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SMOOTHED ESTIMATOR
OF THE PERIODIC HAZARD FUNCTION

Abstract. A smoothed estimator of the periodic hazard function is considered and its
asymptotic probability distribution and bootstrap simultaneous confidence intervals are de-
rived. Moreover, consistency of the bootstrap method is proved and some applications of
the developed theory are presented. The bootstrap method is based on the phase-consistent
resampling scheme developed in Dudek and Leśkow [6].
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1. INTRODUCTION

Estimation of hazard function is very important in many research fields like biostatis-
tics or telecommunication. The case of a periodic hazard function has been considered
in [11], where it has been shown that the asymptotic distribution of the developed
periodic histogram sieve estimator is normal. Dudek and Leśkow have shown in [6]
that this result remains valid under slightly weaker assumptions and, moreover, they
constructed bootstrap simultaneous confidence intervals for the hazard function. The
bootstrap estimator was based on a new phase-consistent resampling scheme (PCRS),
retaining the temporal order and henceforth applicable to problems with a periodic
structure. Let us note that other existing resampling schemes considered in [2]–[5]
are applicable only in problems with a stationary structure.

The histogram sieve estimator introduced in [11] is piecewise constant, while in ap-
plications rather smoothed versions of the estimator are preferable. Therefore Leśkow
considered in [12] a kernel smoothed version of the periodic histogram sieve estimator.
Unfortunately, we think that the proof of the theorem in which the asymptotic dis-
tribution was established in deriving its asymptotic distribution is incomplete. There
is a mistake where the variance is calculated. In the present paper we rectify this but
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under different conditions and, following [6], we use the PCRS to construct bootstrap
simultaneous confidence intervals for the smoothed version of the hazard function.

The paper is organized in the following way. Section 2 contains the formulation of
the problem and the assumptions that are essential for our results. The asymptotic
distribution of the considered estimator is established in Section 3. In Section 4 the
consistency of PCRS is proved. Some concluding remarks are placed in Section 5.

2. PROBLEM FORMULATION

Let (Ω,F , P ) be a probability space with a filtration Ft. We observe a counting
process {X(t), t ∈ T }, where T = [0, T ]. We consider the Nelson-Aalen model in
which the stochastic intensity of X(t) is of the form: λ(t) = λ0(t)Y (t). The function
λ0(t) is deterministic and nonnegative and it is called the hazard function. The
stochastic process Y (t) is nonnegative, left-continuous and adapted (for more details
see [2], chapter II).

The multiplicative intensity model is very popular especially in biomedical settings
because of its interpretation. One may consider Y (t) as the number at risk at time t
(that can be numer of patients after some medical treatment) and λ0(t) for example
as the intensity of death.

In the sequel it will be assumed that λ0(t) is a periodic function with the period
P and Y (t) is periodically correlated which means that it has periodic mean and
covariance functions. Such model will be called the periodic multiplicative intensity
model. It is considered also in [6], where applications to some telecommunication
traffic real data example are shown. Leśkow in [11] introduced the histogram maxi-
mum likelihood estimator of the periodic function. The idea of its construction is to
split a single realization of the process X to obtain the family of counting processes
{Xk(t) : t ∈ [0, P ], k = 1, 2 . . .}:

Xk(t) = X(t+ P (k − 1))−X(P (k − 1)),
Yk(t) = Y (t+ P (k − 1)),

where t ∈ [0, P ] and k = 1, 2 . . ..
The stochastic intensity of the process Xk(t) is of the form

λk(t) = λ0(t)Yk(t), t ∈ [0, P ].

The estimator of λ0(t) is defined as follows

λ̂n(t) =
mn∑
l=1

∑n
k=1Xk(Al,mn

)∑n
k=1

∫
Al,mn

Yk(u)du
1Al,mn

(t), t ∈ [0, P ], (2.1)

where Al,mn = ((l − 1)P/mn, lP/mn] (l = 1, . . . ,mn) is the l-th subinterval of [0, P ]
and, with some abuse of notation, we write Xk(Al,mn) for Xk(lP/mn) − Xk((l −
1)P/mn). The same convention will be used throughout the paper for all other pro-
cesses, especially those arising from the Doob-Meyer decomposition. The estimator
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λ̂n is defined on the set Dn = {
∑n
k=1

∫
Al,mn

Yk(u)du > 0}. When the denominator of

(2.1) is equal to zero we put λ̂n(t) = 0.
In papers [11] and [6] the asymptotic distribution of λ̂n(t) is determined. In [6]

this result is obtained under less restrictive assumptions and additionally the multi-
dimensional case is considered.

For kernels K with support [−1, 1] it is natural to define a smoothed version of
the estimator by

η̂n(t) =
1
Pbn

∞∫
−∞

K

(
t− s
Pbn

)
λ̂n(s)ds =

1
Pbn

t+Pbn∫
t−Pbn

K

(
t− s
Pbn

)
λ̂n(s)ds, (2.2)

where λ̂n(s) = 0 for s /∈ [0, P ], and hence for t ∈ [0, P ] it can be written as

η̂n(t) =
1
Pbn

P∫
0

K

(
t− s
Pbn

)
λ̂n(s)ds. (2.3)

We assume that the kernel function K with support [−1, 1] is nonnegative, bounded
and fulfills the Lipschitz condition. Additionally

∫ 1

−1
K(u)du = 1 and bn → 0 as

n→∞.
Moreover, in the sequel we assume that the following conditions hold:

A1 Process Y is periodically correlated with period P and is almost surely bounded
away from zero: Y (t, ω) ≥ δ > 0 and δ does not depend on t and ω.

A2 The process Y is uniformly bounded:

Y (t, ω) < C0

and C0 does not depend on t and ω.
A3 Process Y is α-mixing with α(k) = o(k−2).
A4 The rate of the growth of the sieve is mn ∝

√
n.

A5 The hazard function λ0 is periodic (the length of the period is P ).
A6 The expected value of the process Y and the hazard function λ0 fulfill the Lip-

schitz condition on [0, P ] i.e. there exist constants C1 and C2 such that for any
s, t ∈ [0, P ]

|EY (s)− EY (t)| ≤ C1|s− t|,
|λ0(s)− λ0(t)| ≤ C2|s− t|.

A7 bn ∝ n−ν , where ν ∈ (5/12, 1/2).

Symbol ∝ denotes proportionality. By an ∝ bn we mean that there exists a positive
constantD0 such that an/bn = D0. Assumptions A2–A6 are the same as in [6]. In A1
instead of EY (t) the process Y is bounded away from zero. Nonnegativity is not a
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very restrictive condition. It appears also in the fundamental work of Aalen [1] in the
context of the integrated hazard function estimation. It means that our group at risk
is always nonempty. On the other hand, A2 denotes boundedness of the group at risk.
In the real data applications, where Y (t) is e.g. a group of patients at time t after
some medical treatment or the number of working computers (see telecommunication
example in [6]), this assumption is always fulfilled. Instead of φ-mixing condition
required in papers [11] and [12], α-mixing is considered. Moreover, L2 continuity of
Y process and periodicity of its distribution is replaced by assumption A6, which is
easier to verify.

In the next sections we establish the asymptotic distribution of η̂n(t). Moreover,
we construct its bootstrap version η̂∗n(t) using the algorithm proposed in [6]. We show
the consistency of this bootstrap method in one and multidimensional case.

3. ASYMPTOTIC RESULTS

In this Section we show that the asymptotic distribution of the estimator η̂n(t) is
normal. Although similar result first appeared in [12], the proof given there does not
seem complete. Especially, bn = m−1

n was assumed in [12], while we have to assume bn
to approach zero slower than m−1

n . In effect, in contrary to [12], our kernel smoothes
over an increasing number of histogram bins. The asymptotic variance in our result
is equal to that proposed in [12]. It can be shown, however, that the sequence defined
in [12] does not converge to this quantity.

Theorem 3.1. Under A1–A7, for any t ∈ (0, P )√
nbn (η̂n(t)− λ0(t)) d−→ N

(
0, σ2(t)

)
, (3.1)

where

σ2(t) =
λ0(t)
EY (t)

1∫
−1

K2(u)du. (3.2)

Theorem 3.1 provides a way to construct the pointwise confidence intervals for
the hazard function. Moreover, this result is the first step to get the simultaneous
confidence intervals, which are much more important in applications (see [7]).

Before we present the proof of Theorem 3.1 we introduce the Doob-Meyer decom-
position for counting processes, which may be found e.g. in [2] pp. 66–67.

For the counting process X the Doob-Meyer decomposition states the existence of
a cadlag nondecreasing predictable process Λ such that

M = X − Λ (3.3)

is a uniformly integrable martingale, zero at time zero. The process Λ is called the
compensator of X.
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In the multiplicative intensity model the compensator Λ is of the form (see [2]
p. 177)

Λ(t) =

t∫
0

λ0(s)Y (s)ds. (3.4)

In the following we denote by Λk(t) and Mk(t) the compensator and the related
martingale of the counting processXk(t), respectively. Also, without loss of generality,
we assume P = 1.

The following three lemmas will be essential for showing (3.1).

Lemma 3.2. For any t ∈ (0, 1) and for n large enough we have

mn∑
l=1

1
bn

∫
Al,mn

K

(
t− s
bn

)
ds = 1, (3.5)

mn∑
l=1

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

≤ G

bnmn
, (3.6)

where G is a nonnegative positive constant independent of n.

Proof. The left-hand side of (3.5) can be rewritten as follows

1
bn

1∫
0

K

(
t− s
bn

)
ds =

1
bn

t+bn∫
t−bn

K

(
t− s
bn

)
ds.

Putting u = (t− s)/bn we get
∫ 1

−1
K (u) du, which is equal to 1.

Inequality (3.6) is a straightforward consequence of nonnegativity and bounded-
ness of the function K and the fact that the number of nonzero summands in the
sum in question is 2bnmn (the length of the integration interval is 2bn and it contains
2bnmn intervals of the length 1/mn).

Lemma 3.3. Define Ln(t) as follows

Ln(t) =
1

EY (t)

mn∑
l=1

Wl,n

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

 , (3.7)

where Wl,n = mn/n
∑n
k=1Xk(Al,mn

).
Under A1–A7, Ln(t) and η̂n(t) are asymptotically equivalent, i.e.√

nbn (Ln(t)− η̂n(t))
p−→ 0

for each t ∈ (0, 1).



234 Anna Dudek

Proof. By Ul,n we denote the sum mn/n
∑n
k=1

∫
Al,mn

Yk(u)du.
We show that

(nbn)1/2
√

E|Ul,n − EY (t)|2 (3.8)

is bounded from above by a term which tends to zero as n→∞ and is independent
of l such that Al,mn

is included in the interval (t− bn, t+ bn).
We have

[
E
∣∣∣(nbn)1/2 (Ul,n − EY (t))

∣∣∣2]1/2≤
E

∣∣∣∣∣∣∣
√
bn
n
mn

n∑
k=1

∫
Al,mn

(Yk(u)− EYk(u)) du

∣∣∣∣∣∣∣
2

1/2

+

+

∣∣∣∣∣∣∣
√
bn
n
mn

n∑
k=1

∫
Al,mn

(EYk(u)− EY (t)) du

∣∣∣∣∣∣∣ .
First we show the convergence to zero of the last term.

Since Y is periodically correlated, we get∣∣∣∣∣∣∣
√
bn
n
mn

n∑
k=1

∫
Al,mn

(EY1(u)− EY (t)) du

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣(bnn)1/2mn

∫
Al,mn

(EY (u)− EY (t)) du

∣∣∣∣∣∣∣ .
Due to assumption A6 we have∣∣∣∣∣∣∣(bnn)1/2mn

∫
Al,mn

(EY (u)− EY (t)) du

∣∣∣∣∣∣∣ ≤ C
√
nbnbn,

where C is a positive constant independent of n. From assumption A7 we get the
required convergence to zero.

Now we consider the following expression

E

∣∣∣∣∣∣∣
√
bn
n
mn

n∑
k=1

∫
Al,mn

(Yk(u)− EYk(u)) du

∣∣∣∣∣∣∣
2

. (3.9)

Notice that

E

√bn
n
mn

n∑
k=1

∫
Al,mn

(Yk(u)− EYk(u)) du


2

=

=
bnm

2
n

n

n∑
k=1

∫
Al,mn

∫
Al,mn

E (Yk(u)− EYk(u)) (Yk(v)− EYk(v)) dvdu+

+
bnm

2
n

n

n∑
k=1

n∑
k′=1,k′ 6=k

∫
Al,mn

∫
Al,mn

E (Yk(u)− EYk(u)) (Yk′(v)− EYk′(v)) dvdu.
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Due to A1 the right-hand side of the last equation can be rewritten in the following
way

bnm
2
n

∫
Al,mn

∫
Al,mn

E (Y (u)− EY (u)) (Y (v)− EY (v)) dvdu+

+
bnm

2
n

n

n∑
k=1

n∑
k′=1,k′ 6=k

∫
Al,mn

∫
Al,mn

Cov (Yk(u), Yk′(v)) dudv.

By A2 we get that the first term is bounded from above by D1bn, where D1 is a
positive constant independent of n. We denote the second term by II. Since Y is
α-mixing and has bounded moments by Corollary A.2. from [8] we get

|II| ≤ bnm
2
n

n

n∑
k=1

n∑
k′=1,k′ 6=k

∫
Al,mn

∫
Al,mn

C1α
1−2/p‘(|k − k′|)dudv,

where p‘ is the order of a suitably chosen moment of Y (here p‘ = 5) and C1 is a
positive constant independent of n. By A3 we get II ≤ D2bn, where D2 is a positive
constant independent of n. This fact ends the proof of the convergence of (3.8) to
zero.

Now observe that

E
∣∣∣(nbn)1/2 (Ln(t)− η̂n(t))

∣∣∣ ≤
≤

mn∑
l=1

E
∣∣∣∣(nbn)1/2

Wl,n (Ul,n − EY (t))
Ul,nEY (t)

∣∣∣∣ 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds ≤

≤
mn∑
l=1

1
EY (t)

1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

√
E
∣∣∣(nbn)1/2 (Ul,n − EY (t))

∣∣∣2 E
(
Wl,n

Ul,n

)2

.

By A1 we get that U2
l,n ≥ δ2 and

E
(
Wl,n

Ul,n

)2

≤
EW 2

l,n

δ2
.

Additionally, because for w 6= v

E (Xw(Al,mn
)Xv(Al,mn

)) ≤ F0m
−3/2
n (3.10)

we have

EW 2
l,n =

m2
n

n2

n∑
k=1

n∑
k′=1,k′ 6=k

E (Xk(Al,mn)Xk′(Al,mn)) +
m2
n

n2

n∑
k=1

E
(
X2
k(Al,mn)

)
≤

≤ F1
√
mn + F2

mn

n
,

where F1, F2 are positive constants independent of n.
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Finally,

E
∣∣∣(nbn)1/2 (Ul,n − EY (t))

∣∣∣2 E
(
Wl,n

Ul,n

)2

≤ F3
√
mnnb

3
n, (3.11)

which together with (3.5), A4 and A7 completes the proof of the lemma.

Lemma 3.4. Under A1–A7

bnm
2
n

n

n∑
k=1

mn∑
l=1

1
(EY (t))2

Mk(Al,mn
)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

p−→ 0.

Proof. We define the martingale array {Sni, 1 ≤ i ≤ n}, where

Sni =
bnm

2
n

n

i∑
k=1

mn∑
l=1

1
(EY (t))2

Mk(Al,mn
)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

.

Due to Theorem 3.2 from [8] in order to obtain desired convergence it is sufficient to
verify the following conditions for Hni = Sni − Sn,i−1:

(i) maxi |Hni|
p−→ 0,

(ii)
∑
iH

2
ni

p−→ 0,
(iii) E

(
maxiH2

ni

)
is bounded.

To get (i), (ii) and (iii) it is enough to show that
∑n
i=1 E(H2

ni)→ 0.
By A1, A5, A7 and the fact that the increments of a martingale are uncorrelated

we get

n∑
i

E(H2
ni) =

b2nm
4
n

n2

n∑
k=1

mn∑
l=1

1
(EY (t))4

EM2
k (Al,mn

)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


4

=

=
b2nm

4
n

n2

n∑
k=1

mn∑
l=1

1
(EY (t))4

∫
Al,mn

λ0(u)EYk(u)du

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


4

≤

≤ b2nm
4
n

n2
nC2

1
mn

1
(bnmn)3

=
C2

nbn
,

where C2 is a positive constant independent of n. This ends the proof.

Now we prove Theorem 3.1.

Proof. Since Ln(t) and η̂n(t) are asymptotically equivalent (Lemma 3.3), we show that
the limit distribution of Zn(t) = (nbn)1/2 (Ln(t)− λ0(t)) is asymptotically normal
with mean zero and variance given by (3.2).
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Using the Doob-Meyer decomposition for our counting process X, we can rewrite
Zn(t) as follows

Zn(t) =
√
nbn

 1
EY (t)

mn∑
l=1

Wl,n

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

− λ0(t)

 =

=
√
nbn

mn

n

1
EY (t)

n∑
k=1

mn∑
l=1

Mk(Al,mn
)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

+

+
√
nbn

mn

n

1
EY (t)

n∑
k=1

mn∑
l=1

Λk(Al,mn)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

−√nbnλ0(t).

Denote

I =
√
nbn

mn

n

1
EY (t)

n∑
k=1

mn∑
l=1

Λk(Al,mn
)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

−√nbnλ0(t).

First we show that I converges to zero in probability.
The compensator Λk of the counting processXk on the interval Al,mn

is of the form
Λk(Al,mn

) =
∫
Al,mn

λ0(s)Yk(s)ds (for more details see [2], pp. 72–77). Notice that

I =

√
bn
n

mn

EY (t)

n∑
k=1

mn∑
l=1

∫
Al,mn

λ0(s) (Yk(s)− EYk(s)) ds

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

+

+

√
bn
n

mn

EY (t)

n∑
k=1

mn∑
l=1

∫
Al,mn

λ0(s)EYk(s)ds

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

−√nbnλ0(t).

The hazard function λ0(t) and the inverse of the mean function EY (t) are bounded
so we get

|I| ≤ C1

mn∑
l=1

∣∣∣∣∣∣∣
√
bn
n
mn

n∑
k=1

∫
Al,mn

(Yk(s)− EYk(s)) ds

∣∣∣∣∣∣∣
 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

+

+

∣∣∣∣∣∣∣
√
bn
n

mn

EY (t)

n∑
k=1

mn∑
l=1

∫
Al,mn

λ0(s)EYk(s)ds

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

−√nbnλ0(t)

∣∣∣∣∣∣∣,
where C1 is a positive constant independent of n.
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In the proof of Lemma 3.3 it was shown that

E

√bn/nmn

n∑
k=1

∫
Al,mn

(Yk(s)− EYk(s)) ds


2

≤ C2bn,

where C2 is a positive constant independent of n. As a consequence we have

E

∣∣∣∣∣∣∣
√
bn/nmn

n∑
k=1

∫
Al,mn

(Yk(s)− EYk(s)) ds

∣∣∣∣∣∣∣ ≤
√
C2bn.

Given the equality (3.5) the first term on the right-hand side of the considered sum
tends to zero in probability.

Now we consider the second term. Under assumption A1 and (3.5) we get, for
large n

III =

∣∣∣∣∣∣∣
√
bnnmn

EY (t)

mn∑
l=1

∫
Al,mn

λ0(s)EY (s)ds

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

−√nbnλ0(t)

∣∣∣∣∣∣∣ ≤
≤
√
nbn

EY (t)

mn∑
l=1

mn

∫
Al,mn

|λ0(s)EY (s)− λ0(t)EY (t)| ds

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

 .

Moreover, by A6 we have

|λ0(s)EY (s)− λ0(t)EY (t)| ≤ Dbn, (3.12)

where D is a positive constant independent of n.
Due to (3.12) and (3.5)

III ≤ D

EY (t)

√
nbnbn.

This fact together with A2 and A7 gives us the required convergence of I to zero in
probability.

To show asymptotic normality of Zn(t) we apply the martingale version of the
central limit theorem ([8], Theorem 3.2 p.58) for the martingale array {Sni, 1 ≤ i ≤
n}, where

Sni =

√
bn
n
mn

i∑
k=1

mn∑
l=1

1
EY (t)

Mk(Al,mn
)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

 .
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To check if the assumptions of this theorem are fulfilled, we consider the differences

Ani = Sni − Sn(i−1) =

√
bn
n
mn

mn∑
l=1

1
EY (t)

Mi(Al,mn
)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

 .

We need to show that the following three conditions are fulfilled:

(i) maxi |Ani|
p−→ 0,

(ii)
∑
iA

2
ni

p−→ σ2(t),
(iii) E

(
maxiA2

ni

)
is bounded.

First we consider (ii). Initially we show that
∑
i EA2

ni → σ2(t) and subsequently that∑
i(A

2
ni − EA2

ni) tends to zero in probability.
The expectations E (Mk(Al,mn)Mk(Al′,mn)) are equal to zero for l 6= l′, so after

simple calculations we get

∑
i

EA2
ni =

bnm
2
n

n

n∑
k=1

mn∑
l=1

1
(EY (t))2

EM2
k (Al,mn)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

.

Since the compensator of the submartingale M2
k (t) is Λk(t) =

∫ t
0
λ0(s)Yk(s)ds (see

[2], p. 74), we have

∑
i

EA2
ni =

bnm
2
n

n

n∑
k=1

mn∑
l=1

1
(EY (t))2

∫
Al,mn

λ0(s)EYk(s)ds

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

,

which under A1 is equal to

m2
nbn

mn∑
l=1

1
(EY (t))2

∫
Al,mn

λ0(s)EY (s)ds

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

.
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By (3.12) and (3.6) we have

mnbn

∣∣∣∣∣∣∣
mn∑
l=1

1
(EY (t))2

mn

∫
Al,mn

λ0(s)EY (s)ds− λ0(t)EY (t)

 ·

·

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2∣∣∣∣∣∣∣ ≤

≤ mnbn

mn∑
l=1

1
(EY (t))2

mn

∫
Al,mn

|λ0(s)EY (s)− λ0(t)EY (t)| ds

 ·

·

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

≤

≤ bnD0
mnbn

(EY (t))2
1

mnbn
≤ D1bn,

where D0 and D1 are positive constants independent of n. To get the convergence∑
i EA2

ni → σ2(t) it is enough to show∣∣∣∣∣∣∣mnbn
λ0(t)
EY (t)

mn∑
l=1

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

− σ2(t)

∣∣∣∣∣∣∣→ 0

or equivalently∣∣∣∣∣∣∣mnbn

mn∑
l=1

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

−
1∫
−1

K2(u)du

∣∣∣∣∣∣∣→ 0. (3.13)

Notice that for large n

1∫
−1

K2(u)du =
mn∑
l=1

1/bn
∫

Al,mn

K2((t− w)/bn)dw

and (3.13) is less or equal to

mn∑
l=1

∣∣∣∣∣∣∣mnbn

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

− 1
bn

∫
Al,mn

K2

(
t− w
bn

)
dw

∣∣∣∣∣∣∣ .
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From the mean value theorem for integration the above expression can be rewritten
as

mn∑
l=1

∣∣∣∣∣mnbn

(
1

mnbn
K

(
t− ζl
bn

))2

− 1
mnbn

K2

(
t− ξl
bn

)∣∣∣∣∣ , (3.14)

where ζl and ξl are the intermediate points that belong to Al,mn
.

Since the function K fulfills the Lipschitz condition, the number of nonzero sum-
mands in the above sum is 2bnmn and |ξl − ζl| ≤ 1/mn, (3.14) can be bounded by

C3
1

mnbn

mn∑
l=1

∣∣∣∣ξl − ζlbn

∣∣∣∣ ≤ 2C3

mnbn
,

where C3 is a positive constant independent of n. This means that
∑
i EA2

ni → σ2(t).
To show that (ii) is fulfilled we need to show additionally that

∑n
i=1(A2

ni−E(A2
ni))

tends to zero in probability.
We can rewrite the sum in question as follows

n∑
k=1

√bn
n
mn

mn∑
l=1

1
EY (t)

Mk(Al,mn
)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds




2

−

− bnm
2
n

n

n∑
k=1

mn∑
l=1

1
(EY (t))2

EM2
k (Al,mn

)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

=

=
n∑
k=1

bn
n
m2
n

mn∑
l=1

1
(EY (t))2

(M2
k (Al,mn

)− EM2
k (Al,mn

))

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

+

+
n∑
k=1

bn
n
m2
n

mn∑
l=1

mn∑
l′=1,l′ 6=l

1
(EY (t))2

Mk(Al,mn
)Mk(Al′,mn

)·

·

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


 1
bn

∫
Al′,mn

K

(
t− w
bn

)
dw

 .

We denote the summands of the right-hand side by IV and V , respectively.
First we show the convergence of V to zero in probability.
Using the Doob-Meyer decomposition we get

Mk(Al,mn
)Mk(Al′,mn

) = Xk(Al,mn
)Xk(Al′,mn

)− Λk(Al,mn
)Mk(Al′,mn

)−
−Λk(Al′,mn

)Λk(Al,mn
)− Λk(Al′,mn

)Mk(Al,mn
).
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Moreover,

E(Xk(Al,mn
)Xk(Al′,mn

)) ≤ F1m
−3/2
n ,

E(Λk(Al′,mn)Λk(Al,mn)) ≤ F2m
−2
n ,

E|Λk(Al,mn
)Mk(Al′,mn

))| ≤ F3m
−3/2
n ,

where the positive constants F1, F2, F3 are independent of n.
From (3.5) we get

E|V | ≤
n∑
k=1

bn
n
m2
n

mn∑
l=1

mn∑
l′=1,l′ 6=l

F4

m
3/2
n

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

 ·
·

 1
bn

∫
Al′,mn

K

(
t− w
bn

)
dw

 ≤ F5bnm
1/2
n ,

where F4, F5 are positive constants independent of n.
This fact together with A7 gives the required convergence of V to zero in proba-

bility.
To get the convergence of IV notice that

M2
k (Al,mn

)− EM2
k (Al,mn

) = X2
k(Al,mn

)−Xk(Al,mn
)−

−2Mk(Al,mn
)Λk(Al,mn

)− Λ2
k(Al,mn

) +Mk(Al,mn
) + Λk(Al,mn

)− EΛk(Al,mn
).

Bearing in mind the above calculations and the fact that

E
∣∣X2

i (Al,mn
)−Xi(Al,mn

)
∣∣ ≤ F6m

−3/2
n , (3.15)

we have

E
∣∣X2

k(Al,mn)−Xk(Al,mn)− 2Mk(Al,mn)Λk(Al,mn)− Λ2
k(Al,mn)

∣∣ ≤ F7m
−3/2
n ,

where F6, F7 are positive constants independent of n.
Under Lemma 3.4 we only need to get the convergence to zero in probability of

n∑
k=1

bnm
2
n

n

mn∑
l=1

1
(EY (t))2

(Λk(Al,mn)− EΛk(Al,mn))

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

=

=
n∑
k=1

bnm
2
n

n

mn∑
l=1

1
(EY (t))2

∫
Al,mn

λ0(u)(Yk(u)− EYk(u))du

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

,

which will be denoted by V I.
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In the proof of Lemma 3.3 we get that

E

∣∣∣∣∣∣∣
√
bn/nmn

n∑
k=1

∫
Al,mn

(Yk(s)− EYk(s)) ds

∣∣∣∣∣∣∣ ≤ F8

√
bn,

where F8 is a positive constant independent of n. Under A2, A5 and (3.6) we have

E|V I| ≤ F9

√
bn
n
mn

√
bn

1
bnmn

=
F9√
n
,

where F9 is a positive constant independent of n. This ends the proof of (ii).
The condition (iii) may be obtained by noticing that under A2, A5, A6 and (3.6)

we have

E
(

max
i
A2
ni

)
≤

n∑
i=1

E(A2
ni) =

= m2
nbn

mn∑
l=1

1
(EY (t))2

∫
Al,mn

λ0(s)EY (s)ds

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

≤ F10,

where F10 is a positive constant independent of n.
To get (i) notice that

P
(

max
i
|Ani| > ε

)
≤

≤
n∑
i=1

mn∑
l=1

P

√bn
n
mn

1
EY (t)

|Mi(Al,mn
)|

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

 > ε

 ≤
≤

n∑
i=1

mn∑
l=1

P

(
Xi(Al,mn

) >
ε
√
nbn
C1

)
+

n∑
i=1

mn∑
l=1

P

(
Λi(Al,mn

) >
ε
√
nbn
C1

)
,

where C1 is a positive constant independent of n and the summands are nonzero for
only 2mnbn values of l.

Since the stochastic intensity λ(t) of the counting process X is bounded by a
constant (λ(t) ≤ C), the process X is dominated by the Poisson process with intensity
C (for more details see [9] and [15]). As a consequence we get

P

(
Xi(Al,mn) >

ε
√
nbn
C1

)
≤ Cw+1

mw+1
n

1
1− C/mn

and
n∑
i=1

mn∑
l=1

P

(
Xi(Al,mn

) >
ε
√
nbn
C1

)
≤ 2nmnbn

Cw+1

mw+1
n

1
1− C/mn

,

where w = b ε
√
nbn

C1
c.
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The right-hand side of the last inequality tends to zero as n→∞.
Moreover, under A1, A2, A5 and A6 we get

n∑
i=1

mn∑
l=1

P

(
Λi(Al,mn

) >
ε
√
nbn
C1

)
≤

n∑
i=1

mn∑
l=1

E

( ∫
Al,mn

λ0(s)Yi(s)ds

)2

ε2nbn

C2
1

≤ F11

mn
,

where F11 is a positive constant independent of n.
This means that P (maxi |Ani| > ε) tends to zero as n→∞, which ends the proof

of (i) and of the theorem.

Now we present the multidimensional version of Theorem 3.1, which is the crucial
result to construct simultaneous confidence intervals for the periodic hazard function.

Theorem 3.5. Under A1–A7 for a finite set of the time moments {t1, . . . , tp}

(Vn(t1), . . . , Vn(tp))
Tr d−→ Np(0,Σ),

where Vn(ti) =
√
nbn (η̂n(ti)− λ0(ti)) , i = 1, . . . , p and Σ is the diagonal matrix of

the size p× p, and the i-th diagonal element is of the form

σ2(ti) =
λ0(ti)
EY (ti)

1∫
−1

K2(u)du.

Notice that the covariance matrix is diagonal. This means that Vn(ti) and Vn(tj)
(i 6= j) are asymptotically independent and normal.

Proof. To get the claim we need to use the Cramer-Wold device. The linear combina-
tion s1Vn(t1) + · · · + spVn(tp) has the asymptotic distribution N

(
0,
∑p
i=1 s

2
iσ

2(ti)
)
.

The proof of this fact is analogous to the proof of Theorem 3.1. The martingale array
is now of the form {s1Sni(t1) + · · ·+ spSni(tp) : 1 ≤ i ≤ n}, where

Sni(tj) =
bnm

2
n

n

i∑
k=1

mn∑
l=1

1
(EY (tj))2

Mk(Al,mn)

(
1
bn

∫
Al,mn

K

(
tj − s
bn

)
ds

)2

.

We omit the rest of the technical details.

In the next section we present the key results of this paper. We construct the
bootstrap version of the smoothed estimator of the periodic hazard function. We
show the consistency of the considered bootstrap scheme in the one and the multidi-
mensional case.
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4. CONSISTENCY OF BOOTSTRAP

To construct the bootstrap version of the estimator η̂n(t) we use the algorithm pro-
posed by Dudek and Leśkow in [6]. The phase-consistent resampling scheme (PCRS)
is designed for the counting processes which intensity function has some periodicity
properties. It is the modification of the algorithm presented by Braun and Kulperger
in [3], which was dedicated to the stationary case. The authors of [6] used PCRS
to construct the bootstrap version of the periodic hazard function estimator and as a
consequence the bootstrap simultaneous confidence intervals for this function. They
show that these bands perform very well which means that their actual coverage
probabilities are very close to nominal ones independently of the considered hazard
function and the scheme of generating the process Y .

The bootstrap version of the estimator η̂n(t) is defined as follows

η̂∗n(t) =
1
Pbn

P∫
0

K

(
t− s
Pbn

)
λ̂∗n(s)ds, (4.1)

where λ̂∗n(s) is the bootstrap version of the estimator λ̂n(s) (for more details see [6])

λ̂∗n(s) =
mn∑
l=1

∑n
k=1X

∗
k(Al,mn

)∑n
k=1

∫
Al,mn

Yk(u)du
1Al,mn

(s), s ∈ [0, P ]. (4.2)

In the theorem below we establish the consistency of the PCRS scheme, which means
that we show that the percentiles of the bootstrap distribution are uniformly close
to the asymptotic ones. This result is the key to obtain the bootstrap simultane-
ous confidence intervals for the considered hazard function. As in the case of the
non-smoothed estimator λ̂n(t) (see [6]) the percentiles of the asymptotic distribution
are quite hard to obtain. Therefore, a need for bootstrap approach appears.

Theorem 4.1. Under A1–A7

sup
u∈R

∣∣∣P ∗ (√nbn (η̂∗n(t)− η̂n(t)) ≤ u
)
− P

(√
nbn(η̂n(t)− λ0(t)) ≤ u

)∣∣∣ = oP (1).

Proof. As before, without loss of generality we take P = 1.
First we present a lemma which turns out to be of great importance for our result.

Lemma 4.2. Let

L∗n(t) =
1

EY (t)

mn∑
l=1

W ∗l,n

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

 (4.3)

be the bootstrap version of Ln(t) defined by (3.7).
Then L∗n(t) and η̂∗n(t) are asymptotically equivalent, i.e.

√
nbn (L∗n(t)− η̂∗n(t))

tends to zero in probability.
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Proof. Notice that

√
nbnE∗ |L∗n(t)− η̂∗n(t)|=

√
nbnE∗

∣∣∣∣∣∣∣
mn∑
l=1

W ∗l,n
Ul,n

(
Ul,n − EY (t)

EY (t)

)
1
bn

∫
Al,mn

K

(
t− s
bn

)
ds

∣∣∣∣∣∣∣≤
≤
√
nbn

mn∑
l=1

E∗
(
W ∗l,n

)
Ul,n

|Ul,n − EY (t)|
EY (t)

1
bn

∫
Al,mn

K

(
t− s
bn

)
ds.

In the proof of Theorem 4.1 from [6] it is shown that E∗
(
W ∗l,n

)
= Wl,n.

Moreover,

√
nbnE

(
Wl,n

Ul,n
|Ul,n − EY (t)|

)
≤

√
E
(
Wl,n

Ul,n

)2

E
∣∣∣√nbn(Ul,n − EY (t))

∣∣∣2,
which together with (3.11), (3.5) and A2 gives the claim of the lemma.

The key step of this proof is to use the conditional Slutzky’s theorem ([10], Lemma
4.1). Taking under consideration additionally Lemma 4.2 we only need to show that

sup
u∈R

∣∣∣P ∗ (√nbn (L∗n(t)− E∗(L∗n(t)) ≤ u
)
− Φ

(
u, σ2(t)

)∣∣∣ = oP (1),

where Φ
(
u, σ2(t)

)
is the value at u of the cumulative distribution function of the

normal distribution with zero mean and variance σ2(t).
First we calculate the mean and the variance of L∗n(t).

E∗ (L∗n(t)) =
mn∑
l=1

E∗
(
W ∗l,n

)
EY (t)

1
bn

∫
Al,mn

K

(
t− s
bn

)
ds =

=
mn∑
l=1

Wl,n

EY (t)
1
bn

∫
Al,mn

K

(
t− s
bn

)
ds = Ln(t).

Additionally,

Var∗
(√

nbnL
∗
n(t)

)
=

nbn
E2Y (t)

mn∑
l=1

Var∗
(
W ∗l,n

) 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2

.

In the proof of Theorem 4.1 from [6] it is shown that

E
∣∣∣∣ nmn

Var∗(W ∗l,n)−Wl,n

∣∣∣∣ ≤ Fm−1/2
n ,

where F is a positive constant independent of n.
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This fact together with (3.6) gives us∣∣∣∣∣∣∣Var∗(
√
nbnL

∗
n(t))−mnbn

mn∑
l=1

Wl,n

E2Y (t)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2∣∣∣∣∣∣∣ p−→ 0.

Additionally

E |Wl,n − λ0(t)EY (t)| ≤ E

˛̨̨̨
˛mn

n

nX
k=1

Λk(Al,mn)− λ0(t)EY (t)

˛̨̨̨
˛+ E

˛̨̨̨
˛mn

n

nX
k=1

Mk(Al,mn)

˛̨̨̨
˛ .

The summands on the right-hand side are denoted by V II and V III, respectively.
Since the increments of the martingale are uncorrelated we have

V III ≤

√√√√E

(
mn

n

n∑
k=1

Mk(Al,mn)

)2

=

√√√√m2
n

n2

n∑
k=1

EM2
k (Al,mn) ≤

√
F1
mn

n
,

where F1 is a positive constant independent of n.
Moreover,

V II ≤ E

∣∣∣∣∣∣∣
mn

n

n∑
k=1

∫
Al,mn

λ0(u) (Yk(u)− EYk(u)) du

∣∣∣∣∣∣∣+
+ E

∣∣∣∣∣∣∣
mn

n

n∑
k=1

∫
Al,mn

(λ0(u)EYk(u)− λ0(t)EY (t)) du

∣∣∣∣∣∣∣ .
Since (3.9) is less or equal to F2bn and taking under consideration (3.12) we get

V II ≤
√
F2

n
+ F3bn.

This means that E |Wl,n − λ0(t)EY (t)| is bounded from above by the expression tend-
ing to zero as n→∞.

Finally,∣∣∣∣∣∣∣Var∗(
√
nbnL

∗
n(t))−mnbn

mn∑
l=1

λ0(t)
EY (t)

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


2∣∣∣∣∣∣∣ p−→ 0

and by (3.13) ∣∣∣∣∣∣Var∗(
√
nbnL

∗
n(t))− λ0(t)

EY (t)

1∫
−1

K2 (u) du

∣∣∣∣∣∣ p−→ 0.
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Using Theorem 3.1 and the Pólya Theorem (see [16] p. 447)

sup
u∈R

∣∣∣P (√nbn (Ln(t)− λ0(t)) ≤ u
)
− Φ

(
u, σ2(t)

)∣∣∣ −→ 0 as n→∞.

We only need to show that

sup
u∈R

∣∣∣P ∗ (√nbn (L∗n(t)− Ln(t)) ≤ u
)
− Φ

(
u, σ2(t)

)∣∣∣ = oP (1) as n→∞.

We apply a version of Berry–Essen theorem from [16] for independent but
non-identically distributed random variables:

W ∗i =mn

√
bn
n

mn∑
l=1

(X∗i (Al,mn
)−E∗(X∗i (Al,mn

)))

(
1
bn

∫
Al,mn

K
( t− s
bn

)
ds

)
/
(
EY (t)σ̂2(t)

)
,

where i = 1, . . . , n and σ̂2(t) =
bλn(t)
Ul,n

∫ 1

−1
K2(u)du is the estimator of σ2(t).

To get the claim of our theorem, it is enough to show the convergence to zero in
probability of

m3
n

(
bn
n

)3/2 n∑
i=1

E∗
∣∣∣∣∣
mn∑
l=1

(X∗i (Al,mn
)− E∗ (X∗i (Al,mn

))) ·

·

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


∣∣∣∣∣∣∣
3

=

= m3
n

(
bn
n

)3/2 n∑
i=1

1
n

n∑
w1=1

. . .
1
n

n∑
wmn=1

∣∣∣∣∣
mn∑
l=1

(
Xwl

(Al,mn
)−X(Al,mn

)
)
·

·

 1
bn

∫
Al,mn

K

(
t− s
bn

)
ds


∣∣∣∣∣∣∣
3

,

where X(Al,mn) = 1
n

∑n
v=1Xv(Al,mn).

Denote the right-hand side of the above equality by IX.
Notice thatE

∣∣∣∣∣∣∣
mn∑
l=1

(
Xwl

(Al,mn
)−X(Al,mn

)
) 1

bn

∫
Al,mn

K

(
t− s
bn

)
ds


∣∣∣∣∣∣∣
3

1/3

≤

≤
mn∑
l=1

E

∣∣∣∣∣∣∣
(
Xwl

(Al,mn
)−X(Al,mn

)
) 1

bn

∫
Al,mn

K

(
t− s
bn

)
ds


∣∣∣∣∣∣∣
3

1/3

.
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Since X is stochastically dominated by the Poisson process ([9]) we have

E
(
X3
w(Al,mn)

)
≤ C

mn
+ 3

(
C

mn

)2

+
(
C

mn

)3

.

Moreover,

E
(
X3
w(Al,mn)

)
≤ D2

mn
, (4.4)

where D2 is a positive constant independent of n.
As a consequence we get

E

∣∣∣∣∣∣∣
(
Xwl

(Al,mn
)−X(Al,mn

)
) 1

bn

∫
Al,mn

K

(
t− s
bn

)
ds


∣∣∣∣∣∣∣
3

≤ D3

mn(bnmn)3
,

where D3 is a positive constant independent of n.
Additionally,

mn∑
l=1

E

∣∣∣∣∣∣∣
(
Xwl

(Al,mn)−X(Al,mn)
) 1

bn

∫
Al,mn

K

(
t− s
bn

)
ds


∣∣∣∣∣∣∣
3

1/3

≤ D4

3
√
mn

.

where D4 is a positive constant independent of n.
Finally,

E(IX) ≤ D3
4

m2
nb

3/2
n√
n

, (4.5)

which under A4 and A7 gives us the convergence of IX to zero in probability and
ends the proof of the theorem.

The most important application of the bootstrap technique presented in this paper
is the construction of the bootstrap simultaneous confidence intervals. Some confi-
dence regions were proposed for example in [6]. The key result that allows us to prove
their consistency is the multidimensional version of Theorem 4.1, which can be found
below.

Theorem 4.3. Under A1–A7

sup
u∈Rp

∣∣∣P ∗ (V ∗(n)(t) ≤ u
)
− P

(
V (n)(t) ≤ u

)∣∣∣ = oP (1),

where V ∗(n)(t) = (V ∗n (t1), . . . , V ∗n (tp))
Tr and V (n)(t) = (Vn(t1), . . . , Vn(tp))

Tr.
Moreover,

Vn(ti) =
√
nbn (η̂n(ti)− λ0(ti)) , i = 1, . . . , p

and
V ∗n (ti) =

√
nbn (η̂∗n(ti)− η̂n(ti)) , i = 1, . . . , p.
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Proof. Since all steps of the proof are quite similar to those presented in [6] (Theorem
4.2) the proof is omitted.

In the next section we describe a possible application of our results and some
modification of the estimator considered that helps to reduce the edge effects.

5. REMARKS AND CONCLUSIONS

While calculating the value of the estimator one wants to have some idea about its
accuracy. When a function is estimated the most convenient are the simultaneous
confidence bands. Following the authors of [6] and using results presented in Sec-
tions 3 and 4 one may construct the consistent simultaneous bootstrap confidence
intervals. For the estimator η̂n(t) (just like in the case of the estimator λ̂n(t), see [6])
the simultaneous asymptotic confidence intervals are hard to obtain because the per-
centiles of the asymptotic distribution are not easy to calculate. That is why the
bootstrap confidence intervals are the reasonable alternative.

We constructed all confidence regions proposed by Dudek and Leśkow in [6]. The
broad simulation study was made. Since the results are very similar to those presented
in [6] we have decided not to present them. The actual coverage probabilities of
confidence intervals were very close to nominal ones independently of the shape of the
considered periodic hazard function, the method of generating the process Y and the
number of periods that was taken.

This means that the bootstrap simultaneous confidence intervals may be used
in the real data applications (for a real data example see [6]) and this paper gives
additionally the possibility to calculate them not only in the mn time moment like
was in the case of λ̂n(t).

The estimator η̂n(t) is meaningful only on the interval [Pbn, P −Pbn]. To improve
its behavior near the edges 0 and P one may use the idea of Leśkow (see [12]) to wrap
the interval [0, P ] around the circle and define on it the estimator η̂Tn (t). This concept
of elimination the edge effect is similar to the one presented by Politis and Romano in
[14] for the moving block bootstrap method or the version of tiling (see for example
[13]). The idea of Leśkow may be also applied in the case considered in this paper.
Then the estimator η̂Tn (t) is asymptotically normal with the same variance as η̂n(t)
provided that the conditions of Theorem 3.1 are fulfilled.
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