PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zagadnienia hydrokonwersji olejów roślinnych i tłuszczów zwierzęcych do węglowodorowych bio-komponentów parafinowych (HVO)

Autorzy
Identyfikatory
Warianty tytułu
EN
The subjects of natural oils and fats hydroconversion into HVO bio-components
Języki publikacji
PL
Abstrakty
PL
Niniejsza książka dotyczy biokomponentów HVO (ang.: Hydrotreating of Vegetable Oils), ich właściwości, technologii produkcji. W pierwszej części zebrano możliwie kompletne informacje na temat biokomponentów HVO dostępne w publikacjach, książkach i patentach. W drugiej części przedstawiono natomiast wyniki autorskich prac prowadzonych w Instytucie Nafty i Gazu w Krakowie, dotyczące tych biokomponentów. Rozwój produkcji biokomponentów HVO jest w Europie uzależniony od kilku czynników. Biokomponenty HVO są uznawane za doskonałe paliwo dieslowskie. Przepisy Unii Europejskiej predestynują biokomponenty HVO do spełnienia zapisów Dyrektywy 2009/30/EC w zakresie biopaliw. Produkcja biokomponentów HVO jest stosunkowo nową technologią. Duże firmy zajmujące się produkcją paliw współzawodniczą w zakresie opracowania nowych procesów technologicznych otrzymywania biokomponentów HVO oraz ich implementacji. Można tu wymienić takie kompanie jak Neste Oil, Honeywell UOP, Axens IFP, Syntroleum. Wyróżnia się dwie odmiany procesu produkcji biokomponentów HVO: pierwsza to hydrokonwersja samych (100%) olejów roślinnych i/lub tłuszczów zwierzęcych, a druga to tzw. co-processing, czyli hydrokonwersja olejów roślinnych i/lub tłuszczów zwierzęcych w mieszaninie z frakcjami naftowymi. Należy tutaj zaznaczyć, iż według regulacji EU preferowany jest pierwszy wariant produkcji. W praktyce oznacza to, że ulgi podatkowe związane z produkcją biokomponentów mogą być stosowane tylko dla czystych frakcji, bez żadnych domieszek. Tak więc nie obejmuje ona biokomponentu HVO uzyskanego w wyniku co-processingu. Taka sytuacja nie jest korzystna dla niektórych rafinerii, które mogłyby produkować biokomponenty HVO w wariancie co-processingu w oparciu o istniejące już instalacje. Sytuacja taka jest z kolei korzystna dla dużych kompanii, które oferują swoje nowe procesy technologiczne w miejsce istniejących instalacji. W Instytucie Nafty i Gazu w Krakowie prowadzono prace dotyczące biokomponentów HVO w następujących obszarach: efekt cieplny związany z hydrokonwersją triglicerydów w zależności od ścieżek reakcyjnych, zależność parametrów procesowych (ciśnienie, LHSV, temperatura, stosunek wodór/surowiec) na mechanizmy reakcji, możliwość stosowania różnych surowców, w tym odpadowych olejów naturalnych, poprawa właściwości produktów ciekłych hydrokonwersji, np. niskotemperaturowych. Wyniki tych prac zamieszczono w niniejszej książce.
EN
This book deals with the bio-components HVO (Hydrotreated Vegetable Oil), their properties, technology and manufacturing. In the first part near complete information as possible on bio-components HVO available in publications, books, and patents was collected. The second part presents the results of authorial work carried out at the Institute of Oil and Gas in Krakow, pertaining to HVO. Development of production of bio-components HVO in Europe is dependent on several factors. Bio-components HVO are considered excellent diesel fuel. European Union regulations predestine bio-components HVO to meet the provisions of Directive 2009/30/EC in the field of bio-fuels. Production of bio-components HVO is a relatively new technology. Large companies engaged in the production of fuels compete in the development of new manufacturing processes to obtain bio-components HVO as well as their implementation. They include companies such as Neste Oil, Honeywell UOP, Axens IFP, Syntroleum. There are two process variations of the production of bio-components HVO. First, hydroconversion of pure (100%), vegetable oils and/or animal fats. The second, so-called co-processing that is hydroconversion of vegetable oils and/or animal fats in a mixture of petroleum fractions. It should be noted that according to the EU regulations of production the first variant is preferred. In practice, this means that the tax relief associated with the production of bio-components can be applied only to pure fractions, without any additives. So, it does not include bio-component HVO resulting from co-processing. This situation is not favorable for some refineries that could produce bio-components HVO using the co-processing variant on the basis of existing installations. This situation is in turn beneficial for large companies, which offer their new technological processes in place of the existing system. In the Oil and Gas Institute in Krakow, carried out works on bio-components HVO in the following areas: the heating effect associated with the hydroconversion of triglyceride depending on the reaction path, the dependence of process parameters (pressure, LHSV, temperature, the ratio of hydrogen/feed ratio) on the reaction mechanism. Possibility of utilization of various sources of triglicerides e.g. waste natural oils, and improvement of some properties e.g. low-temperature properties via original technologies. The results of the work are presented in this book.
Rocznik
Tom
Strony
1--308
Opis fizyczny
Bibliogr. 279 poz., rys., tab., wykr.
Twórcy
  • Instytut Nafty i Gazu, Kraków
Bibliografia
  • Strony internetowe i normy:
  • [1] http://biznes.onet.pU18567,3184977,1,news-deta:
  • [2] www.informacjepraktyczne.w8w.p1/chemia%20wyklady_2-13.doc
  • [3] www.lipidbank.jp
  • [4] www.ars.usda.gov
  • [5] www.niobio.grasa.csic.es/jrios/weblab/fanames.htm
  • [6] www.cyberlipid.org/fa/acid0001.htm
  • [7] www.ibmb.uni.wroc.pl
  • [8] www.biolib.cz/en/taxonimage/id131489/
  • [9] www. bioinfo.mol.uj.edu.pl/articles/Jan Korbecki08
  • [10] www.naftagaz.pl/wiki/biodiesel
  • [11] Norma Branżowa - Karta Materiałowa KM-1-PG wyd. IV, Rafineria Trzebinia
  • [12] www.e-biopaliwa.pl/aktualnosci/1264
  • [13] www.e-biopaliwa.pl/aktualnosci/1027/NExBTL_w Rotterdamie/
  • [14] www.bioref-integ.eu
  • [15] Program komputerowy ChemCad
  • [16] http://class.fst.ohio-state.edu/fst821/Lect/hydro.pdf
  • [17] http://www.nw.pwr.wroc.pl/~trawczynski/wyklady/kraking-kat.pdf
  • [18] www.pasze.286.p1
  • [19] www.informacjepraktyczne.w8w.p1/chemia%20wyklady_2-13.doc
  • [20] www.biofuelstp.eu/certification.html
  • [21 ] Clarification of blending components that may be used in the manufacture or blending of EN 590 diesel fuel. TC192011-25_EN590exp. NEN Energy Resources / CEN/TC19. August 8, 2011. 3 p.
  • [22] www.if.pw.edu.pl/~pluta/pl/dyd/mtj/za199/marzantowicz/Siec/Metoda%20LSCvl.htm
  • [23] Aatola H., Lamri M., Sarjovaara T., Mikkonen S.; Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Technical Paper 2008-01-2500, 2008, 12.
  • [24] Adlof R.O., Gunstone F.D.; Common (non-systematic) Names for Fatty Acids List. www. aocs.org/Membership/content.cfm.
  • [25] Ahmad M.S., Rauf A., Jamal M., Sheikh M.O.; An 8-hydroxyoctadeca-cis-11,14-dienoic acid from Mirabilis jalapa seed oil. Phytochemistry, Vo1.23, 10, 1984, 2247-2249.
  • [26] Aitzetmuller K., Matthaus B., Holger F.; A new database for seed oil fatty acids — the database SOFA, European Journal of Lipid Science and Technology, 2003, 105, 92-103.
  • [27] Aknin M., Dogbevi K., Samb A., Kornprobst J.-M., Gaydou E.M., Miralles J.; Fatty acid and sterol composition of eight brown algae from the Senegalese coast. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, Vol. 102, 4, 1992, 841-843.
  • [28] Alborn H.T., Hansen T.V., Jones T.H., Bennett D.C., Tumlinson J.H., Schmelz E.A., Teal P.E.A.; Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proceedings of the National Academy of Sciences USA, 104, 2007, 12976-12981.
  • [29] Arnaud A.; Sur un nouvel acide gras non sature de la serie CnH2n-4O2. Bulletin Soc. Chim., 7, 1892, 233.
  • [30] Asai T., Hara N., Fujimoto Y.; Fatty acid derivatives and dammarane triterpenes from the glandular trichome exudates of Ibicella lutea and Proboscidea louisiana, Phytochemistry, Vol. 71, 8-9, 2010, 877-894.
  • [31] Aued-Pimentel S.; Evaluation of a methylation procedure to determine cyclopropenoids fatty acids from Sterculia striata seed oil. J. Chromatogr. A, 1054, 2004, 235-239.
  • [32] Badami R.C., Patil K.B.; Structure and occurrence of unusual fatty acids in minor seed oils. Prog. Lipid Res., 19, 1981, 119-153.
  • [33] Baker P.R.S., Lin Y., Schopfer F.J., Woodcock S.R., Groeger A.L., Batthyany C., Sweeney S., Marshall H., Long M.H., Iles K.E., Baker L.M.S.; Fatty Acid Transduction of Nitric Oxide Signaling. multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. Journal of Biological Chemistry, 280, 2005, 42464-42475.
  • [34] Baladincz P., Toth C., Hancsok J.; Production of Second Generation Renewable Diesel Fuel via Co-processing of Lard and Straight Run Gas Oil Mixtures. 8th International Colloquium Fuels Conventional and Future Energy for Automobiles, Esslingen, Niemcy, 19-20 January 2011, TAE Proceedings 2011, 375.
  • [35] Barendregt S., Van der Oosterkamp P., Overwater J.A.S., Woerde H.M., Ione K.G., Stepanov V.G.; The Zeoforming Process: An attractive solution for the upgrading of low octane feedstocks. Proceedings of the 37th International Conference on Petroleum, March 1995, Slovnaft j.s. co. Bratislava, 1995, vol. 1.B. 11-1.
  • [36] Barnathan G., Bourgougnon N., Komprobst J.-M.; Methoxy fatty acids isolated from the red alga, Schizymenia dubyi. Phytochemistry, Vol. 47, 5, 1998, 761-765.
  • [37] Barry C.E.; Mycolic acids: structure, biosynthesis, and physiological function. Prog. Lipid Res. 37, 1998, 143-179.
  • [38] Berdeaux O., Fournier V., Lambelet P., Dionisi F., Sebedio J.L., Destaillats F.; Isolation and structural analysis of the cyclic fatty acid monomers formed from eicosapentaenoic and docosahexaenoic acids during fish oil deodorization. Journal of Chromatography. A, 1138, 2007, 216-224.
  • [39] Berthillier A.; Chromatografia i jej zastosowanie, PWN, Warszawa 1975.
  • [40] Borowitzka M.A.; Algal biotechnology products and processes — matching science and economics. Journal of Applied Phycology, vol. 4, 3, 1992, 267-279.
  • [41] Brignac G.B., Touvelle M.S., Smiley R.J.; Patent US 6 893 554, 2005.
  • [42] Brooke G.M., Burnett S., Mohammed S., Proctor D., Whiting M.C.; A versatile process for the syntheses of very long chain alkanes, functionalized derivatives and some branched chain hydrocarbons. J Chem Soc — Perkin Trans 1996;1, 1635-45.
  • [43] Brooks J.D., Milne G.L., Yin H., Sanchez S.C., Porter N.A., Morrow J.D.; Formation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid. Journal of Biological Chemistry, 283, 2008, 12043.
  • [44] Bruna E., Petit E., Beljean-Leymari M., Huynh S., Nouvelot A.; Specific susceptibility of docosahexanoic acid and eicosapentanoic acid to peroxidation in acqueous solutions. Lipids, 1990, 24, 970-975.
  • [45] Burnus Z.; Badania nad obecnością steroli roślinnych i zwierzęcych w estrach metylowych kwasów tłuszczowych z wykorzystaniem techniki chromatografii gazowej. Prace INiG, DK-4100-37/2012.
  • [46] Buzetzki E., Svanova K., Cvengros J.; Zeolite catalysts in cracking of natural triacylglycerols, 44th International Petroleum Conference, Bratislava, Slovak Republic, September 21 - 22, 2009.
  • [47] Callaghan C.A.; Kinetics and Catalysis of the Water-Gas-Shift Reaction: A Microkinetic and Graph Theoretic Approach. A Dissertation Submitted to the Faculty of Worcester Polytechnic Institute, Worcester, 2006.
  • [48] Camara H., Dresen B., Fastabend A., Heil V., Juricev-Spiric M., Kraft A., Krzanowski M., Meller K., Menne A., Unger C.A., Urban W.; Hydrogen-Free Generation of Oxygen-Free Fuels from Bio-Based Oils and Fats. 8th International Colloquium Fuels Conventional and Future Energy for Automobiles, Esslingen, Niemcy, 19-20 January 2011, TAE Proceedings 2011, 163.
  • [49] Carballeira N.M., Alicea J.; The first naturally occurring alpha-methoxylated branched- chain fatty acids from the phospholipids of Amphimedon complanata, Lipids, 36, 1, 2001, 83-87.
  • [50] Carballeira N.M., Oyola D., Vicente J., Rodriguez A.D.; Identification of novel alpha- methoxylated phospholipid fatty acids in the Caribbean sponge Erylus goffrilleri. Lipids, 42, 11, 2007, 1047-1053.
  • [51] Catala A.; A synopsis of the process of lipid peroxidation since the discovery of the essential fatty acids. Biochemical and Biophysical Research Communications, Vol. 399, 3, 2010, 318-323. ISSN: 0006-291X DOI: 10.1016/j.bbrc.2010.07.087.
  • [52] Chang S.S., Peterson R.J., Ho C.T.; Chemical reactions involved in deep-fat frying of foods. Journal of the American Oil Chemists' Society, 55, 718-727, 1978.
  • [53] Chavanne G.; Patent Belgia 422 877.
  • [54] Chen J., Ring Z.; Understanding and Predicting Vapour-Liquid Equilibrium in Petroleum Hydroprocessing Reactors, Hydrocarbon World, 2007, 20-23
  • [55] Chisti Y.; Biodiesel from microalgae. Biotechnology Advances, vol. 25, 2007, 3, 306.
  • [56] Costa P.R.; Petrobras' Role in the Expansion of Biofuels in Brazil, ERTC 11th Annual Meeting, 13-15 November, Paris 2006.
  • [57] Craig W.K., Soveran D.W.; Production of hydrocarbons with a relatively cetane rating, Patent US 4992605, 1991.
  • [58] Craig W.K., Soveran D.W.; Production of hydrocarbons with a relatively cetane rating, Patent CA1313200, 1993.
  • [59] Dandik L., Aksoy H.A., Erdem-Senatalar A.; Catalytic conversion of used oil to hydrocarbon fuels in a fractionating pyrolysis reactor, Energy & Fuels, 12, 1998, 1148 — 1152.
  • [60] Da Rocha Filho G.N., Brodzki D., Djega-Mariadassou G.; Formation of alkanes, alkylcykloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils, Fuel, 72, 4, 1994, 543-549.
  • [61] Daulatabad C.D., Bhat G.G., Jamkhandi A.M.; A Keto Fatty Acid from Smilax macrophylla Seed Oil, Phytochemistry, 42, 1996, 889-890. (a)
  • [62] Daulatabad C.D., Bhat G.G., Jamkhandi A.M.; A Novel Keto Fatty Acid from Cassia occidentalis Seed Oil, Fett-Lipid, 98, 1996, 176-177. (b)
  • [63] Daulatabad C.D., Bhat G.G.; Occurrence of Keto Fatty Acid in Hibiscus ficulneus Seed Oil. J. Food Sci. Technol., 34, 1997, 240-241. (a)
  • [64] Daulatabad C.D., Jamkhandi A.M.; A Keto Fatty Acid from Amoora rohituka Seed Oil. Phytochemistry 46, 1997, 155-156. (b)
  • [65] Davies A.G., Griller D., Ingold K.U., Lindsay D.A., Walton J.C.; An electron spin resonance study of pentadienyl and related radicals: hemolytic fission of cyclobut-2-enyl methyl radicals. Journal of the Chemical Society, Perkin Transactions 2, 633-641, 1981.
  • [66] Deldari H.; Suitable catalysts for hydroisomerization of long-chain normal paraffins. Applied Catalysis A: General, 293, 2005, 1-10.
  • [67] Dembitsky V.M., Goldshlag P., Srebnik M.; Occurrence of dicarboxylic (dioic) acids in some Mediterranean nuts. Food Chemistry, Vol. 76, 4, 2002, 469- 473.(a)
  • [68] Dembitsky V.M., Maoka T.; Allenic and cumulenic lipids. Progress in Lipid Research, 46, 2007, 328-375.
  • [69] Dembitsky V.M., Srebnik M.; Natural halogenated fatty acids: their analogues and derivatives. Prog. Lipid Res., 41, 4, 2002, 315-367.(b)
  • [70] Dembitsky V.M., Shkrob I., Rozentsvet O.A.; Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum. Phytochemistry, Vol. 54, 8, 2000, 965-967.
  • [71] Dencausse L., Ntsourankoua H., Clamou J.L., Artaud J.; Comparaison des compositions lipidiques des beurres de pentadesma et de karite. Oleagineux Corps gras. Lipides 2, 1995, 143-147.
  • [72] Donnis B., Egeberg R.G., Blom P., Knudsen K.G.; Hydroprocessing of Bio-Oils and Oxygenates to Hydrocarbons. Understending the Reaction Routes. Top Catalysis, 2009; 52: 229-240.
  • [73] Douglas S., Jaques M., Guy T.; Conversion of depitched tall oil to diesel fuel additive, Patent CA2149685, 1995.
  • [74] Dumri A., Seipold L., Schmid J., Gerlach G., Dotterl S., Ellis A.G., Wessjohann L.A.; Non-volatile floral oils of Diascia sp. (Scrophulariaceae), Phytochemistry, 69, 2008, 1372-1383.
  • [75] Egeberg R., Michaelsen N., Skyum L., Zeuthen P.; Hydrotreating in the production of green diesel, (Haldor Topsre), Petroleum Technology Quarterly Q2 2010.
  • [76] Elliott D.C.; Historical Developments in Hydroprocessing Bio-oils. Energy and Fuels, 21, 3, 2007, 1792-1815.
  • [77] Erkkila K., Nylund N.-O., Hulkkonen T., Tilli A., Mikkonen S., Saikkonen P., Makinen R., Amberla A.; Emission performance of paraffinic HVO diesel fuel in heavy duty vehicles. SAE Technical Paper SAE 2011-01-1966, JSAE 20119239, 12.
  • [78] Eser A., Kara K., Kornprobst J. M., Djerassi C.; Phospholipids in marine organisms Part 10. New natural2-acetoxy fatty acids using chemical ionization and electron impact mass spectrometry. Lipids, 20, 3, 1985, 141-144.
  • [79] Farmer E.H., Sutton D.A.; Studies of the autoxidation of oleic acid process. Journal of Chem. Soc., 36, 1943, 541-547.
  • [80] Freedman J.E.; Nitrated Lipids, Defining Their Bioactivity. Circulation Research, 91, 2002, 371-372.
  • [81] Fritsche S., Fritsche J.; Occurrence of Conjugated Linoleic Acid Isomers in Beef. J. Am. Oil Chem. Soc. 75, 1998, 1449-1451.
  • [82] Furimsky E.; Catalytic hydrodeoxygenation. Applied Catalysis A: General, 199, 2000, 147-190.
  • [83] Gao L., Yin H., Milne G.L., Porter N.A., Morrow J.D.; Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid. The Journal of Biological Chemistry, 281, 14092-9, 2006.
  • [84] Gershon D.; Reactive Oxygen Species in Chemistry, Biology, and Medicine. (Quintanilla A. ed.), Plenum Press, New York 1988, 211-219.
  • [85] Giordano G.; Comparison between acid-base and enzymatic supported catalysts on biodiesel production. Materiały XVII Forum Zeolitowego, Będlewo, 4-7 maja 2010.
  • [86] Gomes J.R.; Vegetable oils hydroconversion process, US Patent 0186020, 2006.
  • [87] Gontier E., Boussouel N., Terrasse C., Jannoyer M., Menard M., Thomasset B., Bourgaud F.; Litchi chinensis Fatty Acid Diversity: Occurrence of the Unusual Cyclopropanoic Fatty Acids. Biochemical Society Transactions, 28, 2000, 578— 580.
  • [88] Grondin I., Smadja J., Farines M., Soulier J.; Repartition des acides gras en positions internes et externes des triacylglycerols de deux huiles cyclopropaniques Litchi et Longani. Oleagineux Corps Gras. Lipides, 4, 1997, 459-463.
  • [89] Gunstone F.D., Holliday J.A., Scrimgeour C.M.; Fatty acids, part 51. The long-chain oxo acids (argemonic acid) in Argemone mexicana seed oil. Chemistry and Physics of Lipids, Vol. 20, 4, 1977, 331-335.
  • [90] Gunstone, F.D., Morris L.J.; Vegetable oils VII. Strophanthus seed oils. J. Sci. Food Agric. 10, 1959, 522.
  • [91] Gusmao J., Brodzki D., Djega-Mariadassou G., Frety R.; Utilization of vegetable oils as an alternative source for diesel-type fuel: hydrocracking on reduced Ni/Si02 and sulphided Ni-Mo/y-AI203.Catalysis Today, 5, 1989, 533.
  • [92] Hamberg M., A pathway for biosynthesis of divinyl ether fatty acids in green leaves. Lipids, 33, 1998, 1061-1071.
  • [93] Hamberg, M., Hamberg G.; 15(R)-Hydroxylinoleic acid, an oxylipin from oat seeds. Phytochemistry, 42, 1996, 729-732.
  • [94] Hamilton J.T.G., Harper D.B.; Fluoro fatty acids in seed oil of Dichapetalum toxicarium. Phytochemistry, 44, 6, 1997, 1129- 1132.
  • [95] Hammond E.G., Duvick D., Wang T., Dodo H., Pittman R.N.; Survey of the fatty acid composition of peanut (Arachis hypogaea) germplasm and characterization of their epoxy and eicosenoic acids. Journal of the American Oil Chemists' Society, Vol. 74, 10, 1997, 1235-1239.
  • [96] Hancsok J.; The importance of izoparaffins in the modern engine fuel production. 8th International Colloquium Fuels Conventional and Future Energy for Automobiles, Esslingen, Niemcy, 19-20 January 2011, TAE Proceedings 2011, 361
  • [97]. Hancsok J., Krar M., Magyar S., Boda L., Hollo A., Kallo D.; Investigation of the production of high quality biogasoil from prehydrogenated vegetable oils over Pt/SAPO-11/Al203. Studies in Surface Science and Catalysis, 170, 2007, 1605-1610.
  • [98] Hansen R.P., Gerson T.; The isolation and identification of 11-cyclohexylundecanoie acid from sheep perinephric fat. Journal of the Science of Food and Agriculture, 18, 1967, 225-227.
  • [99] Happonen M., Heikkila J., Murtonen T., Lehto K., Sarjovaara T., Larmi M., Keskinen J., Virtanen A.; Reductions in Particulate and NOx Emissions by Diesel Engine Parameter Adjustments with HVO Fuel. Environmental Science & Technology 2012 http://dx.doi.org/10.1021/es300447t.
  • [100] Hase A., Hase T., Anderegg G.; Identification of minor cyclic fatty acids in fractionated tall oil. Journal of the American Oil Chemists' Society 55, 407, 1978.
  • [101] Hase A., Hase T., Holmbom B.; Minor carboxylic acids in finnish tall oil fatty acids: aromatic, alicyclic, and branched chain aliphatic constituents. Journal of the American Oil Chemists' Society, Vol. 57, 3, 1980, 115-118.
  • [102] Hazlewood G.P., Neville G.C., Dawson M.C.; Complex lipids of a lipolytic and general-fatty-acid-requiring Butyrivibrio sp. isolated from the ovine rumen. Biochemical Journal, 191, 1980, 555-560.
  • [103] Herskowitz M., Landau M., Reizner I., Kaliya M.; Production of diesel fuel from vegetable and animal oils. Patent US 0207166 A1, 2006.
  • [104] Herskowitz M.; Reaction system for production of diesel fuel from vegetable and animal oils. Patent WO 035155 A2, 2008.
  • [105] Higgs M. D., Faulkner D.J.; Plakortin, an antibiotic from Plakortis halichondrioides. Journal of Organic Chemistry, 43, 1978, 3454-3457.
  • [106] Hill A., Feinberg D.; Fuel from microalgae lipid products. Golden Colorado: Solar Energy Research Institute, 1984.
  • [107] Hodge C.; Chemistry and Emmissions of NExBTL, UC Davis, CARB & CEC Meetings, December 7, 2006, California, USA.
  • [108] Hodge C.; What is the outlook for renewable diesel? Hydrocarbon Processing, 87, 2, 2008, 85-92.
  • [109] Holmgren J., Gosling C., Marinangeli R., Marker T., Faraci G., Perego C.; New developments in renewable fuels offer more choices. Hydrocarbon Processing, 2007, 67-71.
  • [110] Holzwarth M., Trendel J.-M., Albrecht P., Maier A., Michaelis W.; Cyclic Peroxides Derived from the Marine Sponge Plakortis simplex. Journal of Natural Product, 68, 5, 2005, 759-761.
  • [111] Huang X., King D.L.; In ACS 234th National Meeting, Boston, 25-29 August, 2007.
  • [112] Huber G.W., O'Connor P., Corma A.; Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Applied Catalysis A: General, Vol. 329, 2007, 120-129.
  • [113] Husain S., Ahmad M.U., Osman S.M.; New hydroxy fatty acid from seed oil of Baliospermum axillare. Phytochemistry, 19, 1980, 75-77.
  • [114] Iliou J.P., Jourdheuil D., Robin F., Serkiz B., Guivarch P., Lolland J.P., Vilaine J.P.; Kinetics of photoperoxidation of arachidonic acid: molecular mechanisms and effects of antioxidants. Lipids, 27, 1992, 959-967.
  • [115] Inouye M., Mio T., Sumino K.; Dicarboxylic acids as markers of fatty acid peroxidation. Atherosclerosis, 148, 1, 2000, 197-202.
  • [116] Jahreis G., Fritsche J., Mockel P., Schone F., Moller U.; Steinhart H.; The potential anticarcinogenic conjugated linoleic acid, cis-9,trans-11 C18:2, in milk of different species: Cow, goat, ewe, sow, mare, woman. Nutrition Research, vol. 19, 10, 1999, 1541-1549.
  • [117] Jakkula J., Niemi V., Nikkonen J., Purola V., Mylloya J., Aalto P., Lehtonen J., Alopaeus V.; Process for producing a hydrocarbon komponent of biological origin, Patent EP 1396531, US 4 230 085, 2004.(a)
  • [118] Jakkula J., Aalto P., Niemi V., Kiiski U., Nikkonen J., Piirainen O.; Fuel composition for a diesel engine, Patent EP 1398364, US 200455209, 2004.(b)
  • [119] Jakkula J., Aalto P., Niemi V., Kiiski U., Nikkonen J., Piirainen O.; Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposition of fatty acids, Patent WO 2004022674, 2004. (c)
  • [120] Jakkula J., Aalto P., Niemi V., Kiiski U., Nikkonen J., Piirainen O.; Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposition of fatty acids, Patent CN1688673, 2005.
  • [121] Jakkula J., Aalto P., Niemi V., Kiiski U., Nikkonen J., Mikkonen S., Piirainen O.; Patent US 7 279 018 B2. Fuel Composition for a Diesel Engine, 2007.
  • [122] Jakóbiec J., Bocheński C.; Badania wpływu parametrów tłoczenia na zawartość kwasów karboksylowych oraz glicerolu w oleju rzepakowym. Acta Agrophysica, 2006, 8, 1, 2006, 92-102.
  • [123] Jęczmionek Ł.; Głębokie hydroodsiarczanie olejów napędowych wraz z uwodornianiem węglowodorów aromatycznych. Dokumentacja ITN 3120/1998.
  • [124] Jęczmionek Ł.; Spojrzenie na procesy hydroodsiarczania i odaromatyzowania olejów napędowych. Biuletyn ITN, vol. XIII, 2/2001, s. 100 — 104.(a)
  • [125] Jęczmionek Ł.; Chemizm procesów hydroodsiarczania i uwodorniania węglowodorów aromatycznych. Biuletyn ITN, vol. XIII, 4/2001, s. 265 — 270.(b)
  • [126] Jęczmionek Ł.; Oleje roślinne i tłuszcze zwierzęce jako surowce do uzyskiwania biokomponentów paliwowych II generacji, Nafta — Gaz, vol. LXVI, 7/2010, s. 613 — 620.(a)
  • [127] Jęczmionek Ł; Olej z lnianki siewnej (Camelina sativa) — szansa rozwoju biopaliw II generacji? Nafta - Gaz, vol. LXVI, 9/2010, s. 841 — 848.(b)
  • [128] Jęczmionek Ł.; Studium wykonalności dla projektu „Otrzymywanie biopaliw II generacji z oleju z lnianki siewnej. Kraków, INiG, 2009.(b)
  • [129] Jęczmionek Ł., Lubowicz J., Hydrokonwersja olejów i tłuszczów naturalnych do węglowodorów, Nafta — Gaz, vol. LXV, 1/2009, s. 29 — 36.(a)
  • [130] Jęczmionek Ł., Lubowicz J.; Investigation of rapeseed oil and middle distillate blends in HDO process — ITN experiences. Perspectives of II Generation Engine Biofuels in Poland. 1st International Conference — POLBIOF 2007, 24 — 25 October, 2007, Cracow.
  • [131] Jęczmionek Ł., Lubowicz J.; Biopaliwo II generacji. Etap I. Dokumentacja INiG Nr DK- 4100-73/2008.
  • [132] Jęczmionek Ł.; Badanie mechanizmu procesu hydroodtleniania olejów pochodzenia roślinnego. Dokumentacja INiG Nr DK-4100-99/2008.(a)
  • [133] Jęczmionek Ł.; Konwersja olejów naturalnych do komponentów paliwowych. Wyznaczenie entalpii tworzenia triglicerydów kwasów tłuszczowych olejów naturalnych. Dokumentacja INiG Nr DK-5121-52/2008.(b)
  • [134] Jęczmionek Ł., Lubowicz J., Kaczmarczyk A.; The zeoforming process of the naphtha fraction from Fischer-Tropsch synthesis. XV Zeolite Forum, ISBN: 978-83-60514-07- 8. Kocierz, Poland, 16-21 June 2008, 213-220.(c)
  • [135] Jęczmionek Ł.; Odpadowe oleje roślinne jako surowiec do otrzymywania biokomponentów II generacji, Nafta — Gaz, rok LXVII, Nr 10/2011, 742-748.
  • [136] Jęczmionek Ł., Lubowicz J.; Nowe procesy rafineryjne w badaniach INiG. Przemysł Chemiczny, vol. 88, 7, 2009, s. 778-780.(c)
  • [137] Jęczmionek Ł., Lubowicz J., Gasoline components via zeoforming of the naphtha fraction from Fischer - Tropsch synthesis, Polish Journal of Environmental Studies, Vol. 18, No. 1B, 2009, 56 — 61.(d)
  • [138] Jęczmionek Ł.; Zeoforming triglicerydów jako sposób poprawy niskotemperaturowych właściwości biokomponentów II generacji, Przemysł Chemiczny, vol. 91, 1, 2012, 115- 120.
  • [139] Jiang Z.-D., Gerwick W.H.; Novel oxylipids from the temperate red alga Polyneura latissima: evidence for an arachidonate 9(S)-lipoxygenase. Lipids, 32, 1997, 231-235.
  • [140] Johnson R.W., Pollock C.M., Cantrell R.R., Othmer K.; Dicarboxylic Acids, Encyclopedia of Chemical Technology, 2010.
  • [141] Jungmeier G, Pucker J.; Life Cycle Assessment of Transportation Biofuels — Greenhouse Gas Emissions of 1st and 2nd Generation Biofuels in Comparison to Gasoline, Diesel and natural Gas; 8th International Colloquium Fuels Conventional and Future Energy for Automobiles, Esslingen, Niemcy, 19-20 stycznia 2011, TAE proceedings 2011, 53 — 54.
  • [142] Kaario O., Brink A., Lehto K., Keskinen K., Larmi M.; Studying Local Conditions in a Heavy-Duty Diesel Engine by Creating Phi-T Maps. SAE Technical Paper 2011-01- 0819.
  • [143] Kaczmarczyk A.; Koreferat do pracy: badanie mechanizmu procesu hydroodtleniania olejów pochodzenia roślinnego. Zlec. wewn. INiG 98/TP/2008.
  • [144] Kalnes T., Marker T., Shonnard D.R.; Green diesel: a second generation biofuel. International J Chem. React. Eng., 5, 2007, A48.
  • [145] Kalyanaraman B.; Nitrated lipids: A class of cell-signaling molecules. Proceedings of the National Academy of Science USA, 101, 32, 2004, 11527-11528.
  • [146] Kamiński M., Praca zbiorowa, pod red., Chromatografia cieczowa, CEEAM, Gdańsk 2004.
  • [147] Kasza T., Hancsok J.; Effects of the process Parameters and the Composition of the Feedstock on the catalyst Activity During the Isomerization of Bioparaffins. 8th International Colloquium Fuels Conventional and Future Energy for Automobiles, Esslingen, Niemcy, 19-20 stycznia 2011, TAE Proceedings 2011, 351 — 357.
  • [148] Katikaneni S.P.R., Adjaye J.D., Bakhshi N.N.; Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts, Can. J. Chem. Eng. 73 (1995) 484 — 497.
  • [149] Kawasaki W., Matsui K., Akakabe Y., Itai N., Kajiwara T.; Volatiles from Zostera marina. Phytochemistry, 47, 1998, 27-29.
  • [150] Kayama M., Araki S., Sato S., in: Ackman G. (Editor), Marine Biogenic Lipids, Fats and Oils, CRC Press, Boca Raton, Florida 1989.
  • [151] Kopperoinen A., Kyto M., Mikkonen S., Effect of Hydrotreated Vegetable Oil (HVO) on Particulate Filters of Diesel Cars. SAE Technical Paper SAE 2011-01-2096, JSAE 20119042.
  • [152] Kornblit L., Marchut A., Jęczmionek Ł., Lenartowicz L., Mikrut G., The Application of Laboratory Tests to Investigation of Industrial Catalysts used in Zeoforming Process. Proceedings of IVth International Conference: Catalysis and Adsorption in Fuel Processing and Environmental Protection, September 18-21, 2002, Kudowa— Zdrój, Poland.
  • [153] Kovacs S., Hancsok J.; Investigation of the transformability of vegetable oil with heterogenous catalyst. 8th International Colloquium Fuels Conventional and Future Energy for Automobiles, Esslingen, Niemcy, 19-20 January 2011, TAE Proceedings 2011, 391.
  • [154] Krar M., Kovacs S., Boda L., Leveles L., Thernesz A., Wahlne Horvath L, Hancsok J.; Fuel purpose Hydrotreating of vegetable oil on NiMo/Al203 catalyst. Hungarian Journal of Industrial Chemistry, 37, 2, 2009, 107, 111.
  • [155] Krar M., Kovacs S., Kallo J., Hancsok J.; Fuel purpose hydrotreating of sunflower oil on CoMo/Al203 catalyst. Bioresource Technology, 101, 2010, 9287-9293.
  • [156] Kroger M., Muller-Langer F.; Microalgae as a Feedstock for the Biofuels of the Future, 8th International Colloquium Fuels Conventional and Future Energy for Automobiles, Esslingen, Niemcy, 19-20 stycznia 2011, TAE Proceedings 2011, 259-263.
  • [157] Kubicka D., Simacek P., Kolena J., Lederer J., Sebor G.; Catalytic transformation of vegetable oils into hydrocarbons. In: IPC, 43rd Int. Petroleum Conf., 24-26 September 2007.
  • [158] Kubickova I., Snare M., Eranen K., Maki-Arvela P., Murzin D.Y.; Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catalysis Today, 106, 2005, 197- 200.
  • [159] Kuronen M., Mikkonen S., Aakko P., Murtonen T.; Hydrotreated vegetable oil as fuel for heavy duty diesel engines. SAE Technical Paper 2007-01-4031.
  • [160] Kusano K., Yamada H., Niwa M., Yamasato K.; Propionibacterium cyclohexanicum sp. nov., a New Acid-Tolerant Cyclohexyl Fatty Acid-Containing Propionibacterium Isolated from Spoiled Orange Juice. International Journal of Systematic Bacteriology, 47, 1997, 825-831.
  • [161] Lappas A.A., Bezergiani S., Vasalos I.A.; Production of biofuels via co-processing in conventional refining processes, catalysis Today, 145, 2009, 55-62.
  • [162] Larmi M., Tilli A., Kaario O., Gong Y., Sarjovaara T., Hillamo H., Hakkinen K., Lehto K., Brink A., Aakko-Saksa P.; High Cetane Number Paraffinic Diesel Fuels and Emission Reduction. IEA Combustion Agrement - 31th Task Leaders Meeting, Lake Louise, Kanada, 20.-24.9.2009. 2009, IEA.
  • [163] Lubowicz J., Katalityczna hydrokonwersja oleju rzepakowego w warunkach polskiego przemysłu rafineryjnego, Praca doktorska, Politechnika Wrocławska, 2011.
  • [164] Lutnaes B.F., Brandal B., Sjoblom J., Krane J.; Archaeal C80 isoprenoid tetracids responsible for naphthenate deposition in crude oil processing. Organic and Biomolecular Chemistry, 4, 616-620, 2006.
  • [165] Lutz W., Kurzhals R., Sauerbeck S., Toufar H., Buhl J.C., Gesing T., Altenburg W., Jager C; Hydrothermal stability of SAPO-11 zeolite. Microporous and Mesoporous Materials, 132, 2010, 31-36.
  • [166] MacMillan J.B., Molinski T.F.; Majusculoic Acid, a Brominated Cyclopropyl Fatty Acid. Journal of Natural Products, 68, 4, 2005, 604-606.
  • [167] Mahmood C., Daulatabad J.D., Mulla G.M.M., Mirajkar A.M., Hosamani K.M.; 7- Keto-octadec-cis-ll-enoic Acid from Gardenia lucida Seed Oil. Phytochemistry, 30, 1991, 2399-2400.
  • [168] Maki-Arvela P., Kubickova I., Snare M., Eranen K., Murzin D.Y.; Catalytic deoxygenation of fatty acids and their derivates. Energy & Fuels, 21, 2001, 30- 41.
  • [169] Marchetti J.M., Miguel V.U., Errazu A.F.; Possible methods for biodiesel production, Renewable and Sustainable Energy Reviews, 11, 2007, 1300-1311.
  • [170] Marchut A., Dettloff R.; Hydrorafinacja parafiny surowej, Dokumentacja ITN Nr 3412/2000.
  • [171] Marchut A., Jęczmionek Ł.; Określenie możliwości produkcji komponentu oleju napędowego z udziałem oleju rzepakowego. Dokumentacja ITN 4009/2006.
  • [172] Martinez A., Prieto G.; The potential use of micro and mesoporous molecular sieves in the production of liquid fuels from syngas, XV Zeolite Forum, ISBN: 978-83- 60514-07-8. Kocierz, Poland, 16-21 June 2008, pp 13-30.
  • [173] Matikainen J., Kaltia S., Ala-Peijari M., Petit-Gras N., Harju K., Heikkila Y., Yksjarvi R., Hase T.; A study of 1,5-hydrogen shift and cyclization reactions of an alkali isomerized methyl linolenoate, Tetrahedron, 59, 2003, 567-573.
  • [174] McConnell O.J., Fenical W.; Halogen chemistry of the red alga Asparagopsis. Phytochemistry, 16, 1977, 367-374.
  • [175] McConnell O.J., Fenical W.; Halogen chemistry of the red alga Bonnemaisonia. Phytochemistry,l9, 1980, 233-247.
  • [176] McGuire M.K., Park Y., Behre R.A., Harrison L.Y., Shultz T.D., McGuire M.A.; Conjugated Linoleic Acid Concentrations of Human Milk and Infant Formula. Nutrition Research, 17, 1997, 1277-1283.
  • [177] Meija J., Soukup V. G.; Phenylterminated fatty acids in seeds of various aroids. Phytochemistry, 65, 2004, 2229-2237.
  • [178] Melis S.; Albemarle Catalytic Solutions for the Co-processing of Vegetable Oil in Conventional Hydrotreaters. Albemarle Materials. 6 Courier, Issue 73, 2008.
  • [179] Mikkonen S.; NExBTL — Premium quality 2nd generation hydrogenated renewable diesel fuel. 2007 JSAE/SAE International Fuels and Lubricants Meeting, Kyoto, 23.7.2007.
  • [180] Mikkonen S.; Second-generation renewable diesel offers advantages. Hydrocarbon Processing, 87, 2, 2008, 63-66.
  • [181] Mikkonen S.; Vegetables are good for you. SAE Off-Highway Engineering, 19, 4, 2011, 34.
  • [182] Mikkonen S., Hartikka T., Kuronen M., Saikkonen P.; HVO, hydrotreated vegetable oil — a premium renewable biofuel for diesel engines, Neste Oil Proprietary publication, June 2012.
  • [183] Mikolajczak K. L., Smith C. R., Wolff I. A.; Dihydroxy fatty acids in Cardamine impatiens seed oil. Journal of the American Oil Chemists' Society, 42, 11, 1965, 939-941.
  • [184] Mikolajczak K. L., Smith C. R., Wolff I. A.; Glyceride structure of Cardamine impatiens seed oil. Lipids, 3, 3, 1968, 215-220.
  • [185] Mikulec J., Cvengros J., Jorikova L., Banic M., Kleinova A.; Second generation diesel fuel from renewable sources. Journal of Cleaner Production, 18, 9, 2010, 917-926.
  • [186] Miller, R. W., Earle F.R., Wolff I.A., Jones Q.; Journal of the American Oil Chemists' Society 41, 279, 1964.
  • [187] Milne T.A., Evans R.J., Nagle N.; Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective zeolites. Biomass, 21, 1990, 219 - 232.
  • [188] Minowa T., Yokoyama S., Kishimoto M., Okakura T.; Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel, vol. 74, 12, 1995, 1735-1738.
  • [189] Minto R.E., Blacklock B.J.; Biosynthesis and function of polyacetylenes and allied natural products. Progress in Lipid Research, 4, 47, 2008, 233-306
  • [190]. Molenda J., Rutkowski A.; Procesy wodorowe w przemyśle rafineryjnopetrochemicznym, WNT, Warszawa 1980.
  • [191] Monnier J., Touringny G., Douglas S., Alfred W., Edmund H., Mark S.; Conversion of biomass feedstock to diesel, Patent US 5 705 722, 1998.
  • [192] Morris L.J., Marshall M.O., Kelly W.; A Unique Furanoid. Fariy Acid From Exocarpus Seed Oil, Tetrahedron Letters, 36, 1966, 4249-4253.
  • [193] Morrow J.D., Harris T.M., Roberts L.J.; Noncyclooxygenase oxidative formation of a series of novel prostaglandins: analytical ramifications for measurement of eicosanoids. Analytical Biochemistry, 184, 1990, 1-10.
  • [194] Morrow J.D., Minton T.A., Mukundan C.R., Campbell M.D., Zacker W.E., Daniel V.C., Badr K.R., Blair I.A., Roberts J.L.; Free radical-induced generation of isoprostanes in vivo. Journal of Biological Chemistry, 269, 1994, 4317-4326.
  • [195] Murtonen T., Aakko-Saksa P., Kuronen M., Mikkonen S., Lehtoranta K.; Emissions with Heavy-duty Diesel Engines and Vehicles using FAME, HVO and GTL fuels with and without DOC+POC Aftertreatment. SAE Technical Paper 2009-01-2693.
  • [196] Myllyoya J., Aalto P., Harlin E.; Process for the manufacture of diesel range hydrocarbons. Patent EP1741767 A1, 2007.
  • [197] Nair P.; UOP / Eni Ecofining/TM Process Refining Renewable Feed stocks, International Symposium on Biofuels, 25-26 September 2007, New Delhi, Indie.
  • [198] Ninh T.D. et al.; Water-Soluble and Lipid-Soluble Arsenic Compounds in Japanese Flying Squid Todarodes pacificus. Journal of Agricultural Food Chemistry, 55, 8, 2007, 3196-3202.
  • [199] Noordermeer M.A., Feussner I., Kolbe A., Veldink G.A., Vliegenthart J.F.; Oxygenation of (3Z)-alkenals to 4-hydroxy-(2E)-alkenals in plant extracts: a nonenzymatic process. Biochem. Biophys. Res. Commun., 277, 1, 2000, 112-116.
  • [200] Nourooz-Zadeh J., Halliwell B., Anggard E.E.; Evidence for the Formation of F3- Isoprostanes during Peroxidation of Eicosapentaenoic Acid. Biochemical and Biophysical Research Communications, 236, 467-472, 1997.
  • [201] Nunes P.P.; Ph.D. Thesis: Hydrocraquage de 1'huile de soja sur des catalyseurs au rhodium et au ruthenium supportes, Universite et Marie Curie, Paris 1984.
  • [202] Nylund, N.-O., Erkkila, K., Ahtiainen, M., Murtonen, T., Saikkonen, P., Amberla, A., Aatola, H.; Optimized usage of NExBTL renewable diesel fuel — OPTIBIO. VTT Technical Research Centre, VTT Research Notes 2604. Espoo 30.9.2011. 180 p. http://www.vtt.fi/inf/pdf/tiedotteet/2011 /T2604.pdf.
  • [203] Nylund N.-O., Juva A., Mikkonen S., Lehmuskoski V., Makinen R.; Synthetic biodiesel for improved urban air quality. ISAF, XVI International Symposium on Alcohol Fuels, Rio de Janeiro 26 - 29.11.2006. 8 p.
  • [204] Oja S.; NExBTL — Next generation renewable diesel. Developing and commercialising next generation biofuels. Hamburg, Germany, February 12-13, 2008.
  • [205] Opieńska-Blauth J., Kraczkowski K., Brzuszkiewicz H.; Zarys chromatografii cienkowarstwowej, PWRiL, Warszawa 1971.
  • [206] Oppenheim R.; Patent US 1 960 951, 1934.
  • [207] Park K.-C., Ihm S.-K.; Comparison of Pt/zeolite catalysts for n-hexadecane hydroisomerization. Applied catalysis A: General, 203, 2000, 201-209.
  • [208] Passi S, Picardo M, De Luca C, Nazzaro-Porro M, Rossi L., Rotilio G.; Saturated dicarboxylic acids as products of unsaturated fatty acid oxidation. Biochim Biophys. Acta, 1168, 2, 1993, 190-198.
  • [209] Pazdro K.; Chemia. Oficyna Edukacyjna Krzysztof Pazdro, Warszawa 2008, ISBN 978-83-7594-038-1.
  • [210] Perego C.; Micro- and mesoporous materials for sustainable energy. 16th International Zeolite Conference — 7th International Mesostructured Materials Symposium, KN-8, July 4-9, 2010, Sorrento, Italy.
  • [211] Pflaum H., Hofmann P., Geringer B.; Emission Performance of Hydrogenated Vegetable oil (HVO) in a Modern Compression Ignition Engine. 8th International Colloquium Fuels, Technische Akademie Esslingen (TAE), January 19-20, 2011.
  • [212] Podbielkowski Z.; Słownik roślin użytkowych. PWRiL, ISBN 83-09-00256-4, Warszawa 1989.
  • [213] Porter N.A., Caldwell S.E., Mills K.; Mechanisms of Free Radical Oxidation of Unsaturated Lipids. Lipids, vol. 30, 4, 1995, 277-290.
  • [214] Porter N.A., Lehman L.S., Weber B.A., Smith K.J.; Unified Mechanism for polyunsaturated Fatty Acid Autoxidation. Competition of Peroxy Radical Hydrogen Atom Abstraction, Beta-Scission, and Cyclization. Journal of the American Chemical Society, 103, 6447-6455, 1981.
  • [215] Prasad Y.S., Bakhshi N.N., Mathews J.F., Eager R.L.; Catalytic conversion of canola oil to fuels and chemical feedstocks, Can. J. Chem. Eng. 64 (1986) 278-284, 285 - 292.
  • [216] Proteau P.J., Gerwick W.H.; Divinyl Ethers and Hydroxy Fatty Acids from Three Species of Laminaria (Brown Algae), Lipids, 28, 1993, 783-787.
  • [217] Puah C.W., Choo Y.M., Ma A.N., Chuch C.H.; Very long chain fatty acid methyl esters in transesterified palm oil, Lipids, vol. 41, 2006, No. 3, 305-308.
  • [218] Rantanen L., Linnaila R.; NExBTL-Biodiesel fuel of the second generation, SAE International, 2005-01-3771, 2005.
  • [219] Reinhardt G.; How Suitable are Biofuels for Transportation?; 8th International Colloquium Fuels Conventional and Future Energy for Automobiles, Esslingen, Niemcy, 19-20 stycznia 2011, TAE proceedings 2011, 17 — 22.
  • [220] Reis M.G., de Faria A.D., dos Santos LA., do Carmo E. Amaral M., Marsaioli A.J.; Byrsonic Acid - the Clue to Floral Mimicry Involving Oil-Producing flowers and Oil- Collecting Bees. J. Chem. Ecol. 33, 2007, 1421-1429.
  • [221] Rorrer G.L., Yoo H.-D., Huang Y.-M., Hayden C., Gerwick W.H.; Production of hydroxy fatty acids by cell suspension cultures of the marine brown alga Laminaria saccharina, Phytochemistry, Vol. 46, 5, 1997, 871-877.
  • [222] Rezanka T., Dembitsky V.M.; Multibranched polyunsaturated and very long-chain fatty acids of frashwater Israeli sponges. Journal of Natural Products, 65, 5, 2002,709-713.
  • [223] Rezanka T., Sigler K.; Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Progress in Lipid Research, 48, 2009, 206-238.
  • [224] Sabah E., Majdan M.; Removal of phosphorus from vegetable oil by acid-activated sepiolite, Journal of Food Engineering, 91, 423-427, 2009.
  • [225] Sang O.Y., Twaiq F., Zakaria R., Mohamed A.R., Bhatia S.; Biofuel production from catalytic cracking of palm oil, Energy Sources, 25, 2003, 859 - 869.
  • [226] Sarjovaara T., Larmi M.; Preliminary Results on HCCI Implementation with High Cetane Number Fuel. IEA Combustion Agreement - 31th Task Leaders Meeting, Lake Louise, Kanada, 20-24.9.2009. 2009, IEA.
  • [227] Sayag C.; Reactivity approach applied to hydrotreating processes: hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodeoxygenation (HDO). Proc. of IV International Conference Catalysis and Adsorption in Fuel Processing and Environmental Protection, KudowaZdrój, Poland, 2002.
  • [228] Schmeisser E., Goessler W., Kienzl N., Francesconi K.A.; Direct measurement of lipid-soluble arsenic species in biological samples with HPLC-ICPMS. The Analyst, 130, 2005, 948-955.
  • [229] Schmid P.C., Holman R.T., Soukup V.G.; 13-Phenyltridecanoic acid in seed lipids of some aroids. Phytochemistry 45, 1997, 1173-1175.
  • [230] Schopfer F.J., Lin Y., Baker P.R.S., Cui T., Garcia-Barrio M., Zhang J., Chen K., Chen Y.E., Freeman B.A.; Nitrolinoleic acid: An endogenous peroxisome proliferator-activated receptor gamma ligand, Proceedings of the National Academy of Science USA, 102, 7, 2005, 2340-2345.
  • [231] Schwetlick K.; Kinetyczne metody badania mechanizmów reakcji. PWN, Warszawa 1975.
  • [232] Sebedio J.L., Grandgirand A.; Cyclic Fatty Acids: Natural Sources. Formation During Heat Treatment. Synthesis and Biological Properties. Progress in Lipid Research, 28, 303-336, 1989.
  • [233] Senol O., Viljava T.-R., Krause A.O.L; Hydrodeoxygenation of Aliphatic Esters on Sulphided NiMo/Al203 and CoMo/Al203 Catalyst: The Effect of Water. Catalysis Today, 106, 2005, 186-189.(a)
  • [234] Senol O., Viljava T.-R., Krause A.O.I.; Hydrodeoxygenation of Methyl Esters on Sulphided NiMo/Al203 and CoMo/Al203. Catalysis Today, 100, 2005, 331- 335.(b)
  • [235] Seyfried F.; RENEW - Results of the RENEW Project, Volkswagen 2008.
  • [236] Sheehan J., Dunahay T., Benemann R., Roessler G., Weissman C.; A Look Back at the USA Department of Energy's Aquatic Program: Biodiesel from Algae, 1998.
  • [237] Shirasaka N., Nishi K., Shimizu S.; Occurrence of Furan Fatty Acids in Marine Bacteria, Biochim. Biophys. Acta, 1258, 1995, 225-227.
  • [238] Silverstein R.M., Webster F.X., Kiemle D.I.; Spektroskopowe metody identyfikacji związków organicznych. PWN, Warszawa 2007.
  • [239] Sinninghe D.J.S., Strous M., Rijpstra W.I.C., Hopmans E.C., Geenevasen J.A.J., van Duin A.C.T., van Niftrik L.A., Jetten M.S.; Linearly concatenated cyclobutane lipids from a dense bacterial membrane. Nature, 419, 2002, 708- 712.
  • [240] Sinninghe Damste D.J.S., Rijpstra W.I.C., Geenevasen J.A., Strous M., Jetten M.S.; Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS Journal, 272, 16, 2005, 4270-4283.
  • [241] Smith C.R., Keto fatty acids form Cuspidaria pterocarpa seed oil. Lipids, 1, 4, 1966, 268-273.
  • [242] Song W., Wang M., Ricciotti E., i in.; Novel eicosapentaenoic acid-derived F3-isoprostanes as biomarkers of lipid peroxidation. Journal of Biological Chemistry, 283, 19927-35, 2008.
  • [243] Spencer G. F., Payne-Wahl K., Plattner R. D., Kleiman R.; Lactobacillic and methyl-branched olefinic acids in Byrsocarpus coccineus seed oil. Lipids, 14, 1979, 72-74.
  • [244] Spiteller G.; Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids, 40, 8, 2005, 755-771.
  • [245] Spitzer V., Aitzetmuller K., Vosmann K.; The Seed Oil of Bernardia pulchella (Euphorbiaceae) - A Rich Source of Vernolic Acid. Journal of American Oil Chemists Society, 73, 1996, 1733-1735.
  • [246] Spitzer V., Tomberg W., Pohlentz G.; Structure analysis of an allene-containing estolide tetraester triglyceride in the seed oil of Sebastiana commersoniana (Euphorbiaceae). Lipids, 32, 5, 1997, 549-57.
  • [247] Stecki J., Profesor Wojciech Świętosławski (1881-1968). www.edu.pl/people/AMyslinski/kolo/wojciech.html
  • [248] Stepanov V.G., Ione K.G., Snytnikova G.P., Catalysts in petroleum refining and petrochemical industries. Elsevier, Amsterdam-Lausanne-New York-Oxford- Shannon-Tokyo, 1996, 477-482.
  • [249] Stumborg M., Wong A., Hogan E.; Hydroprocessed vegetable oils for diesel fuel improvement. Bioresour. Technol., 56, 1996, 13-18.
  • [250] Surowiec I., Kaml I., Kenndler E.; Analysis of drying oils used as binding media for objects of art by capillary electrophoresis with indirect UV and conductivity detection. Journal of Chromatography A, 1024, 2004, 245.
  • [251] Szafran M., Dega-Szafran Z.; Określanie struktury związków organicznych metodami spektroskopowymi. Tablice i ćwiczenia. PWN, Warszawa 1988.
  • [252] Szukalska E., Polański A.; Uwodornienie oleju rzepakowego i sojowego na katalizatorach miedziowych nowej generacji. Cz. I. Kinetyka reakcji., Przemysł Chemiczny, 82, 6, 2003, 406-410.
  • [253] Szukała D.; Unikaj smażenia. www.dobrydietetyk.pl/czytelnia/73
  • [254] Szydłowska — Czerniak A., Szłyk E.; Spectrophotometric determination of total phosphorus in rape seeds and oils at various stages of technological process: calculation of phospholipids and non-hydratable phospholipids contents in rapeseed oil. Food Chemistry, 81, 2003, 613 — 619.
  • [255] Takada N., Watanabe M., Yamada A., Suenaga K., Yamada K., Ueda K., Uemura D.; Isolation and Structures of Haterumadioxins A and B, Cytotoxic Endoperoaides from the Okinawan Sponge Plakortis lita. J. Nat. Prod., 64, 3, 2001, 356-359.
  • [256] Taleshi M.S., Edmonds J.S., Goessler W., Ruiz-Chancho M.J., Raber G., Jensen KB., Francesconi K.A.; Arsenic-Containing Lipids are Natural Constituents of Sashimi Tuna. Environmental Science and Technology, 44, 4, 2010, 1478-1483.
  • [257] Tsevegsuren N., Aitzetmuller K., Vosmann K.; Geranium sanguineum (Geraniaceae) seed oil: a new source of petroselinic and vernolic acid. Lipids, 39, 2004, 571-576.
  • [258] Urbańczyk S., Kornblit L., Szklarski A., Szczepek H., Marchut A.; Rozeznanie nowego procesu wytwarzania komponentów benzynowych i ocena możliwości jego udoskonalenia. Dokumentacja ITN Nr 3042/1997.
  • [259] Varga Z., Hancsok J., Nagy G., Polczmann G.; Quality improvement of heavy gas oils on NiMo and CoMo catalysts. 7th International Symposium MOTOR FUELS, Slovakia, Tatranske Matliare, 19-22 June 2006. In Proceedings(ISBN 80-968011-3-9), 328-339.
  • [260] Vatani A., Mehrpooya M., Gharagheizi F.; Prediction of standard enthalpy of formation by QSPR model. Inter. Journal of Molecular Science, 8, 2007, 407-432.
  • [261] Velasco J., Marmesat S., Marquez-Ruiz G. i in.; Formation of short-chain glycerol- bound oxidation products and oxidised monomeric triacylglycerols during deep- frying and occurrence in used frying fats. European Journal of Lipid Science and Technology, 106, 728-735, 2004.
  • [262] Veldsink J., Bouma M., Schoon N., Beenackers A.; Hydrogenation of natural oils. Catal. Rev-Sci. Eng., 39, 1997, 253-318.
  • [263] Veriansyah B., Han J.Y., Kim S.K., Hong S.-A., Kim Y.J., Lim J.S., Shu Y.-W., Oh S.-G., Kim J.; Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts. Fuel, 10.1016/j.fue1.2011.10.057.
  • [264] Vick B.A., Zimmerman D.C.; Metabolism of Fatty Acid Hydroperoxides by Chlorella pyrenoidosa. Plant Physiology, 90, 1989, 125-132.
  • [265] Volkman J.K., Barrett S.M., Blackburn S.I., Mansour M.P., Sikes E.L., Gelin F.; Microalgal biomarkers: a review of recent research developments. Organic Geochemistry, 29, 1998, 1163-1179.
  • [266] Wahl H.G., Liebich H.M., Hoffmann A.; Identification of fatty acid methyl esters as minor components of fish oil by multidimensional GC-MSD: New furan fatty acids. Journal of High Resolution Chromatography, 17, 1994, 308-311.
  • [267] Wcisło G.; Określenie składu frakcyjnego biopaliw rolniczych zawierających biokomponent CSME. Inżynieria Rolnicza, 9, 118, 2009, 303-308.(a)
  • [268] Wcisło G.; Zastosowanie chromatografii gazowej do oceny rolniczych biopaliw typu RME i CSME ze względu na układ estrów kwasów tłuszczowych. Inżynieria Rolnicza, 9, 118, 2009, 311-317.(b)
  • [269] White R.H., Hager L.P.; Occurrence of fatty acid chlorohydrins in jellyfish lipids. Biochemistry, 16, 22, 1977, 4944-4948.
  • [270] Wijesundera R.C., Ackman R.G.; Evidence for the probable presence of sulfur-containing fatty acids as minor constituents in canola oil. Journal of the American Oil Chemists' Society, Vol. 65, 6, 1988, 959-963.
  • [271] Wijesundera R.C., Ceccato P., Watkins P., Fagan P.; Docosahexaenoic Acid is More Stable to Oxidation when Located at the sn-2 Position of Triacylglycerol Compared to sn-1(3). Journal of the American Oil Chemists' Society, 85 (6), 543-548, 2008.
  • [272] Wijffels R.H., Barbosa M.J.; An Outlook on Microalgal Biofuels. Science, vol. 329, 5993, 2010, 796-799.
  • [273] Wolff R.L., Christie W.W., Coakley D.; The unusual occurrence of 14-methylhexadecanoic acid in Pinaceae seed oils among plants. Lipids, 32, 9, 1997, 971-973.
  • [274] Woolard F.X., Moore R.E., Roller P.P.; Halogenated acetic and acrylic acids from the alga Asparagopsis taxiformis. Phytochemistry, 18, 1979, 617-620.
  • [275] Yamamoto K., Kinoshita A., Shibahara A.; Ricinoleic Acid in Common Vegetable Oils and Oil Seeds. Lipids, 43, 2008, 457-460.
  • [276] Yasugi E., Kasama T., Seyama Y.; Composition of long chain bases in ceramide of the guinea pig Harderian gland. Journal of Biochemistry, 110, 2, 1991, 202-206.
  • [277] Yin H., Brooks J.D., Gao L., Porter N.A., Morrow J.D. i in.; Formation of Highly Reactive Cyclopentenone Isoprostane Compounds (A3 /J3-Isoprostanes) in Vivo from Eicosapentaenoic Acid. The Journal of Biological Chemistry, 282, 29890-901, 2007.
  • [278] Zgoda J.R., Freyer A.J., Killmer L.B., Porter J.R; Polyacetylene carboxylic acids from Mitrephora celebica. J. Nat. Prod. 64, 2001, 1348-1349.
  • [279] Zieliński W., Rajca A.; Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych. WNT, Warszawa 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHM-0052-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.