P (x∗)

, if δγνγ∆
′

γ − P (x∗) < 0.

(4.6)

Similarly, if η̃−j ≤ 0 we will get

max
j∈N
j 6=γ

{
−D(x∗) η−j (x∗)

δγνγ ∆̄′j
: ∆̄

′

j < 0

}
≤ δ ≤ min

j∈N
j 6=γ

{
−D(x∗) η−j (x∗)

δγνγ ∆̄′j
: ∆̄

′

j > 0

}
, (4.7)

and

δ


≤
−D(x∗) η−γ (x∗)
δγνγ ∆̄′γ − P (x∗)

, if δγνγ ∆̄
′

γ − P (x∗) > 0,

≥
−D(x∗) η−γ (x∗)
δγνγ ∆̄′γ − P (x∗)

, if δγνγ ∆̄
′

γ − P (x∗) < 0.

(4.8)

Therefore, we have proved the following theorem:

Theorem 4.1. If δ satisfies (4.2), (4.5), (4.6), (4.7), (4.8) and gj(xj) is concave, then
x∗ is an optimal solution of the perturbed PLFP problem (where dγνγ → dγνγ + δ).

Case 2. dji is the coefficient of a basic variable. Thus the replacement dBkµ(Bk)
→

d
′
Bk
µ(Bk)

= dBkµ(Bk)
+ δ affects the optimal value of D(x) as well as Z(x)

D̂(x∗) = dBB−1b + δβk.b +
∑
j∈N

(djνj − dBB−1A.j)δjνj − δ
∑
j∈N

βk.A.jδ
j
νj + β0 =

= D(x∗) + δβk.(b−
∑
j∈N

A.jδ
j
νj ).

To preserve the strict positivity of the denominator D(x), we need to have

D(x∗) + δβk.(b−
∑
j∈N

A.jδ
j
νj ) > 0. (4.9)
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Therefore, we will have

δ



>
−D(x∗)

βk.(b−
∑
j∈N

A.jδ
j
νj )

, if βk.(b−
∑
j∈N

A.jδ
j
νj ) > 0,

<
−D(x∗)

βk.(b−
∑
j∈N

A.jδ
j
νj )

, if βk.(b−
∑
j∈N

A.jδ
j
νj ) < 0.

(4.10)

In addition, the replacement dBkµ(Bk)
→ d

′
Bk
µ(Bk)

has an effect on the non-basic reduced
costs:

djνj − d
′

BB−1A.j = djνj − dBB−1A.j − δβk.A.j = ∆
′′

j − δβk.A.j ,

djνj−1 − d
′

BB−1A.j = djνj−1 − dBB−1A.j − δβk.A.j = ∆̄
′′

j − δβk.A.j .
Therefore, to satisfy the optimality condition, we can determine the new values
η+
j and η−j as

η̂+
j (x∗) = ∆

′

j −
P (x∗)

D(x∗) + δβk.(b−
∑
j∈N A.jδ

j
νj )

(∆
′′

j − δβk.A.j) =

=
∆
′

j

(
D(x∗) + δβk.(b−

∑
j∈N A.jδ

j
νj )
)
− P (x∗)(∆

′′

j − δβk.A.j)
D(x∗) + δβk.(b−

∑
j∈N A.jδ

j
νj )

≥ 0.

(4.11)

From (4.9), the relation (4.11) is satisfied if

∆
′

j

(
D(x∗) + δβk.(b−

∑
j∈N

A.jδ
j
νj )
)
− P (x∗)(∆

′′

j − δβk.A.j) ≥ 0.

Therefore, we have

max
j∈N

(
−D(x∗) η+

j (x∗)

βk.
“
A.jP (x∗) + (b−

P
j∈N

A.jδ
j
νj )∆

′
j

” : βk.
“
A.jP (x∗) + (b−

X
j∈N

A.jδ
j
νj )∆

′
j

”
> 0

)

≤ δ ≤

min
j∈N

(
−D(x∗) η+

j (x∗)

βk.
“
A.jP (x∗) + (b−

P
j∈N

A.jδ
j
νj )∆

′
j

” : βk.
“
A.jP (x∗) + (b−

X
j∈N

A.jδ
j
νj )∆

′
j

”
< 0

)
.

(4.12)

Similarly, if η̂−j (x∗) ≤ 0, we will get

max
j∈N

(
−D(x∗) η−j (x∗)

βk.
“
A.jP (x∗) + (b−

P
j∈N

A.jδ
j
νj )∆̄

′
j

” : βk.
“
A.jP (x∗) + (b−

X
j∈N

A.jδ
j
νj )∆̄

′
j

”
< 0

)

≤ δ ≤

min
j∈N

(
−D(x∗) η−j (x∗)

βk.
“
A.jP (x∗) + (b−

P
j∈N

A.jδ
j
νj )∆̄

′
j

” : βk.
“
A.jP (x∗) + (b−

X
j∈N

A.jδ
j
νj )∆̄

′
j

”
> 0

)
.

(4.13)
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Thus, we have the following theorem:

Theorem 4.2. If δ satisfies (4.10), (4.12), (4.13) and gj(xj) is concave, then x∗ is

an optimal solution for the perturbed PLFP problem (with dBkµ(Bk)
→ d

′
Bk
µ(Bk)

).

Example 4.3. Consider Example 2.3. For the given optimal basis and solution, we
consider the following two cases:

Non-basic index: Let d3
1 → d3

1 + δ. In this case, γ = 3 and N = {3}. Since
γ 6= j ∈ N , therefore the relations (4.5) and (4.7) are not applicable. Hence, from
(4.2), (4.6), (4.8) and concavity of gj(xj) we will have

δ >
−139

5
2 = −13.9,

δγνγ∆
′

γ − P (x∗) = −23 < 0 ⇒ δ ≤
−139

5 (1.031)

−23 = 1.246,

δγνγ ∆̄
′

γ − P (x∗) = −25 < 0 ⇒ δ ≥
−139

5 (−0.854)

−25 = −0.949,

1 ≤ 2 + δ ≤ 3 ⇒ −1 ≤ δ ≤ 1.
Hence, we obtain the following range for δ:

−0.961 ≤ δ ≤ 1.

Basic index: Let d1
1 → d1

1 + δ. In this case using (4.10), (4.12), (4.13) and the
concavity of gj(xj) we will have

β3.(b−A.3δ
3
1) = 16

5 > 0 ⇒ δ >
−139

5
16
5

= −8.685,

β3.

(
A.3P (x∗) + (b−A.3δ3ν3)∆

′

3

)
= 62

5 > 0 ⇒ δ ≤
−139

5 (1.031)
62
5

= −2.311,

β3.

(
A.3P (x∗) + (b−A.3δ3ν3)∆̄

′

3

)
= 46

5 > 0 ⇒ δ ≤
−139

5 (−0.854)
46
5

= 2.581,

3 + δ ≤ 4 ⇒ δ ≤ 1.

Finally, the following range is obtained for δ:

−2.311 ≤ δ ≤ 1.

5. SUMMARY

The sensitivity analysis of optimal solutions has been presented in this paper. Three
cases were considered: (i) changes in the right-hand-side vector, (ii) changes in the
coefficients of the numerator of the objective function, (iii) changes in the coefficients
of the denominator of the objective function. In each case the underlying theory for
sensitivity analysis has been presented to obtain the bounds for each perturbation.
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