PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rentgenowska mikrotomografia komputerowa w badaniu skał węglanowych : praca zbiorowa

Identyfikatory
Warianty tytułu
EN
X-ray computer microtomography in examination of carbonate rocks
Języki publikacji
PL
Abstrakty
PL
W dziedzinie charakterystyki skał zbiornikowych, tomografia rentgenowska (CT) stała się interesującą techniką badawczą, po raz pierwszy zademonstrowaną przez Wellington'a i Vinegar'a [1987]. Od tego czasu światowy przemysł naftowy wykorzystuje metodę CT jako skuteczne narzędzie do analizowania rdzeni wiertniczych, zapewniające nieniszczący sposób badania skał i obrazowania ich budowy wewnętrznej, ze szczególnym uwzględnieniem charakteru struktury porowej. Rentgenowska mikrotomografia komputerowa generuje trójwymiarowy obraz przestrzeni porowej badanej próbki skały, co pozwala na dokładne pomiary i analizę układu przestrzennego porów. Na podstawie wyników badań micro-CT możemy uzyskać m.in. informacje dotyczące porowatości (objętość, struktura, lokalizacja, wielkość porów), liczby i długości kanalików porowych oraz połączeń między nimi, a także struktury sieci porów i ich wpływu na przepuszczalność. Celem opracowania było zaprezentowanie potencjału techniki badawczej micro-CT w dziedzinie badania skał zbiornikowych oraz ukazanie możliwości metody w różnych dyscyplinach nauk geologicznych, ze szczególnym uwzględnieniem zastosowania jej do badania skał węglanowych. Praca składa się z ośmiu rozdziałów, w których omówiono podstawy fizyczne metody, sposób generowania trójwymiarowych obrazów, a także przygotowywanie ich do dalszej analizy. Przeprowadzono analizę własności zbiornikowych skał węglanowych z wykorzystaniem mikrotomografii rentgenowskiej. Badania wykonano na próbkach skał reprezentujących poziom dolomitu głównego z rejonu monokliny przedsudeckiej. Dla każdej z nich wyznaczono porowatość micro-CT, dystrybucję porów w objętości próbki oraz charakter sieci porowej w niej - z pełną analizą możliwości komunikowania się wydzielonych grup porów między sobą. Zaobserwowano, że próbki dolomitu głównego są zróżnicowane pod względem tekstury, struktury i charakteru porowatości, a dodatkowo charakteryzują się znacznym zaangażowaniem procesów diagenezy; szczególnie cementacji i dolomityzacji. Zbyt wiele zmiennych związanych z petrografią badanych skał spowodowało konieczność zastosowania bardzo schematycznego podziału mikrofacjalnego, uwzględniającego teksturę, stopień przeobrażenia oraz obserwowaną porowatość - wyróżniono 5 grup skał zbiornikowych. Wykonane analizy wskazują na znaczną użyteczność mikrotomografii rentgenowskiej dla określenia właściwości zbiornikowych skał węglanowych, pozwalając na jakościową i ilościową ocenę dystrybucji porów - opartą nie na jednostkowym pomiarze porowatości, ale na analizie obrazu 3D, wygenerowanego na podstawie trzech tysięcy radiogramów próbki z dokładnością równą rozdzielczości obrazu, czyli 1 woksela (= 216 mikro m3). Metodą micro-CT dokonano rekonstrukcji wizualizacji szczelin w przestrzeni 3D próbek, pokazując ich przebieg, szerokość i rozwartość. W ten sposób scharakteryzowano naturalne szczeliny występujące w 20 próbkach skał węglanowych, różniących się litologią i sklasyfikowanych jako: wapienie, wapienie dolomityczne i dolomity. Spośród tych trzech litologii, najlepsze parametry obrazowania posiadały szczeliny występujące w wapieniach, gdzie płaszczyzny były bardzo dobrze widoczne i zostały wyraźnie wyeksponowane. Otrzymane wyniki mają istotne znaczenie w ocenie i zrozumieniu geometrii porowej skał zbiornikowych, w aspekcie prawidłowej charakterystyki parametrów zbiornikowych, co może mieć znaczący wpływ na poprawność obliczeń zasobów złóż węglowodorów. Na podkreślenie zasługuje fakt, że lepsze walory obrazowania przestrzeni porowej ma metoda micro-CT - w porównaniu z możliwościami badawczymi metody mikroskopowej, która w przypadku większości próbek (12) nie wykazała występowania szczelin. Porównując wyniki badań uzyskanych metodą micro-CT i NMR stwierdzono, że obie metody należą do najbardziej skutecznych metod poznania złożonych własności petrofizycznych skał i każda z nich daje wyniki niemożliwe do uzyskania konwencjonalnymi metodami laboratoryjnymi, a komplementarne działanie tych metod może prowadzić do dokładniejszej charakterystyki parametrów zbiornikowych skał. W niniejszej pracy nakreślono także problem numerycznej symulacji przepływu płynu przez skałę na podstawie danych micro-CT. Omówiono podstawowe fizyczne równania przepływu płynu, metodykę wykonania modelu do obliczeń oraz pokazano wstępne wyniki. Na podstawie obliczonych wartości prędkości i powierzchni porów obliczono przepuszczalność analizowanych próbek i porównano ją z wynikami pomiaru przepuszczalności gazowej. Rezultaty uzyskane obydwiema metodami okazały się zbieżne. Zasygnalizowano także możliwość badania metodą mikrotomografii rentgenowskiej kanalików robaczkowych powstających w procesie kasowania próbek skał węglanowych. Wykonane badania umożliwiły przeprowadzenie szeregu obserwacji w zakresie efektywności działania kwasu - w szczególności na obrazach trójwymiarowych, przedstawionych w postaci filmów. W końcowej części opracowania przedstawiono niektóre z możliwości zastosowań metody mikrotomografii rentgenowskiej w przemyśle naftowym (według publikacji różnych autorów), które obecnie jeszcze nie są realizowane w INiG, a których tematyka wyznacza kierunki dalszych prac i zostanie podjęta w najbliższym czasie. Metoda mikrotomografii rentgenowskiej jest unikalną i atrakcyjną metodą badawczą, ale - mimo jej ogromnego potencjału - mało znaną i rzadko stosowaną w krajowym środowisku naukowym i przemysłowym (z wyłączeniem medycyny). Autorzy mają nadzieję, że poprzez zaprezentowanie możliwości stosowania tej metody w geologii naftowej i w innych dziedzinach nauki, treści zawarte w tej publikacji przybliżą osobom zawodowo trudniącym się poszukiwaniem i eksploatacją złóż węglowodorów tematykę analizowania obrazów micro-CT w aspekcie właściwości petrofizycznych skał.
EN
X-ray computer tomography (CT) has been found interesting testing technique within domain of reservoir rocks characterization, demonstrated for the first time by Wellington and Vinegar [1987]. The world oil industry employs the CT method since this time as effective tool for analyzing of core plugs, providing non-destructive rock testing method, displaying their internal structure, with particular consideration given to the pore structure nature. X-ray computed microtomography generates three-dimensional representation of examined rock sample pore space, which enables accurate measurements and analysis of spatial pore arrangement. Based on micro-CT examination results various information can be obtained, to include porosity (volume, structure, location, pore sizes), number and length of pore throats and connections between them, pore network structure, and their influence on permeability. The aim of the study was to present micro-CT examination technique in reservoir rocks examining domain, as well as presentation of the method capacities in various disciplines of geological sciences, with particular attention given to the carbonate rocks examination potential of the method. The work consists of eight chapters, covering physical grounds of the method, the way of three-dimensional pictures generation, as well as their preparation for further analysis. Analysis of carbonate rocks reservoir properties has been carried out by means of X-ray microtomography. The tests has been carried out on rock samples representing Main Dolomite horizon from region of the Fore-Sudetian Monocline. Micro-CT porosity, pore distribution within the sample volume and pore network nature have been determined for each of them, with full analysis of separated pore groups intercommunication possibility. It was noticed, that Main Dolomite samples are diversified as regards texture, structure, porosity nature, and additionally they are characterized with significant advance of diagenesis processes, especially cementation and dolomitization. Too many variables, connected with petrography of examined rocks resulted in necessity of very schematic microfacial division use, taking into account the texture, degree of rocks alteration and observed porosity - 5 groups of reservoir rocks have been discerned. Completed analyses indicate significant usability of X-ray computed microtomography for carbonate rocks reservoir properties determination. It enable qualitative and quantitative assessment of pore distribution based not on the single porosity measurement, but on the analysis of 3D representation generated on the grounds of three thousand radiograms of the sample with accuracy equalling to the image resolution, that is 1 voxel (= 216 micro m3). Reconstruction of fissures visualization within 3D space of samples has been done by means of micro-CT method, showing their course, width and aperture. In such manner the natural fissures occurring in 20 samples of carbonate rocks, having different lithologies and classified as limestones, dolostones and dolomites, have been characterized. From among of these three lithologies, the fractures present in limestones had the best representation parameters, where the fracture planes had very good visibility and have been clearly exhibited. The results obtained have very significant importance for assessment and understanding of reservoir rocks pore geometry in aspect of proper reservoir parameters characterization, which may have meaningful influence on the correctness of hydrocarbon reservoir reserves computations. It is worth to emphasize, that micro-CT method has better pore space representation features as compared to microscope method examination possibilities, which in most of the samples (12) did not reveal fissures occurrence. Comparison of micro-CT and NMR method examination results led to conclusion, that both the methods are one of the most effective ways of complex petrophysical rock properties learning. Each of them yields results that are impossible to obtain by means of conventional laboratory methods. Their complementary action may lead to more correct characterization of reservoir rocks parameters. The problem of numerical simulation of fluid flow through a rock on the grounds of micro-CT data has been outlined. Basic physical equations of fluid flow, method of computational model creation and initial results obtained have also been shown. On the grounds of calculated velocity and pore surface area values, permeability of examined samples was calculated and compared with gas permeability measurement results. The results obtained by means of both methods proved to be convergent. Examination possibility of worm channels generated in process of carbonate rock samples acidizing with X-ray computed microtomography method was signaled. The completed test enabled execution of several observations in scope of acid action effectiveness, in particular on three-dimensional images presented in the form of motion pictures. In the final part of the study, some of X-ray computed microtomography applications within oil industry have been presented on the grounds of various authors' publications, which are not realized in INiG yet, but which subject area determines directions of further works and will be undertaken in the near future. The X-ray microtomography method is unique and attractive research method, which - despite its huge potential - is not widely known and applied in domestic scientific and industrial environment (excluding medicine domain). The authors hope, that by presentation of the method utilization possibilities within both oil geology, and another science domains, the subjects contained in this publication will enable closer acquaint of micro-CT images analyses subject area in aspect of petrophysical rock properties to persons which undertake hydrocarbon reservoirs prospection and exploitation by profession.
Rocznik
Tom
Strony
1--263
Opis fizyczny
Bibliogr. przy rozdz., rys., wykr.
Twórcy
  • Instytut Nafty i Gazu
Bibliografia
  • [1] Anselmetti F.S., Eberli G.P., 1993, Controls on sonic velocity in carbonates: Pure and Applied Geophysics, vol. 141, p. 287-323.
  • [2] Arns C.H., Knackstedt M.A., Pinczewski W.V., Martys N.S., 2004a, Virtual permeametry on microtomographic images. Journal of Petroleum Science and Engineering, vol. 45, p. 41-46.
  • [3] Arns C.H., 2004b, A comparison of pore size distributions derived by NMR and X-ray CT techniques. Physica A, vol. 339, p. 159-165.
  • [4] Arns J.Y., Arns C.H., Sheppard A.P., Sok R.M., Knackstedt M.A., Pinczewski W.V., 2003, Relative permeability from tomographic images; effect of correlated heterogeneity. Journal of Petroleum Science and Engineering, vol. 39, p. 247-259.
  • [5] Arns C.H., Knackstedt M.A., Pinczewski W.V., Garboczi E.J., 2002, Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment. Geophysics, vol. 67, p. 1396-1405.
  • [6] Arns C.H., Bauget F., Limaye A., Sakellariou A., Senden T.J., Sheppard A.P., Sok R.M., Pinczewski W.V., Bakke S., Berge L.I., Oren P.E., Knackstedt M.A., 2005, Pore scale characterization of carbonates using micro x-ray ct: SPE Journal, p. 475-484.
  • [7] Bertels S.P., Dicarlo D.A., Blunt M.J., 2001, Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resources Research, 37, 649-662.
  • [8] Coles M.E., Hazlett R.D., Spanne P., Soll W.E., Muegge E.L., Jones K.W., 1998a, Pore level imaging of fluid transport using synchrotron X-ray microtomography. Journal of Petroleum Science and Engineering, vol. 19, p. 55-63.
  • [9] Coles M.E., Hazlett R.D., Muegge E.L., Jones K.W., Andrews A., Dowd B., Siddons P., Peskin A., Spanne P., Soll W.E., 1998b, Developments in synchrotron X-ray microtomography with applications to flow in porous media. SPE Reservoir Evaluation & Engineering, vol. 1, p. 288-296.
  • [10] Kantzas A., 1990, Investigation of Physical Properties of Porous Rocks and Fluid Flow Phenomena in Porous Media Using Computer Assisted Tomography, In Situ, vol.14, no. 1, p. 77.
  • [11] Kayser A., Knackstedt M., Ziauddin M., 2006, A closer look at pore geometry, Oilfield Review, vol. 18, no. 1, p. 4-13.
  • [12] Knackstedt M., Madadi M., Arns Ch., Baechle G., Eberli G., Weger R., 2008, Carbonate Petrophysical Parameters Derived from 3D Images. Presentation at AAPG Annual Convention, San Antonio, Texas, April 20-23.
  • [13] Kumar M., Han, D., 2005, Pore shape effect on elastic properties of carbonate rocks: SEG Technical Program Expanded Abstracts, p. 1477-1480.
  • [14] Lindquist W.B., 1999, 3DMA-Rock, a software package for automated analysis of pore rock structure in 3D computed microtomography images. Available from: http://www. ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock. html.
  • [15] Lindquist W.B., Venkatarangan A., 1999, Investigating 3D geometry of porous media from high resolution images. Physics and Chemistry of the Earth (A), vol. 25, p. 593-599.
  • [16] Lindquist W.B., Venkatarangan A., Dunsmuir J., Wong T-F., 2000, Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. Journal of Geophysical Research, vol. 105, p. 21509-21527.
  • [17] Nakashima Y., Nakano T., Nakamura K., Uesugi K., Tsuchiyama A., Ikeda S., 2004, Three- dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation. Journal of Contaminant Hydrology, vol. 74, p. 253-264.
  • [18] Prodanovic M., Lindquist W.B., Seright R.S., 2007, 3D image-based characterization of fluid displacement in a Berea core. Advances in Water Resources, vol. 30, p. 214-226.
  • [19] Ramakrishnan T.S. et al., 2001, A Model-Based Interpretation Methodology for valuating Carbonate Reservoirs, paper SPE 71704 presented at the 2001 SPE Annual Technical and Exhibition, New Orleans, 30 September-3 October.
  • [20] Rossebo O.H., Brevik I., Ahmadi G.R., Adam L., 2005, Modeling of acoustic properties in carbonate rocks: SEG Technical Program Expanded Abstracts, p. 1505-1508.
  • [21] Spanne P., Thorvert J.F., Jacquin C.J., Lindquist W.B., Jones W.B., Adler P.M., 1994, Synchrotron computed microtomography of porous media: topology and transports. Physical Review Letters, vol. 73, p. 2001-2004.
  • [22] Siddiqui S.: Three Phase Dynamic Displacements in Porous Media, Ph.D. Dissertation, The Pennsylvania State University, University Park, PA, 1994.
  • [23] Turner M.L., Knufing L., Arns C.H., Sakellariou A., Senden T.J., Sheppard A.P., Sok R.M., Limaye A., Pinczewski W.V., Knackstedt M.A., 2004, Threedimensional imaging of multiphase flow in porous media. Physica A, vol. 339, p. 166-172.
  • [24] Wang Z., 1997, Seismic properties of carbonate rocks: Geophysical Development Series, vol. 6, p. 29-52.
  • [25] Wellington S.L., Vinegar H.J., 1987, X-ray computerized tomography. Journal of Petroleum Technology, vol. 39, p. 885-898.
  • [26] Wildenschild D., Hopmans J.W., Vaz C.M.P., Rivers M.L., Rikard D., Christensen B.S.B., 2002, Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. Journal of Hydrogeology, vol. 267, p. 285-297.
  • [27] Van Geet M., Swennen R., Durmishi C., Roure F., Muchez Ph., 2002, Paragenesis of Cretaceous to Eocene carbonate reservoirs in the lonian fold and thrust belt (Albania): relation between tectonism and fluid flow. Sedimentology, 49, 697-718.
  • [28] Youssef S., Han M., Bauer D., Rosenberg E., Bekri S., Fleury M., Vizika O., 2008, High resolution micro-CT combined to numerical models to assess electrical properties of bimodal carbonates. SCA2008-37.
  • Rozdział I: Dohnalik M., Kaczmarczyk J., Zalewska J.: Tworzenie obrazu mikrotomografii rentgenowskiej
  • [1] Atkins P.W., 2001, Chemia fizyczna, PWN.
  • [2] Attwood D., 1999, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications, Cambridge University Press.
  • [3] Bielański A., 2006, Podstawy chemii nieorganicznej, tom I, PWN.
  • [4] Bonse U., Busch F., 1996, X-ray computed microtomography (NCT) using synchrotron radiation (SR). Progress in Biophysics and Molecular Biology, vol. 65, p. 133-169.
  • [5] Breutel J., Kundel H., Van Metter R., 2000, Handbook of Medical Imaging; vol. 1, SPIE.
  • [6] Cnudde V., 2008, High resolution X-ray CT for porous material. Konferencja Geopetrol.
  • [7] Cnudde V., Masschaele B., Vlassenbroeck J., Dierick M., De Witte Y., Lehmann E., Van Hoorebeke L., Jacobs P.JS., 2008, X-rays and neutrons used for the visualisation of oligomeric siloxanes. Hydrophobe V, 5th International Conference on Water Repellent Treatment of Building Materials. Aedificatio Publishers, 31-42.
  • [8] Czerwiński A., 1998, Energia jądrowa i promieniotwórczość, Oficyna Edukacyjna K. Pazdro.
  • [9] Davis G.R., Elliott J.C., 2006, Artefacts in X-ray microtomography of materials. Materials Science and Technology 22, 9, 1-8.
  • [10] De Man B., Nuyts J., Dupont P., Marchal G., Suetens P., 2001, An iterative maximum- likelihood polychromatic algorithm for CT. Institute of Electrical and Electronics Engineers Transactions on Medical Imaging, 20, 999-1008.
  • [11] Dohnalik M., Kaczmarczyk J., Zalewska J., 2010, 3rd International Workshop: 3D Imaging, Analysis, Modeling and Simulation of Macroscopic Properties Proceedings.
  • [12] Eisberg R., Resnick R., 1983, Fizyka kwantowa atomów, cząsteczek, ciał stałych, jąder i cząstek elementarnych, PWN.
  • [13] Feldkamp L., Davis L., Kress J., 1984, Practical cone-beam algorithm, J. Opt. Soc. Am. vol. 1, 612-619.
  • [14] Glemser C.T., 2007, Petrophysical and geochemical characterization of Midale Carbonates from the Weyburn oilfield using synchrotron x-ray computed microtomography. Thesis.
  • [15] Hamamatsu Photonics. Hamamatsu.com.
  • [16] Hammersberg P.D., Mangard M., 1998, Correction of beam hardening artefacts in computerized tomography. Journal of X-ray Science and Technology, 8, 75-93.
  • [17] Hsieh J., 2003, Computed Tomography: Principles, Design, Artifacts and Recent Advances, SPIE.
  • [18] Joseph P.M., 1981, In: Newton T.H., Potts T.G. (Eds.). Artifacts in computed tomography, Radiology of the Skull and Brain: Technical Aspect of computed Tomography, vol. 5, CV Mosby Company, Mosby, St. Louis (III) pp. 3956-3992
  • [19] Kaczmarczyk J., Dohnalik M., Cnudde V., Zalewska J., 2010, The interpretation of X-ray computed microtomography images of rocks as an application of volume image processing and analysis. WSCG 2010 proceedings (in press). 18th WSCG International Conference on Computer Graphics, Visualization and Computer Vision. Plznen Czech Republic, University of West Bohemia. 1-4.02.2010. Communication Papers proceedings, pp. 23-30, ISBN 978-80-86943- 87-9. ed. Vaclav Skala.
  • [20] Kasztelanic R., http://www.igf.fuw.edu.plhkasztel/, wykład „analiza”.
  • [21] Ketcham R.A., Carlson W.D., 2001, Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Computers & Geosciences, 27, 381-400.
  • [22] Le Trong E., Rozenbaum O., Rouet J.-L., Bruand A., 2008, A simple methodology to segment X-ray tomographic images of a miltiphasic building stone, Image Anal. Stereol. 27,175-182.
  • [23] MAVI 1.3.1 Online Documentation, Skeleton, Skeleton Analyzer.
  • [24] Mees F., Swennen R., Van Geet M., Jacobs P., 2003, Applications of X-ray computed tomography in the geosciences. Geological Society, London, Special Publications, vol. 215, 1-6.
  • [25] Morse B., 2000, Brigham Young University lectures: Thresholding, http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/MORSE/threshold.pdf.
  • [26] Najbar M., 2000, Fizykochemiczne metody badań katalizatorów kontaktowych, Wydawnictwo UJ.
  • [27] Piela L., 2005, Idee chemii kwantowej, PWN.
  • [28] Pigoń K., Ruziewicz Z., 2005, Chemii fizyczna, tom II, PWN.
  • [29] Raven C., 1998, Numerical removal of ring artifacts in microtomography. Review of Scientific Instruments, vol. 69, p. 2978-2980.
  • [30] Russ J., 2007, The Image Processing Handbook, Fifth Edition, Taylor & Francis Group, Skeletonization.
  • [31] Simpleware Reference Guide: ScanIP, ScanFe, ScanCAD, Simpleware 2009,
  • [32] Skrzyński W., 2004, Rentgenowska tomografia komputerowa, cz. 2. Zakład Radiologii Centrum Onkologii w Bydgoszczy.
  • [33] http://radiologia.co.bydgoszcz.pl/kt-fizyka_cz.2.htm#Źródło%20promieniowania.
  • [34] Stock S.R., 2009, MicroComputed Tomography. Methodology and Application. CRS Press. Taylor end Francis Group.
  • [35] Tarplee M., Corps, N., 2008, Skyscan 1072 desktop X-ray microtomograph: sample scanning, reconstruction and visualisation (2D and 3D) protocols. Guidelines, notes, selected references and F.A.Q's. Centre for Micromorphology, Department of Geography, Queen Mary, University of London, 31 pp.
  • [36] Wikipedia: http://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Roentgen-x-ray-vonkollikers-hand.jpg/180px-Roentgen-x-ray-von-kollikers-hand.jpg.
  • [37] Wikipedia http://pl.wikipedia.org/wiki/Filtracja_obrazów.
  • [38] Wojnar L., 1998, Image Analysis - Applications in Material Engineering, CRC Press LLC.
  • [39] Wojnar L., Kurzydłowski K.J., Szala J., 2002, Praktyka analizy obrazu. Polskie Towarzystwo Stereologiczne.
  • [40] Van de Casteele, E., Van Dyck D., Sijbers J., Raman E., 2004, A model-based correction method for beam hardening artefacts in X-ray microtomography. Journal of X-ray Science and Technology, 12, 43-57.
  • [41] Van Geet M., Swennen R., Wevers M., 2000, Quantitative analysis of reservoir rocks by micro- focus X-ray computerised tomography. Sedimentary Geology, 132, p. 25-36.
  • [42] VARIAN. http://www.varian.com/us/xray/products/digital_radiography/technology.html#xray-conversion-methods.
  • [43] Yang X., 2005, PhD Thesis „Three-Dimensional characterization of inherent and induced sand microstructure”, Georgia Institute of Technology.
  • [44] Zalewska J., Poszytek A., Dohnalik M., 2009, Wizualizacja i analiza przestrzeni porowej piaskowców czerwonego spągowca metodą rentgenowskiej mikrotomografii komputerowej (micro-CT). Prace INiG nr 161, 1-83.
  • Rozdział II: Zalewska J., Dohnalik M., Kaczmarczyk J., Poszytek A.: Analiza własności zbiornikowych skał węglanowych utworów dolomitu głównego z wykorzystaniem mikrotomografii rentgenowskiej
  • [1] Arns C.H., Bauget F., Ghous A., Sakellarion A., Senden T.J., Sheppard A.P., Sok R.M., Pinczewski W.V., Kelly J.C., Knackstedt M.A., 2005, Digital Core Laboratory: Petrophysical Analysis from 3D Imaging of Reservoir Core Fragments. Petrophysics, vol. 46, no. 4, p. 260-277.
  • [2] Dunham R.J., 1962, Classification of carbonate rocks according to depositional texture. In: Ham W.E. (ed.), Classification of carbonate rocks: American Association of Petroleum Geologists Memoir, p. 108-121.
  • [3] Foubert A., Swennen R., Long H., Dewit J., Pauwels B., 2009, The use of high-resolution 3D X- ray microtomography in carbonate reservoir studies, SkyScan User Meeting 2009 (Streszczenie).
  • [4] Koherer B.S., Heymann C., Prousa F., Aigner T., 2010, Multiple-scale facies and reservoir quality variations within a dolomite body - Outcrop analog study from the Middle Triassic, SW German Basin, Marine and Petroleum Geology, 27, p. 386-411.
  • [5] Remeysen K., Swennen R., 2008, Application of microfocus computed tomography in carbonate reservoir characterization: possibilities and limitations, Marine and Petroleum Geology, 25, p. 486-499.
  • [6] Smosna R., Bruner K.R., 2003, Pore Geometry and Permeability in a Dolomite Reservoir. AAPG Eastern Section Meeting, Pittsburgh, PA, September 6-10 (Streszczenie).
  • [7] Sun S.Q., 1995, Dolomite Reservoirs: Porosity Evolution and Reservoir Charateristics, AAPG Bulletin, no. 79, p. 186-204,
  • [8] Zalewska J., Dohnalik M., Poszytek A., 2009, Wizualizacja i analiza przestrzeni porowej piaskowców czerwonego spągowca metodą rentgenowskiej mikrotomografii komputerowej. Prace INiG nr 161, monografia, s. 1-83.
  • Rozdział III: Zalewska J., Kaczmarczyk J., Sikora G.: Trójwymiarowa wizualizacja szczelin metodą mikrotomografii rentgenowskiej
  • [1] Alajmi A.F., Grader A.S., 2000, Analysis of Fracture-Matrix Fluid Flow Interactions Using X-Ray CT. SPE 65682, Proceedings, SPE Eastern Regional Meeting, Morgantown, West Virginia.
  • [2] Bertels S.P., DiCarlo D.A., Blut M.J., 2001, Measurement of aperture distribution capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resources Research, 37, p. 649-662.
  • [3] Brown A.R., Kranz R.L., Bonner B.P., 1986, Correlation between the surfaces of natural rock joints. Geophysical Research Letters, 13, p.1430-1433.
  • [4] Busselen B., Bastalens W., De Man B., Van Geet M., Nuyts J., Swennen R., Wevers J., Carmeliet J., 2001, A microfocus computed tomography (NCT) simulator for quantitative exploitation of microCT in material research. EUG XI. Programme and Abstracts. Cambridge. Publications, Cambridge, p. 779.
  • [5] Detwiler R.L., Pringle S.E., Glass R.J., 1999, Measurement of fracture aperture fields using transmited light; an evaluation of measurement errors and their influence on simulations of flow and transport through a single fracture. Water Resources Research, 35, p. 2605-2617.
  • [6] Dohnalik M., Zalewska J., 2009, Zastosowanie mikrotomografii rentgenowskiej do rozwiązywania zagadnień geologicznych i geofizycznych. Prace INiG nr 157, monografia, p. 1-94.
  • [7] Dunham R.J., 1962, Classification of carbonate rocks according to depositional texture. In: Ham W.E. (ed.), Classification of carbonate rocks: American Association of Petroleum Geologists Memoir, p. 108-121.
  • [8] Fredrich J.T., Menendez B., Wong T.F., 1995, Imaging the pore structure of geomaterials, Science, 268, 276-279.
  • [9] Gentier S., Bilaux D., Vliet L.V., 1989, Laboratory testing of the voids of a fracture. Rock Mechanics, 22, p. 149-157.
  • [10] Grader A.S., Balzarini M., Radaelli F., Capasso G., Pellegrino A., 2000, Fracture-Matrix Flow: Quantification and Visualization Using X-ray Computed Tomography. American Geophysical Union Monograph, vol. 122, p. 1-20.
  • [11] Hirono T., Yokoyama T., Takahashi M., Nakashima S., Yamamoto Y., Lin W., 2002, Nondestructive observation of internal structure in sediments and rocks using microfocus X-ray CT system, Jour. Geol. Soc. Japan, 108, 606-609 (in Japanese with English abstract).
  • [12] Hunt P.K., Engler P., Bajscrowicz C., 1987, Computed tomography as a core analysis tool: applications and artefact reduction techniques. In: Proceedings of the Society of Petroleum Engineers Annual Technical Conference and Exhibition, Dallas, Texas, 27-30 September, Paper SPE 16952.
  • [13] Jasti J.K., Jesion G., Feldkamp L., 1993, Microscopic imaging of porous media with X-ray Computer Tomography. Society of Petroleum Engineers Formation Evaluation, 8, 190-193.
  • [14] Johns R.A., Steude J.S., Castanier L.M., Roberts P.V., 1993, Nondestructive measurements of fracture aperture in crystalline rock cores using X-ray computed tomography. Journal of Geophysical Research, 98, p. 1889-1900.
  • [15] Karpyn Z., Alajmi A., Parada C., Grader A.S., Halleck P.M., Karacan O., 2003, Mapping fracture apertures using micro computed tomography. SCA 2003-50.
  • [16] Keller A., 1998, High resolution, non-destructive measurement and characterization of fracture aperture. International Journal of Rock Mechanics and Mining Sciences, 35, p. 1037-1050.
  • [17] Kumar A.T.A., Majors P.D., Rossen W.R., 1995, Measurement of aperture and multiphase flow in fractures using NMR imaging. In. Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, Texas, Paper SPE-30588.
  • [18] Lindquist B., Venkatarangan A., 1999, Investigating 3Dgeometry of porous media from high resolution images: Phys. and Chem. Of the Earth, 24, p. 87.
  • [19] Oh W., Lindquist W.B., 1999, Image thresholding by indicator kriging: IEEE Trans. on Pattern Analysis and Machine Intelligence, 21, p. 590.
  • [20] Ohtani T., Nakano T., Nakashima Y., Muraoka H., 2001, Three-dimensional shape analysis of miarolitic cavities and enclaves in the Kakkonda granite by X-ray computed tomography, Jour. Struct. Geol., 23, 1741-1751.
  • [21] Pyrak-Nolte L.J., Myer L.R., Cook N.G.W., Witherspoon P.A., 1987, Hydraulik and mechanical properties of natural fractures in low permeability rock. In.: Herget G., Vongpaisal S. Proceedings of the 6th International Congress of Rock Mechanic. Balkema, Rotterdam, p. 225-231.
  • [22] Renshaw C.E., Dadakis J.S., Brown S.R., 2000, Measuring fracture apertures: a comparison of methods. Geophysical Research Letters, 27, p. 289-292.
  • [23] Rivers M., 1999, Tutorial Introduction to X-ray Computed Microtomography Data Processing. University of Chicago.
  • [24] Sato A., Fukahori D., Sugawara K., 2004, Crack opening analysis by the X-ray CT image subtraction method. X-ray CT for Geomaterials. p. 247-254.
  • [25] Takahashi M., Lin W., Hirono T., Yamamoto Y., 2002, On visualization of inner microstructure in rocks by microfocus X-ray CT, Jour. Japan Soc. Eng. Geol., 43, 235-238 (in Japanese with English abstract).
  • [26] Wiliam K., Pratt K., 1978, Digital image processing. Jon and Wiley Son. Inc. Chapter 12.
  • [27] Vandersteen K., Busselen B., Van Den Abeele K., Carmeliet J., 2003, Quantitative characterization of fracture apertures using microfocus computed tomography. Geological Society, London, Special Publications, vol. 215: 61-68.
  • [28] Van Geet M., 2001, Optimisation of microfocus x-ray computer tomography for geological research with special emphasis on coal components (macerals) and fractures (cleats) characterisation. PhD thesis, K.U. Leuven, Belgium.
  • [29] Van Geet M., Swennen R., 2001, Quantitative 3D-fracture analysis by means of microfocus X-ray computer tomography (?CT): an example from coal. Geophysical Research Letters, 28,3333-3336.
  • [30] Van Geet M., Swenner R., Wevers M., 2001, Towards 3-D petrography: application of microfocus X-ray computer tomography in geological science. Computers & Geosciences, 27, 1091-1099.
  • [31] Verhelst F., Vervoort A., De Bosscher P.H., Marchal G., 1995, X-ray computerized tomography:determination of heterogeneities in rock. In: Proceedings of the 8th International Congress of Rock Mechanic. Balkema, Rotterdam, p. 105-108.
  • [32] Yoshino N., Sawada A., Sato H., 2004, An examination of aperture estimation in fracture rock. X-ray CT for Geomaterials. p. 255-262.
  • Rozdział IV: Zalewska J., Dohnalik M., Cebulski D.: Porównanie przestrzeni porowej skał węglanowych w oparciu o dane mikrotomografii rentgenowskiej (micro-CT) i jądrowego rezonansu magnetycznego (NMR)
  • [1] Al-Raoush R.I., Willson C.S., 2005, Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems. Journal of Hydrology, vol. 300, p. 44-64.
  • [2] Appoloni C.R., Macedo A., Fernandes C.P., Philippi P.C., 2002, Characterization of porous microstructure by X-ray microtomography. X-ray Spectrometry, vol. 31, p.124-127.
  • [3] Arns C.H., Knackstedt M.A., Pinczewski W.V., Garboczi E.J., 2002, Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment. Geophysics, vol. 67, p. 1396-1405.
  • [4] Arns J-Y., Arns C.H., Sheppard A.P., Sok R.M., Knackstedt M.A., Pinczewski W.V., 2003, Relative permeability from tomographic images; effect of correlated heterogeneity. Journal of Petroleum Science and Engineering, vol. 39, p. 247-259.
  • [5] Arns C.H., Knackstedt M.A., Pinczewski W.V., Martys N.S., 2004a, Virtual permeametry on microtomographic images. Journal of Petroleum Science and Engineering, vol. 45, p. 41-46.
  • [6] Arns C.H., 2004b, A comparison of pore size distributions derived by NMR and X-ray CT techniques. Physica A, vol. 339, p. 159-165.
  • [7] Bauget F., Arns C.H., Saadatfar M., Sheppard A.P., Sok R.M., Turner M.L., Pinczewski W.V., Knackstedt M.A., 2005, What is the characteristic length scale for permeability? Direct analysis from microtomographic data. Paper SPE 95950 presented at the 2005 SPE Annual Technical Conference and Exhibition, Dallas, Texas, U.S.A., 9-12 October.
  • [8] Bernard D., 2005, 3D quantification of pore scale geometrical changes using synchrotron computed microtomography. Oil & Gas Science and Technology, vol. 60, p. 747-762.
  • [9] Carr H.Y., Purcell E.M., 1954, Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments, Physical Review, 94 (3): 630-638.
  • [10] Ciechanowska M., Zalewska J., 2002, Analiza zbiornikowych własności skał przy wykorzystaniu zjawiska jądrowego rezonansu magnetycznego NMR, Nafta-Gaz, nr 1.
  • [11] Chang D., Vinegar H., Morris Ch., Straley Ch., 1997, Effective Porosity, Producible Fluid and Permeability in Carbonates from NMR Logging, The Log Analyst, March-April, p. 60-72.
  • [12] Chen Q., Kinzelbach W., Ye, C., Yue Y., 2002, Variations of Permeability and Pore Size Distribution of Porous Media with Pressure, Journal of Environmental Quality, 31: 500-505.
  • [13] Coates G.R., Xiao R., Prammer M.G., 1999, NMR Logging Principles and Applications, Halliburton Energy Services, Houston.
  • [14] Coles, M.E., Hazlett, R.D., Spanne, P., Soll, W.E., Muegge, E.L., Jones, K.W., 1998a, Pore level imaging of fluid transport using synchrotron X-ray microtomography. Journal of Petroleum Science and Engineering, vol. 19, p. 55-63.
  • [15] Coles M.E., Hazlett R.D., Muegge E.L., Jones K.W., Andrews A., Dowd B., Siddons P., Peskin A., Spanne P., Soll W.E., 1998b, Developments in synchrotron X-ray microtomography with applications to flow in porous media. SPE Reservoir Evaluation & Engineering, vol. 1, p. 288-296.
  • [16] Jarzyna J., 1998, Otworowe profilowanie jądrowego rezonansu magnetycznego - nowa, efektywna metoda wyznaczania właściwości zbiornikowych skał. Nafta-Gaz, nr 5, p. 215-222.
  • [17] Jones K.W., Feng H., Tomov S., Winters W.J., Prodanovic M., Mahajan D., 2007, Characterization of methane hydrate host sediments using synchrotron-computed microtomography (CMT). Journal of Petroleum Science and Engineering, vol. 56, p.136-145.
  • [18] Kayser A., Knackstedt M., Ziauddin M., 2006, A closer look at pore geometry, Oilfield Review, vol. 18, no. 1, p. 4-13.
  • [19] Kenyon W.E., 1992, Nuclear magnetic resonance as a petrophysical measurement, Nuclear Geophysics, 6 (2): 153-171.
  • [20] Kenyon W.E., 1997, Petrophysical Principles of Applications of NMR Logging, The Log Analyst, 38 (2): 21-43.
  • [21] Kleinberg R.L., Vinegar H.J., 1996, NMR Properties of Reservoir Fluids. The Log Analyst, November-December, p. 20-32.
  • [22] Klobes P., Riesemeier H., Meyer K., Goebbels J., Hellmuth K.H., 1997, Rock porosity determination by combination of X-ray computerized tomography with mercury porosimetry. Fresenius Journal of Analytical Chemistry, vol. 357, p. 543-547.
  • [23] Lindquist W.B., Lee S., 1996, Medial axis analysis of void structure in threedimensional tomographic images of porous media. Journal of Geophysical Research, vol. 101 (B4), p. 8297-8310.
  • [24] Lindquist W.B., Venkatarangan A., Dunsmuir J., Wong T-F., 2000, Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. Journal of Geophysical Research, vol. 105, p. 21509-21527.
  • [25] Lindquist W.B., Venkatarangan A., 1999, Investigating 3D geometry of porous media from high resolution images. Physics and Chemistry of the Earth (A), vol. 25, p. 593-599.
  • [26] Meiboom S., Gill D., 1958, Modified spin-echo method for measuring nuclear relaxation times, Review of Scientific Instruments, 29: 668-691.
  • [27] Moss A.K., Zacharapoulos A., De Freitas M.H., 2003, Shale Volume Estimates from NMR Core Data. Society of Core Analysts SCA2003-66, p. 1-6.
  • [28] Nakashima Y., Nakano T., Nakamura K., Uesugi K., Tsuchiyama A., Ikeda S., 2004, Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation. Journal of Contaminant Hydrology, vol. 74, p. 253-264.
  • [29] Ostroff G.M., Shorey D.S., Georgi D.T., 1999, Integration of NMR and conventional log data for improved petrophysical evaluation of shaly sands. SPWLA 40th Annual Logging Symposium, Oslo, p. 0001-4.
  • [30] Prodanovic M., Lindquist W.B., Seright R.S., 2007, 3D image-based characterization of fluid displacement in a Berea core. Advances in Water Resources, vol. 30, p. 214-226.
  • [31] Spanne P., Thorvert J.F., Jacquin C.J., Lindquist W.B., Jones W.B., Adler P.M., 1994, Synchrotron computed microtomography of porous media: topology and transports. Physical Review Letters, vol. 73, p. 2001-2004.
  • [32] Timur A., 1969, Pulsed nuclear magnetic resonance studies of porosity, movable fluid permeability of sandstones, Journal of Petroleum Technology, 21: 775-786.
  • [33] Wellington S.L., Vinegar H.J., 1987, X-ray computerized tomography. Journal of Petroleum Technology, vol. 39, p. 885-898.
  • [34] Wildenschild D., Hopmans J.W., Vaz C.M.P., Rivers M.L., Rikard D., Christensen B.S.B., 2002, Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. Journal of Hydrogeology, vol. 267, p. 285-297.
  • [35] Zalewska J., Poszytek A., Dohnalik M., 2009, Wizualizacja i analiza przestrzeni porowej piaskowców czerwonego spągowca metodą rentgenowskiej mikrotomografii komputerowej (micro-CT). Prace INiG nr 161, monografia, 1-83.
  • Rozdział V: Kaczmarczyk J.: Symulacja przepływu płynów przez skałę na podstawie danych micro-CT
  • [1] Kaczmarczyk J., Dohnalik M., Zalewska J., 2010, Three-dimensional pore scale fluid flow simulation based on computed microtomography carbonate rocks images, in proceedings. V European Conference on Computational Fluid Dymanics ECCOMAS CFD, Lizbona 13-17.06.2010.
  • [2] Narsilio G., Buzzi O., Fityus S., Yun T., Smith D., 2009, Computer and Geotechnics 36, 1200.
  • [3] Pigoń K., Ruziewicz Z., 2005, Chemia fizyczna, tom II, PWN 2005.
  • [4] Tanikawa W., Shimamoto T., 2009, International Journal of Rock Mechanics and Mining Sciences 46, 229.
  • [5] Teruel F., Rizwan-uddin, 2009, International Journal of Heat and Mass Transfer 52, 5878.
  • [6] Zaman E., Payman J., 2010, Physica A 389, 205
  • Rozdział VI: Zalewska J., Dohnalik M., Kaczmarczyk J., Masłowski M., Biały E.: Badanie kanalików robaczkowych wywołanych zabiegiem kwasowania w próbkach skał węglanowych przy wykorzystaniu micro-CT
  • [1] Czupski M., 2010, Ocena efektywności kwasowania matrycowego formacji węglanowych. Nafta-Gaz, nr 2, s.100-106.
  • [2] Hoefner M.I., Fogler H.S., 1985, Effective matrix acidizing in carbonates using microemulsions. Chem. Eng. Prog., 40-44.
  • [3] Kayser A., Knackstedt M., Ziauddin M., 2006, A Closer look at pore geometry. Oilfield Review, Spring, p. 4-13.
  • [4] Nierode D.E., Williams B.B., 1971, Characteristics of acid reaction limestone formations. SPEJ, 251, 406-418, December.
  • [5] Siddiqui S., Nasr-El-Din H.A., Khamees A.A., 2006, Wormhole initiation and propagation of emulsified acid in carbonate cores using computerized tomography. Journal of Petroleum Science and Engineering, 54, p. 93-111.
  • [6] Wellington S.L., Vinegar H.J., 1987, X-ray computerized tomography. Journal of Petroleum Technology, vol. 39, p. 885-898.
  • [7] Williams B.B., Gidley J.L., Schechter R.S., 1979, Acidizing fundamentals SPE Monograph, vol. 6. Society of Petroleum Engineers, Dallas, Texas, USA, 124 pp.
  • [8] Van Geet M., Swennen R., Wevers M., 2000, Quantitative analysis of reservoir rocks by micro-focus X-ray computerised tomography. Sedimentary Geology, 132, 25-36.
  • [9] Zalewska J., Dohnalik M., Poszytek A., 2009, Wizualizacja i analiza przestrzeni porowej piaskowców czerwonego spągowca metodą rentgenowskiej mikrotomografii komputerowej. Prace INiG nr 161, monografia, Kraków, s. 1-83.
  • Rozdział VII: Zalewska J.: Przykłady zastosowań mikrotomografii rentgenowskiej w przemyśle naftowym
  • [1] Akin S., Schembre J.M., Bhat S.K., Kovscek A.R., 2000, Spontaneous imbibition characteristics of diatomite. Journal of Petroleum Science and Engineering, 25, 149-165.
  • [2] Amin M.H.G., Hall L.D., Chorley R.J., Richards K.S., 1998, Infiltration into soils, with particular reference to its visualization and measurement by magnetic resonance imaging (MRI): Progress in Physical Geography, 22, 135-165.
  • [3] Apaydin O.G., Kovscek A.R., 2001, Surfactant concentration and end effects on foam flow in porous media. Transport in Porous Media, 43, 511-536.
  • [4] Arns C.H., Knackstedt M.A., Pinczewski W.V., Garboczi E.G., 2001a, Accurate estimation of transport properties from microtomographic images: Geophys. Res. Lett., 28, 3361-3364.
  • [5] Arns C.H., Knackstedt M.A., Pinczewski W.V., Mecke K.R., 2001b, Euler-Poincar’e characteristics of classes of disordered media: Phys. Rev. E, 63, 031112
  • [6] Arns Ch.H., Knackstedt M.A, Pinczewski W.V., Garboczi E.J., 2002, Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment. Geophysics, vol. 67, no. 5 p. 1396-1405.
  • [7] Arns C.H., Averdunk H., Bauget F., Sakellariou A., Senden T.J., Sheppard A.P., Sok R.M., Pinczewski W.V., Knackstedt M.A., 2004, Digital Core Laboratory: Analysis of Reservoir Core Fragments from 3D Images. Transactions of the SPWLA 45th Annual Logging Symposium, Noordwijk, Holandia, 6-9 czerwca, paper EEE.
  • [8] Auzerais F.M., Dussan E.V., Reischer A.J., 1991, Computed tomography for the quantitative characterization of flow through a porous medium. In: Proceedings of the 66th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Dallas, Texas, 6-9 October, Paper SPE 22595.
  • [9] Baraka-Lokmanes S., Teutsch G., Main G., 2001, Influence of open and sealed fractures on fluid flow and water saturation in sandstone cores using Magnetic Resonance Imaging. Geophysical Journal International, 147, 263-271.
  • [10] Barlet-Gouedard V., Rimmele G., Goffe B., Porcherie O., 2006, Mitigation Strategies for the Risk of CO2 Migration Through Wellbores, referat IADC/SPE 98924, przedstawiony na IADC/SPE Drilling Conference, Miami, Florida, USA, 21-23 lutego.
  • [11] Bennaceur K., Gupta N., Monea M., Ramakrishnan T.S., Tanden T., Sakurai S., Whittaker S., 2004, CO2 Capture and Storage - A Solution Within, Oilfield Review 16, no. 3, Autumn, p. 44- 61.
  • [12] Bentz D.P., Quenard D.A., Kunzel H.M., Baruchel J., Peyrin F., Martys N.S., Garboczi E.J., 2000, Microstructure and transport properties of porous building materials. II: three-dimensional X-ray tomographic studies. Materials and Structures, 33, p. 147-153.
  • [13] Bentz D.P., Mizell S., Satterfield S, Devaney J., George W., Ketcham P., Graham J., Porterfield J., Quenard D., Vallee F., Sallee H., Boller E., Baruchel J., 2002, The visible cement data set, Journal of Research of the National Institute of Standards and Technology, 107, p. 137-148.
  • [14] Bertin H.J., Apaydin O.G., Castanier L.M., Kovscek A.R., 1999, Foam flow in heterogeneous porous media: Effect of crossflow. Society of Petroleum Engineers Journal, 4, 75-82.
  • [15] Burger J.E., Bogeswara R., Mohanty K.K., 1994, Effect of phase behaviour on bypassing in enriched gas floods. Society of Petroleum Engineers Reservoir Engineering, 9, 112-118.
  • [16] Cloetens P., Pateyron-Salomi M., Buffiiere J.Y., Peix G., Baruchel J., Peyrin F., Schlenker M., 1997, Observation of microstructure and damage in materials by phase sensitive radiography and tomography. Journal of Applied Physics, 81, 5878-5886.
  • [17] Cloetens P., Ludwig W., Baruchel J., Van Dyck D., Van Landuyt J., Guigay J.P., Schlenker M., 1999, Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays. Applied Physics Letters, 75, 2912-2914.
  • [18] Costanza-Robinson M.S., Brusseau M.L., 2002, Air-water interfacial areas in unsaturated soils: Evaluation of interfacial domains, Water Resources Research, 38(10), 1195, doi: 10.1029/2001 W R000738, 2002.
  • [19] Culligan K.A., Wildenschild D., Christensen B.S.B., Gray W.G., Tompson A.F.B., 2004a, Interfacial Area Measurements for Unsaturated Flow Through a Porous Medium. Water Resources Research.
  • [20] Culligan K.A., Wildenschild D., Gray W.G., Christensen B.S.B., Rivers M.L., 2004b, Microscale and Macroscale Characteristics of Multiphase Flow in Porous Media: a Comparison of Air- Water and Oil-Water Experiments. Advances in Water Resources.
  • [21] Eching S.O., Hopmans J.W., Wendroth O., 1994, Unsaturated hydraulic conductivity from transient multistep outflow and soil water pressure data. Soil Sci. Soc. Am. J., 58, 687-695.
  • [22] Frenshan P.B., Jelen J., 1986, Displacement of heavy oil visualized by CAT scan. In: Proceedings of the 37th Annual Technical Meeting of the Petroleum Society of CIM, Calgary, 8-11 June. 605-620.
  • [23] Gallucci E., Scrivener K., Groso A., Stampanoni M., Margaritondo G., 2007, 3D experimental investigation of the microstructure of cement pastes using synchrotron X-ray microtomography (NCT). Cement and Concrete Research, 37, 360-368.
  • [24] Gentle D.J., Spyrou N.M., 1990, Region of interest tomography in industrial applications. Nuclear Instruments and Methods in Physics Research Section A, 299, 534-537.
  • [25] Hall C., Barnes P., Cockroft J.K., Colston S.L., Hausermann D., Jacques S.D.M., Jupe A.C., Kunz M., 1998, Synchrotron energydispersive X-ray diffraction tomography. Nuclear Instruments and Methods in Physics Research Section B, 140, 253-257.
  • [26] Han D.H., 1986, Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments: Ph.D. thesis, Stanford Univ.
  • [27] Hassanizadeh S.M., Celia M.A., Dahle H.K., 2002, Dynamic Effect in the Capillary Pressure- Saturation Relationship and its Impacts on Unsaturated Flow, Vadose Zone Journal 1: 38-57.
  • [28] Held R.J., Celia M:A., 2001, Modeling support of functional relationships between capillary pressure, saturation, interfacial areas and common lines. Advances in Water Resources, 24(3- 4), 325-343.
  • [29] Helfen L.F., Dehn P., Mikulik T., Baumbach A., 2003, Synchrotron radiation X-ray tomography: a method for the 3D verification of cement microstructure and its evolution during hydration, Proceeding “First International Congress on Nanotechnologies in the Construction Industry”, Glasgow, June.
  • [30] Hicks P.J., Naranayan R., Deans H.A., 1990, An experimental study of miscible displacements in heterogeneous carbonate cores using X-ray CT. In: Proceedings of the 65th Annual Technical Conference and Exhibition of Society of Petroleum Engineers, New Orleans, Louisiana, 23- 26 September, Paper SPE 20492.
  • [31] Hicks P.J., Deans H.A., 1994, Effect of permeability distribution on miscible displacement in a heterogeneous carbonate core. Journal of Canadian Petroleum Technology, 33, 28-34.
  • [32] Hollenbeck K.J., Jensen K.H., 1998, Experimental evidence of randomness and non-uniqueness in unsaturated outflow experiments designed for hydraulic parameter estimation, Water Resources Research, 34(4), 595-602.
  • [33] Hove A.O., Ringen J.K., Read P.A., 1987, Visualization of laboratory corefloods with the aid of computerized tomography of X-rays. Society of Petroleum Engineers Reservoir Engineering, 2, 148-154.
  • [34] Kalendar W., Bautz W., Felsenberg G.D., Soss C., Klotz E., 1987, Materialselektive Bildgebung und Dichternessung mit der Zwei-Spektren-Methode. I. Grundlagen und Methodik. DigitaleBilddiagnose, 7, 66-72.
  • [35] Kayser A., Knackstedt M., Ziauddin M. 2006. A Closer look at pore geometry. Oilfield Review, Spring, p. 4-13.
  • [36] Kim H., Rao P.S.C., Annable M.D., 1997, Determination of effective air-water interfacial area in partially saturated porous media using surfactant adsorption, Water Resources Research, 33(12), 2705-2711, 1997.
  • [37] Krilov Z., Steiner I., Goricnik B., Wojtanowicz A.J., Cabrajac S., 1991, Quantitative determination of solids invasion and formation damage using CAT scan and barite suspensions. In: Proceedings of the 1991 Offshore Europe Conference, Aberdeen, Scotland, 3-6 September, Paper SPE 23102.
  • [38] Kuru E., Demiral B., Akin S., Kerem M., Cagatay B., 1998, An integrated study of drilling-fluid shaly rock interactions: a key to solve wellbore instability problems. Oil Gas European Magazine, 24, 25-29.
  • [39] Liu D.B., Castanier L.M., Brigham W.E., 1990, Analysis of transient foam flow in 1-D porous media with CT. In: Proceedings of the 60th Regional California Meeting, Ventura, California, 4-6 April, Paper SPE 20071.
  • [40] Mavko G., Mukerji T., Dvorkin J., 1998, The rock physics handbook: Cambridge Univ. Press.
  • [41] Mees F., Swennen R., Van Geet M., Jacobs P., 2003, Applications of X-ray Computed Tomography in the Geosciences. Geological Society, London, Special Publications, 215, 1-6.
  • [42] Mortensen A.P., Glass R.J., Hollenbeck K.H., Jensen K.H., 2001, Visualization of microscale displacement processes in retention and outflow experiments: nonuniqueness of unsaturated flow properties. Water Resources Research, 37(6), 1627-1640.
  • [43] Peters E.J., Hardham W.D., 1990, Visualization of fluid displacements in heterogeneities in porous media using computed tomography imaging. Journal of Petroleum Science and Engineering, 4, 155-168.
  • [44] Peters E.J., Gharbi R., 1993, Numerical modelling of laboratory corefloods. Journal of Petroleum Science and Engineering, 9, 183-205.
  • [45] Rengel-German E.R., Akin S., Castanier L.M., 1999, Multiphase-flow properties of fractured porous media. Proceedings of the 1999 Society of Petroleum Engineers Western Regional Meeting, Anchorage, Alaska, 26-28 May, Paper SPE 54591.
  • [46] Reeves P.C., Celia M.A., 1996, A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model. Water Resources. Research, 32(8), 2345-235.
  • [47] Saadatfar M., Turner M.L., Arns C.H., Averdunk H., Senden T.J., Sheppard A.P., Sok R.M., Pinczewski W.V., Kelly J., Knackstedt M.A., 2005, Rock Fabric and Texture from Digital Core Analysis, Transactions of the SPWLA 46th Annual Logging Symposium, New Orleans, June 26-29, paper ZZ.
  • [48] Schembre J.M., Akin S., Castanier L.M., Kovscek A.R., 1998, Spontaneous water imibition into diatomite. Proceedings of the 68th Annual Society of Petroleum Engineers Western Regional Meeting, Bakersfield, California, 11-15 May, Paper SPE 46211.
  • [49] Simonovici A., Chukalina M., Gunzler F., Schroer C., Snigirev A., Snigireva I., Tummler J., Weitkamp T., 2001, X-ray microtome by fluorescence tomography. Nuclear Instrumentsand Methods in Physics Research Section A, 467, 889-892.
  • [50] Thovert J.-F., Yousefian F., Spanne P., Jacquin C.G., Adler P.M., 2001, Phys. Rev. E, 63, 061307.
  • [51] Trembeay B., Sedgwick G., Vu D., 1999, CT imaging of wormhole growth under solution gas drive. Society of Petroleum Engineers Reservoir Engineering and Evaluation, 2, 37-45.
  • [52] Vinegar H.J., Wellington S.L., 1987, Tomographic imaging of three-phase flow experiments. Review of Scientific Instruments, 58, 96-107.
  • [53] Walsh M.P., Withjack E.M., 1994, On some remarkable observations of laboratory dispersion using computed tomography [CT]. Journal of Canadian Petroleum Technology, 33, 36-44.
  • [54] Watson A.T., Chang C.T.P., 1997, Characterizing porous media with NMR methods. Progress in Nuclear Magnetic Resonance Spectroscopy, 31, 343-386.
  • [55] Wellington S.L., Vinegar H.J., 1987, X-ray computerized tomography. Journal of Petroleum Technology, v. 39, p. 885-898.
  • [56] Wildenschild D., Hopmans J.W., Vaz C.M.P., Rivers M.L., Rikard D., 2002, Using X-Ray Computed Tomography in Hydrology: Systems, Resolutions, and Limitations, Journal of Hydrology, 267(3-4), 285-297.
  • [57] Wildenschild D., Culligan K.A., Christensen B.S.B., 2004, Application of x-ray microtomography to environmental fluid flow problems in Developments in X-Ray Tomography IV, ed. U. Bonse, Proceedings of SPIE, vol. 5535 (SPIE, Bellingham, WA, 2004), 432-441.
  • [58] Wildenschild D., Hopmans J.W., Kent A.J.R., Rivers M.L., 2004a, A Quantitative Study of Flow- Rate Dependent Processes Using X-ray Microtomography. Vadose Zone Journal.
  • [59] Wildenschild D., Culligan K.A., Christensen B.S.B., Rivers M.L., Joshi B.J., 2004b, Image processing of grey-scale x-ray tomographic data using cluster analysis-based segmentation: A hydrologic application. Computers & Geosciences.
  • [60] Winkler B., Knorr K., Kahle A., Vontobel P., Lehmann E., Hennion B., Bayon G., 2002, Neutron imaging and neutron tomography as non-destructive tools to study bulk-rock samples. European Journal of Mineralogy, 14, 349-354.
  • [61] Withjack E.M., 1988, Computed tomography for rock property determination and fluid flow visualization. Society of Petroleum Engineers Formation Evaluation, 3, 696-704.
  • [62] Withjack E.M., Akervoll I., 1988, Computed tomography studies of 3-D miscible displacement behaviour in a laboratory five-spot model. In: Proceedings of the Society of Petroleum Engineers Annual Technical Conference and Exhibition, Houston, Texas, 2-5 October, Paper SPE 18095.
  • [63] Youssef S., Maire E., Gaertner R., 2005, Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Materialia 53, 719-730.
  • [64] Youssef S. et al., 2007, Quantitative 3D characterisation of the pore space of real rocks: improved micro-CT resolution and pore extraction methodology. Int. Sym. of the Society of Core Analysts, Calgary, Canada, SCA 2007-17
  • [65] Youssef S., Han M., Bauer D., Rosenberg E., Bekri S., Fleury M., Vizika O., 2008, High resolution N-CT combined to numerical models to assess electrical properties of bimodal carbonates. International Symposium of the Society of Core Analysts held in Abu Dhabi, UAE 29 October-2 November, SCA 2008-37.
  • Rozdział VIII: Zalewska J., Dohnalik M., Kaczmarczyk J.: Inne zastosowania mikrotomografii rentgenowskiej oraz ciekawostki literaturowe i własne
  • [1] Aylmore L.A.G., 1993, Use of computer assisted tomography in studying water movement around plant roots. Advances in Agronomy, 49, 1-54.
  • [2] Anderson S.H., Wang H., Peyton R.L., Gantzer C.J., 2003, Estimation of porosity and hydraulic conductivity from X-ray CT-measured solute breakthrough. Geological Society; London, Special Publications, vol. 215, p. 135-149.
  • [3] Capowlez Y., Pierret A., Daniel O., Monestiez P., Kretzschmar A., 1998, 3D skeleton reconstructions of natural earthworm burrow systems using CAT scan images of soil cores. Biology and Fertility of Soils, 27, p. 51-59.
  • [4] Carlson W.D., Rowe T., Ketcham R.A, Colbert W.M., 2003, Applications of high-resolution X- ray computed tomography in petrology, meteoritics and palaeontology. Geological Society, London, Special Publications, vol. 215, p. 7-22.
  • [5] Cnudde V., 2005, Exploring the potential of X-ray tomography as a new non destructive research tool in conservation studies of natural building stones. IWT-Vlaanderen, Belgium.
  • [6] Delerue J.F., Perrier E., Timmerman A., Swennen R., 2003, 3D soil image characterization applied to hydraulic properties computation. Geological Society, London, Special Publications, vol. 215, p. 167-176.
  • [7] Flisch A., Becker A., 2003, Industrial X-ray computed tomography studies of lake sediment drill cores. Geological Society, London, Special Publications, vol. 215, p. 205-212.
  • [8] Hainsworth J.M., Aylmore L.A.G., 1983, The use of computer assisted tomography determine the spatial distribution of soil water content. Australian Journal of Soil Research, 21, 435-443.
  • [9] Jacobs P., Sevens E., Vossaert P., Knnen M., 1997, Non-destructive monitoring of interactive physical and biological deterioration of buioding stones by compurerised X-ray tomography. In: Marinos P.G., Koukis G.C., Tsiambaos G.C., Stournaras G.C. (eds) Engineering Geology and the Environment. Balkema, Rotterdam, 3163-3168.
  • [10] Ketcham R.A., Cerlson W.D., 2001, Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Computers & Geosciences, 27, s. 381-400.
  • [11] Leonard A., Blacher S., Nimmol Ch., Devahastin S., 2008, Effect of far-infrared radiation assisted drying on microstructure of banana slices: An illustrative use of X-ray microtomography in microstructural evaluation of a food product. Journal of Food Engineering, vol. 85, Issue 1, March 2008, Pages 154-162.
  • [12] Mossotti V.G., Castanier L.M., 1990, The measurement of water transport in Salem limestone by X-ray computer aided tomography. In: Marinos P.G., Koukis G.C., Tsiambaos G.C., Stournaras G.C. (eds) Engineering Geology of Ancient Works, Monuments and Historical Sites. Balkema, Rotterdam, 2079-2082.
  • [13] Queisser A., 1986, Computerized tomography applied to stone investigation. In: ICOMOS (ed) Advanced Methods and Techniques for the Study of Stone Decay, Cleaning and Conservation. ICOMOS, Paris, 125-138.
  • [14] Pierret A., Capowiez Y., Belzunces L., Moran C.J., 2002, 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma, 106, p. 247- 271.
  • [15] Rogasik H., Onasch I., Brunotte J., Jegou D. Wendroth O., 2003, Assessment of soil structure using X-ray computed tomography. Geological Society, London, Special Publications, vol. 215, p. 151-165.
  • [16] Rogers S.W., 1999, Allosaurus, crocodiles, and birds: evolutionary clues from spiral computed tomography of an endocast. Anatomical Record, 257, 162-173.
  • [17] Ruiz de Argandona V.G., Rodriquez-Rey A., Celorio C., Suarez Del Rio L.M., Calleja L., Llavona J., 1999, Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freezethaw cyclic test. Physics and Chemistry of the Eart (Part A), 24, 633-637.
  • [18] Ruiz de Argandona V.G:, Rodrigues-Rey A., Celorio C., Calleja L., Suarez Del Rio L.M., 2003, Characterization by X-ray computed tomography of water absorption in limestone used as building stone in the Oviedo Catedral (Spain). Edited by Mees F., Swennen R., Van Geet M., Jacobs P. - Applications of X-ray Computed Tomography in the Geosciences. Geological Society, Special Publication, 215, s.127-134.
  • [19] Schreurs G., Hahni R., Panien M., Vock P., 2003, Analysis of analogue model by helical X-ray computed tomography. Geological Society, London, Special Publications, vol. 215, p. 213-223.
  • [20] Stock S.R., Veis A., 2003, Preliminary microfocus X-ray computed tomography survey of echinoid fossil microstructure. Geological Society, London, Special Publications, vol. 215, p. 213- 223.
  • [21] Van Dalen G., Goh S., Don A., Nootenboom P., Gamonpilas Ch., 2008, 3D imaging, analysis and modelling of bouillon cubes using x-ray microtomography, Inżynieria Materiałowa 4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHM-0034-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.