Paweł Fedczuk*

IDENTYFIKACJA PARAMETRÓW SPRĘŻYSTO-PLASTYCZNYCH MODELI GRUNTÓW METODĄ RÓWNOCZESNĄ

1. Wprowadzenie

Zastosowanie w praktyce złożonych sprężysto-plastycznych modeli gruntów wymaga każdorazowo specyfikacji ich parametrów. Zwykle do ich identyfikacji wykorzystuje się metodą stopniową [4], analizującą rezultaty badań trójosiowych, w której dla zaprogramowanej sekwencji testów specyfikuje się kolejno pojedyncze stałe, dokonując liniowej regresji wyników metodą najmniejszych kwadratów. Alternatywnym podejściem jest metoda równoczesna [4, 2], w której dla rezultatów testu jednego rodzaju realizuje się złożoną nieliniową analizę regresji wyników metodą najmniejszych kwadratów, ustalając jednocześnie wszystkie stałe. W pierwszym podejściu nacisk położony jest na realizację złożonych i trudnych badań, natomiast w drugie — na zastosowania skomplikowanych procedur programowania matematycznego z uwzględnieniem specjalnych wersji funkcji celu, dostosowanych indywidualnie do rodzaju testu.

W niniejszym opracowaniu omawia się koncepcję metody równoczesnej estymacji parametrów sprężysto-plastycznych modeli gruntów, wykorzystującej kombinację bezgradientowych procedur optymalizacyjnych [3]. Szczegółowe omówienie wersji funkcji celu poprzedza prezentację algorytmu zastosowanej kombinacji metod programowania matematycznego, łączącej sposób kolejnego przeszukiwania z nieliniową metodą symplexu Neldera-Meada [6, 3]. Do numerycznej symulacji badania trójosiowego wykorzystuje się procedurę, realizującą założone ścieżki naprężenia za pomocą techniki przyrostowo-iteracyjnej [2], gdzie stan uplastycznienia analizuje się metodą Nayaka–Zienkiewicza [5]. Prezentację uzupełnia przykład identyfikacji parametrów modelu Novy–Wooda [7] dla wyników teoretycznie zrealizowanej ścieżki standardowego ścinania.

^{*} Katedra Geotechniki i Geodezji, Wydział Budownictwa, Politechnika Opolska, Opole

2. Koncepcja metody równoczesnej identyfikacji parametrów

Z matematycznego punktu widzenia równoczesna metoda parametrycznej specyfikacji modelu stanowi zadanie programowania matematycznego, w którym poszukuje się wektora parametrów **b** minimalizującego funkcję celu Q

$$Q(\mathbf{b}) = \sum_{i=1}^{N} [y_i - \psi(x_i, \mathbf{b})]^2 = \min$$
(1)

w postaci sumy *N* kwadratów różnic wyników badań y_i i obliczeń ψ_i dla zmiennych sterujących x_i . Zwykle do identyfikacji poszukiwanych parametrów wykorzystuje się wyniki uzyskane z realizacji założonych ścieżek naprężenia w badaniu trójosiowym, sterując stanem naprężenia i obserwując odkształcenia. Założenie, że w obciążanej próbce panuje jednorodny stan naprężenia i odkształcenia pozwala ograniczyć analizę stanu do jednego dowolnie wybranego punktu materialnego. W takim przypadku – jednoznacznym obrazem testu trójosiowego jest zestaw *N* wartości 4 niezmienników: efektywnego naprężenia ścinającego q'i efektywnego naprężenia średniego p', intensywności odkształcenia ε_s i odkształcenia objętościowego ε_v . Wyniki te ujmuje się w formę 4 sprzężonych charakterystyk (ścieżek naprężenia q'-p' i odkształcenia $\varepsilon_z-\varepsilon_v$, oraz charakterystyk ścinania $q'-\varepsilon_s$ i ściśliwości $p'-\varepsilon_v$).

W przypadku testu jako realizacji założonej trajektorii naprężenia — wielkości q' i p' stanowią odpowiedniki zmiennej sterującej x_i , natomiast pozostałe dwa niezmienniki ε_s i ε_v (lub ich kombinacje z wielkościami q' i p') obrazują wyniki badań y_i (lub obliczeń ψ_i). Wobec braku jawnej postaci funkcji $\psi_i(x_i, \mathbf{b})$ wartości ψ_i otrzymuje się z przybliżonego rozwiązania numerycznego, symulującego odpowiednią ścieżkę naprężenia w badaniu trójosiowym.

3. Warianty funkcji celu

Podstawowym problemem tak sformułowanego zadania minimalizacji jest właściwe określenie funkcji celu Q tzn. wybór zmiennej sterującej x_i i wartości mierzonej y_i , oraz obliczanej ψ_i (x_i , **b**). Rozważać można różne warianty, uwzględniając kombinacje pomiędzy czterema niezmiennikami stanu: naprężenia p', q' i odkształcenia ε_s , ε_s .

Zgodnie z [1] najprostsze są warianty cząstkowe, ograniczone do relacji pomiędzy arbitralnie wybraną parą niezmienników. W takim przypadku definiuje się dwie elementarne funkcje celu bazujące na charakterystykach: (1) ścinania (sekwencja N wyników $x_i = q'_i i y_i = \varepsilon_{si}$) i (2) ściśliwości (zestaw N wyników $x_i = p'_i i y_i = \varepsilon_{vi}$). Uzupełniają je dwa warianty energetyczne funkcji Q (tworzone jako sumy iloczynów wartości niezmienników naprężenia i odkształcenia) uwzględniające stratę energii związaną ze zmianą: (3) postaci (sekwencja N rezultatów $x_i = q'_i i y_i = q'_i \varepsilon_{si}$) i (4) objętości (zestaw N rezultatów $x_i = p'_i i y_i = p'_i \varepsilon_{vi}$). Uogólniają je dwie wersje kompleksowe, powstałe się z kompilacji podanych dwóch par cząstkowych (1) i (2) oraz (3) i (4), definiujące funkcję celu Q jako formalną ich sumę dla:

(5) sekwencji N wyników $x_i = q'_i$ i $y_i = \varepsilon_{si}$ i N rezultatów $x_i = p'_i$ i $y_i = \varepsilon_{vi}$

$$Q(\mathbf{b}) = \alpha_s \sum_{i=1}^{N} \beta_s [\varepsilon_{si} - \varepsilon_{si}(q'_i, p'_i, \mathbf{b})]^2 + \alpha_v \sum_{i=1}^{N} \beta_v [\varepsilon_{vi} - \varepsilon_{vi}(q'_i, p'_i, \mathbf{b})]^2 = \min$$
(2)

(6) sekwencji N wyników $x_i = q'_i i y_i = q'_i \varepsilon_{si} i N$ rezultatów $x_i = p'_i i y_i = p'_i \varepsilon_{vi}$

$$Q(\mathbf{b}) = \alpha_s \sum_{i=1}^N \beta_s [q'_i \varepsilon_{si} - q'_i \varepsilon_{si} (q'_i, p'_i, \mathbf{b})]^2 + \alpha_v \sum_{i=1}^N \beta_v [p'_i \varepsilon_{vi} - p'_i \varepsilon_{vi} (q'_i, p'_i, \mathbf{b})]^2 = n$$
(3)

Mnożniki α_s , $\alpha_v = \{1, 0\}$ pozwalają sprowadzić je do odpowiedniej składowej wersji cząstkowej. Wartości β_s , β_v (stałe lub zmienne dla serii *N* wyników) stanowią odpowiedniki współczynników wagi, pozwalających na korektę dostosowania "skali" rezultatów w przypadku dużych dysproporcji pomiędzy niezmiennikami *p*', *q*' i ε_s , ε_v (rzędu 10 i więcej).

Dobór właściwej postaci funkcji *Q* uzależniony jest od rodzaju realizowanej doświadczalnie ścieżki naprężeń i wartości liczbowych wyznaczanych niezmienników. Do weryfikacji poprawności dokonanej estymacji parametrów wykorzystuje się warunek dokładności "nałożenia" graficznych charakterystyk funkcyjnych zależności dla wartości obliczonych i ilustrujących wyniki.

4. Algorytm operacyjny metody

Problemy związane z ustaleniem ciągłości dziedziny parametrów b minimalizującego funkcję celu *Q*, preferują proste techniki programowania matematycznego (bez konieczności ustalania gradientów, sprawdzania ograniczeń itp.). Stąd w tym przypadku do identyfikacji parametrów modelu metodą równoczesną — alternatywnie do koncepcji postępowania opisanej w [1] — stosuje się dwuetapowy algorytm obliczeniowy obejmujący: (I) ustalenie wektora początkowych parametrów b modelu gruntu metodą kolejnego przeszukiwania, (II) określenie ostatecznych wartości stałych nieliniową metodą symplexu Neldera i Meada [6]. Etap (I) obejmuje:

- a) konstrukcję punktów węzłowych k-wymiarowego prostopadłościanu parametrów startowych poprzez podział każdej jego krawędzi na j jednakowych części,
- b) symulację numeryczną ścieżki naprężenia w badaniu trójosiowym dla wektorów parametrów wszystkich punktów węzłowych,
- c) przerwanie obliczeń w przypadku braku rezultatów obliczeń we wszystkich węzłach,
- d) obliczenie funkcji celu Q dla wyników otrzymanych w określonych węzłach i ustalenie jej minimalnej wartości Q_{\min} oraz sprawdzenie warunku przerwania obliczeń (dla stałej $\hat{\xi}$)

$$Q_{\min} \le \xi \tag{4}$$

- e) w przypadku spełnienia warunku (4) zakończenie obliczeń,
- f) w przypadku niespełnienia warunku (4) zmniejszenie wymiarów k-wymiarowego prostopadłościanu parametrów startowych i powtórzenie obliczeń wg punktów (a)-(b),
- g) przejście do etapu (II) w przypadku braku rezultatów obliczeń we wszystkich węzłach,
- h) obliczenie funkcji celu Q dla wyników otrzymanych w określonych węzłach i ustalenie jej minimalnej wartości Q'_{min} oraz sprawdzenie warunku przerwania obliczeń

 $Q'_{\min} \le Q_{\min} \tag{5}$

którego niespełnienie wymaga przejście do etapu (II) toku.

i) podstawienie $Q'_{\min} = Q_{\min}$, sprawdzenie warunku (4) i powtórzenie obliczeń wg punktów (e) i (f).

Etap (II) realizuje cykl obliczeń metodą Neldera-Meada [6, 3] dla regularnego sympleksu zbudowanego na wektorze parametrów modelu **b** dla funkcji celu Q'_{min} (lub Q_{min}). Definiując wstępnie stałe należy pamiętać, że dla większości modeli sprężysto-plastycznych poszukiwane parametry są niewielkimi dodatnimi liczbami rzeczywistymi. Estymację parametrów według podanego toku powtarza się kilkakrotnie (minimum — dwukrotnie) dla różnych zestawów wartości początkowych. W przypadku wyraźnych różnic — powtórnie bada się ograniczony obszar otoczenia *K*-wymiarowej przestrzeni parametrycznej (obejmującej wszystkie uzyskane zestawy parametrów) dla ustalenia rzeczywistego minimum.

5. Numeryczna symulacja badania trójosiowego

Do symulacji ścieżki naprężenia w badaniu trójosiowym (dla wektora parametrów modelu gruntu **b**) stosuje się przyrostowo-iteracyjne podejście numeryczne, oparte na zmodyfikowanej metodzie Newtona-Raphsona. Obciążenie dowolnego punktu materialnego próbki gruntu stanowi zestaw przyrostów naprężenia $d\sigma$, realizujących założoną ścieżkę w przestrzeni naprężeń q'-p'. Po przyłożeniu kolejnego przyrostu naprężenia $d\sigma$ oblicza się część sprężystą przyrostu odkształcenia $d\varepsilon^e$ z prawa sprężystości i wyznacza się odpowiadającą im plastyczną część przyrostu naprężenia $d\sigma^p$ za pomocą procedury Nayaka–Zienkiewicza [5]. Uwzględnia się przyrostowe równanie konstytutywne wiążące przyrost odkształcenia $d\varepsilon = \{d\varepsilon_{s}, d\varepsilon_{y}\}^{T}$ i naprężenia $d\sigma = \{dq', dp'\}^{T}$ zależnością

$$d\varepsilon = \left[\mathbf{D} - \frac{(\mathbf{D} \mathbf{a}_G)(\mathbf{a}_F^T \mathbf{D})}{\mathbf{a}_F^T \mathbf{D} \mathbf{a}_G - K_G} \right]^{-1}$$

$$d\mathbf{\sigma} = (\mathbf{D} - \mathbf{D}^p)^{-1} d\mathbf{\sigma}$$

$$K_G = \frac{\partial F}{\partial \mathbf{\kappa}} \left\{ \frac{\partial \mathbf{\kappa}}{\partial \varepsilon^p} \right\} \mathbf{a}_G$$
(6)

w której: **D**, **D**^{*p*} – to konstytutywne macierze sprężystości, plastyczności i sprężysto-plastyczności, K_G – moduł wzmocnienia plastycznego, \mathbf{a}_G , \mathbf{a}_F – gradienty funkcji potencjału plastyczności $G(\mathbf{\sigma}, \mathbf{\kappa})$ i plastyczności $F(\mathbf{\sigma}, \mathbf{\kappa})$, określone dla wartości naprężenia s i zestawu skalarowych parametrów wzmocnienia $\mathbf{\kappa}, \mathbf{\sigma}^p$ – część plastyczna wektora odkształcenia. Otrzymane ostatecznie plastyczne części dsp traktuje się jako sprężyste "obciążenie" w cyklu wewnętrznych iteracji, powtarzanych aż do osiągnięcia odpowiedniej zbieżności. Algorytm operacyjny takiej procedury obejmuje [2]:

- 1) podział "obciążenia" σ na szereg (*i*) przyrostów $d\sigma^{(i)}$,
- 2) realizację dla (i) kroków przyrostowych cyklu obejmującego:
- a) wyznaczenie konstytutywnej macierzy sprężystości D i określenie przyrostu odkształcenia de^{e(i)} z prawa sprężystości

$$d\varepsilon^{e(i)} = \mathbf{D}^{-1} d\mathbf{G}^{(i)} \tag{7}$$

- b) ustalenie części plastycznej przyrostu naprężenia d6^{p(i)} za pomocą procedury Nayaka-Zienkiewicza [2, 6],
- c) sprawdzenie warunku przerwania cyklu iteracyjnego i powrót do punktu (c) (w przypad-ku jego niespełnienia), poprzedzony ustaleniem przyrostu odkształcenia z zależności
 dε^{e(i)} = D⁻¹ dσ^{p(i)} (8)
- d) w przypadku spełnienia warunku przerwania przejście do punktu (2), poprzedzone modyfikacją stycznych parametrów sprężystych i aktualizacją stanu naprężenia σ⁽ⁱ⁾ i od-kształcenia ε⁽ⁱ⁾, lub zakończenie obliczeń.

6. Pakiet programów komputerowych

Przedstawiony algorytm (jako jedną z kilku możliwych wariantów) realizuje para programów komputerowych PARID i AL3OSM napisanych w języku FORTRAN, komunikujących się poprzez zbiory danych. Pierwszy program ustala początkowe parametry modelu, wywołując drugi — przeznaczony do symulacji ścieżki naprężenia w badaniu trójosiowym. Taka konstrukcja nie powoduje przerwania obliczeń w przypadku nieuzyskania wyników obliczeń programem AL3OSM.

7. Sprężysto-plastyczny model Novy–Wooda

Do ilustracji przedstawionej koncepcji specyfikacji parametrów modeli sprężysto-plastycznych przyjęto model szkieletu gruntowego Novy–Wooda [7], będący związkiem typu nasadkowego. Operuje on dwuparametrycznym mieszanym prawem plastycznego płynięcia (stowarzyszonym dla stożkowej powierzchni i niestowarzyszonym — dla części nasadkowej). Obszar sprężysty ogranicza powierzchnia plastyczności (rys. 1a), zbudowana z części nasadkowej F_1 i stożkowej F_2 , opisanych zależnościami

$$F_{1} = q' - \left[M + m \ln\left(\frac{p'}{p'_{u}}\right)\right]p' = 0 \quad dla \quad \eta = \frac{q'}{p'} \ge \eta_{c}$$

$$F_{2} = q'^{2} + \frac{M^{2}}{4\mu}(p'^{2} - p'^{2}_{0}) = 0 \quad dla \quad \eta = \frac{q'}{p'} < \eta_{c}$$
(9)

w których: M— oznacza nachylenie linii stanu krytycznego CSL, p'_u — efektywne naprężenie średnie określające punkt przecięcia linii CSL z powierzchnią F_1 , m— parametr modelu, μ — parametr dylatacji, p'_0 — ciśnienie prekonsolidacji, η_c — nachylenie linii określającej "połączenie" powierzchni nasadkowej F_1 i stożkowej F_2 ($\eta_c = 0.5M$).

Powierzchnię plastycznego potencjału (rys. 1b) tworzą dwie części $G_{\rm l}$ i $G_{\rm 2},$ zdefiniowane relacjami

$$G_{1} = \eta - \frac{M}{1 - \mu} \left[1 - \mu \left(\frac{p'}{p'_{ug}} \right)^{\frac{1 - \mu}{\mu}} \right] \quad \text{dla} \quad \eta = \frac{q'}{p'} \ge \eta_{c}$$

$$G_{2} = q'^{2} + \frac{M^{2}}{4\mu} (p'^{2} - p'^{2}_{0}) \quad \text{dla} \quad \eta = \frac{q'}{p'} < \eta_{c}$$
(10)

205

Rys. 1. Schemat modelu Novy-Wooda: a) powierzchnia plastyczności, b) powierzchnia potencjału plastycznego

gdzie: p'_{ug} — oznacza efektywne naprężenie średnie dla "wierzchołka" powierzchni potencjału plastycznego G_1 przecinającej linię CSL ($p'_{ug} = p'_u$).

Zgodnie z [8] prawo wzmocnienia definiują dwa parametry wzmocnienia — podstawowy, którym jest ciśnienie prekonsolidacji p'_{q} , oraz efektywne naprężenie średnie p'_{u} (uzależnione od plastycznych części intensywności odkształcenia ε_{q}^{p} i odkształcenia objętościowego ε_{p}^{v}), opisane wzorami

$$p'_{0} = p'_{r} \exp\left(\frac{\varepsilon_{v}^{p} + D\varepsilon_{v}^{p}}{\lambda^{*} - \kappa^{*}}\right)$$

$$p'_{u} = \frac{p'_{0}}{\sqrt{1 + \mu}} \exp\left(\frac{-M}{2m}\right)$$
(11)

w których: p'_{r} — oznacza początkową wartość ciśnienia prekonsolidacji p'_{0} , D — "kombinowany parametr wzmocnienia", λ^* i κ^* — stałe modelu.

Stan wewnątrz powierzchni plastyczności opisuje liniowe prawo sprężystości, operujące parą modułów — ścinania G_i i ściśliwości K_i . Model specyfikuje zestaw 8 parametrów $b = \{\lambda^*, \kappa^*, M, \mu, m, D, G_i, K_i\}$.

8. Przykład specyfikacji parametrów

Przykładową identyfikację parametrów modelu Novy–Wooda przeprowadzono dla wyników symulowanego numerycznie testu trójosiowego, realizującego ścieżkę standardowego ścinania (rys. 2 a) 50-cioma jednakowymi przyrostami naprężenia dla parametrów charakteryzujących ił ze Szwecji [8] (zamieszczonych w wierszu (B) z tabeli 1).

Do analizy przyjęto 2 kompleksowe wersje funkcje celu Q określone wzorami (2) i (3) (dla $\alpha_s = \alpha_v = \beta_s = \beta_v = 1$ i $\xi = 10^{-10}$). Estymację ograniczono do zestawu 6 plastycznych parametrów modelu $b^{p} = {\lambda^*, \kappa^*, M, \mu, m, D}$, przyjmując, że wartości pary stałych sprężystych $G_t = 30$ kPa, $K_t = 46$ kPa ustalone zostały wcześniej. Startowe wartości współrzędnych punktów narożnych 6-wymiarowego prostopadłościanu parametrów zamieszczono w wierszu (A) tabeli 1, dzieląc każdą z krawędzi na

Punkt (nr wzoru)	λ*	κ*	М	μ	т	D
(A)	0,00855 ÷ 0,01482	0,002925 ÷ 0,00507	0,91125 ÷ 1,5785	0,6 ÷ 1,04	0,6 ÷ 1,04	0,38025 ÷ 0,6591
(2)	0,01135	0,00386	1.2412	0,836	0,495	0,5065
(3)	0,01135	0,00385	1,2188	0,805	0,494	0,5070
(B)	0,0114	0,0039	1,215	0,8	0,8	0,507

TABELA 1 Wyniki identyfikacji parametrów modelu Novy-Wooda dla iłu ze Szwecji [8]

2 części i przyjmując na niej 3 punkty węzłowe (oraz skalę zmniejszania krawędzi w kolejnych cyklach równą 1:0,65). Dla pokazania różnic — obliczenia ograniczono do I etapu podanego algorytmu, czyli do metody kolejnego przeszukiwania. Zakończono je — po 5 cyklach obliczeniowych dla (2) wersji funkcji celu $Q = 2,802014 \cdot 10^{-11}$ i po 9 — dla (3) opcji przy $Q = 1,555694 \cdot 10^{-11}$. Wyniki obliczeń (wykonanych programem PARID) zamieszczono w wierszach (2) i (3) tabeli 1, oraz w postaci dwóch charakterystyk: ścinania $q' - \varepsilon_s$, odkształcenia $\varepsilon_s - \varepsilon_y$ (na rys. 2 b-c).

Rys. 2. Wyniki obliczeń – charakterystyki: a) q' - p', b) $q' - \varepsilon_a$, c) $\varepsilon_a - \varepsilon_v$

W obydwóch analizowanych przypadkach rozkłady charakterystyk praktycznie pokrywają się z wzorcowymi dla parametrów z wiersza (B) tabeli. Zdecydowanie bliższe estymowanym są rezultaty dla energetycznej funkcji celu (3), jednak w obydwóch przypadkach słabo oszacowana została stała *m*, co spowodowane jest rodzajem przyjętej do analizy ścieżki naprężenia (standardowego ścinania). W pozostałych przypadkach różnice w stosunku do wzorcowych nie przekraczają 2%.

9. Podsumowanie

Przedstawiona metoda równoczesnej identyfikacji parametrów sprężysto-plastycznych modeli gruntów stanowi efektywny sposób ich specyfikacji. Może być stosowana samodziel-

nie jako wariant jednokrokowy (określający wszystkie parametry jednocześnie), kilkukrokowy (ustalający grupy parametrów etapami dla różnych charakterystyk) albo w połączeniu z opcją stopniową. Wymaga ona jednak właściwego zaprogramowania zestawu badań trójosiowych i doboru odpowiedniej funkcji celu.

LITERATURA

- Fedczuk P.: Kalibrowanie sprężysto-plastycznych modeli gruntów metodą równoczesną. XII KKMGiF Problemy geotechniczne obszarów przymorskich, Cz. Ia, Szczecin–Międzyzdroje, 2000, s. 135–146
- [2] Fedczuk P.: Numeryczna symulacja badania trójosiowego. XLV Konferencja Naukowa KI-LiW PAN I KN PZITB, T. 5 — Organizacja i zarządzanie w budownictwie. Geotechnika, Kraków-Krynica. 1999, s. 107–114
- [3] *Fideisen W., Szymanowski J., Wierzbicki A.*: Teoria i metody obliczeniowe optymalizacji, Biblioteka Naukowa Inżyniera, PWN, Warszawa 1980
- [4] Gryczmański M.: Reologiczny model o wzmocnieniu anizotropowym dla szkieletu gruntowego, Zeszyty Naukowe WSI w Opolu, Budownictwo, Zeszyt 20, Nr 91/1983, Opole 1983
- [5] Nayak G.C., Zienkiewicz O.C.: Elasto-plastic Stress Analysis. A generalized for Various Constitutive Relations Including Strain Softening. International Journal for Numerical Methods in Engineering, Vol.5, 1972, pp. 113–135
- [6] Nelder J.A., Mead R.: A Simplex Method for Function Minimization, Computer Journal, 7 (4), 1965, pp. 308–313
- [7] *Nova R., Wood D.M.*: A Constitutive Model for Sand in Triaxial Compression, International Journal for Numerical and Analytical Method in Geomechanics, 3 (3), 1979, pp. 255–278
- [8] Yu Y., Axelsson K.: Constitutive Driver for Response Behaviour of Soils. Research Report, Lulea University of Technology, Lulea 1992