PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of cytocompatibility of PLGA and PGLA-based nanocomposite biomaterials in osteoblast cultures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to evaluate biocompatibility of multilevel composites based on bioresorbable poly(lactide-co-glycolide) (PGLA). Polymer matrix was modified with multidimensional (MD) short biopolymer fibers of calcium alginate (CA) containing bioactive ceramic nanoparticles (nanohydroxyapatite - HA or nanosilica - SiO2). The nanocomposite fibres present in the polymer samples influenced cells morphology, viability and secretory activity which was estimated using human osteoblasts cells (NHOst). The results indicate that biodegradable nanocomposite CA-HA/PGLA improves biological properties of the basic biomaterial (PGLA) suggesting its potential application for bone tissue engineering.
Rocznik
Strony
2--5
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
  • University School of Physical Education, Faculty of Rehabilitation, Physiotherapy Department, al. Jana Pawła II 78, 31-571 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Jagiellonian University, Collegium Medicum, Department of Cytobiology, ul. Medyczna 9, 30-688 Krakow, Poland
autor
  • Technical University of Lodz, Faculty of Material Technologies and Textile Design, Department of Man-Made Fibres, ul. Żeromskiego 116, 50-952 Lodz , Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Jagiellonian University, Collegium Medicum, Department of Cytobiology, ul. Medyczna 9, 30-688 Krakow, Poland
Bibliografia
  • [1] Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E.: Biomaterials Science: An Introduction to Materials in Medicine 2nd Edition, Elsevier Academic Press, Amsterdam 2004.
  • [2] Langer R., Vacanti J.P.: Tissue engineering. Science 260 (1993) 920-6.
  • [3] Maquet V., Boccaccini A.R., Pravata L., Notingher I., Jerome R.: Porous poly(a-hydroxyacid)/bioglass composite scaffolds for bone tissue engineering. Preparation and in vitro characterization. Biomaterials 25 (2004) 4185-94.
  • [4] Mano J.F., Sousa R.A., Boesel L.F., Neves N.M., Reis R.L.: Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: stste of the art and recent developments. Compos Sci Technol 64 (2004) 789-817.
  • [5] Chouzouri G., Xanthos M. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomater 3 (2007) 745-56.
  • [6] Vollath D.: Nanomaterials: An introduction to synthesis, properties and applications, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim 2008.
  • [7] Montjovent M.O., Mathieu L., Hinz B., Applegate L.L., Bourban P.E., Zambelli P.Y., Minson J.A., Pioletti D.P.: Biocompatibility of bioresorbable poly(L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue Engineering 11 (2005) 1640-49.
  • [8] Stodolak E., Scisłowska-Czarnecka A., Blazewicz M., Bogun M., Mikolajczyk T., Menaszek E.: Biocompatibility of hybrid fibrous materials basing on poly-L/DL-lactide, Engineering of Biomaterials 99-101 (2010) 110-112.
  • [9] Crouch S.P.M., Kozłowski R., Slater K.J., Flechter J.: The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol Methods 160 (1993) 81-8.
  • [10] Sun J., Zhang X., Broderick M., Fein H.: Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay. Sensors 3 (2003) 276-284.
  • [11] Stoscheck CM.: Quantitation of Protein. Methods in Enzymology 182 (1990) 50-69.
  • [12] Hsieh T.P., Sheu S.Y., Sun J.S., Chen M.H., Liu M.H.: Icariin isolated from Epimedium pubescens regulates osteoblasts anabolism through BMP2, SMAD4 and Cbfa1 expression. Phytomedicine 17 (2010) 414-23.
  • [13] Ngiam M., Liao S., Patii A.J., Cheng Z., Chan C.K, Ramakrishna S.: The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone 45 (2009) 4-16.
  • [14] Anselme K., Bigerelle M., Noel B., Dufresne E., Judas D., Iost A., Hardouin P.: Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research 49 (2000) 155-66.
  • [15] Nie H., Soh B.W., Fu Y.C., Wang C.H.: Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnology and Bioengineering 99 (2008) 233.
  • [16] Nałęcz M.: Biocybernetyka i Inżynieria Biomedyczna, tom 4, Błażewicz S., Stoch L.: Biomateriały, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2004, 425-517.
  • [17] Pacher P., Beckman J.S., Liaudet L.: Nitric oxide and peroxynitrate in health and disease. Physiol Rev 87 (2007) 315-424.
  • [18] Yamasaki K., Edington H., McClosky C., Tzeng E., Lizonova A., Kovesdi I., Steed D. and Billiar T.: J Clin Invest 101 (1998) 967.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHM-0043-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.