Andrzej Wichur*, Kornel Frydrych**, Michał Hapke**

WPŁYW GRUBOŚCI OBUDOWY SKLEPIONEJ BETONOWEJ NA WARTOŚCI SIŁ WEWNĘTRZNYCH W TEJ OBUDOWIE***

1. Wstęp

Wprowadzenie do praktyki polskiego budownictwa podziemnego obudów powłokowych rzuciło nowe światło na zagadnienia wpływu grubości obudowy na kształtowanie się wartości sił wewnętrznych w obudowie wyrobisk długotrwałych, a w konsekwencji na nośność obudów sklepionych i powłokowych [5, 7].

Zgodnie z normą [2] przez obudowę sklepioną należy rozumieć obudowę wyrobiska podziemnego, tworzącą sklepienie nośne. Przed wykonaniem obudowy sklepionej, jako zabezpieczenie wstępne najczęściej stosowana jest obudowa powłokowa charakteryzująca się małą grubością. Ta cecha obudowy powłokowej pozwala założyć niewystępowanie momentów zginających. Podstawowym problemem jest nośność obudowy, która przy dużych ciśnieniach deformacyjnych niejednokrotnie jest zbyt mała dla rozsądnych grubości obudów betonowych. Zwiększanie nośności poprzez zwiększenie jej grubości nie jest rozwiązaniem najlepszym i najprostszym. Wraz z grubością silnie rośnie zużycie mieszanki betonowej oraz objętość potrzebnego wyłomu. Powoduje to wzrost kosztów budowy. Artykuł przedstawia podstawowe wyniki badań zależności wartości sił wewnętrznych występujących w obudowach betonowych od grubości tych obudów i klasy betonu użytego do ich wykonania.

2. Budowa modelu obliczeniowego

Badania numeryczne przeprowadzono na grupie najczęściej występujących w górnictwie przekrojów oraz parametrów górotworu. Ze względu na charakter badawczy pracy

^{*} Emerytowany profesor zwyczajny, Wydział Górnictwa i Geoinżynierii, Akademia Górniczo-Hutnicza, Kraków

^{**} Katedra Geomechaniki, Budownictwa i Geotechniki, Wydział Górnictwa i Geoinżynierii, Akademia Górniczo-Hutnicza, Kraków

^{***} W pracy wykorzystano wyniki uzyskane w ramach prac statutowych AGH nr 11.11.100.277

wybrano 3 różne skały charakteryzujące się współczynnikiem Protodiakonowa f = 1,5; 3; 5. W każdym przypadku utworzono obudowę z 3 różnych klas betonu (C12/15; C16/20; C20/25), aby sprawdzić, jak wpływa to na kształtowanie się wartości sił wewnętrznych. Grubość obudowy zwiększano od 0,15 m do 0,45 m co 5 cm. Dało to możliwość dokładnego zbadania procesów zachodzących w modelu. Do obliczeń przyjęto przekroje wyrobisk zgodne z normą PN-G-06010: 1998 [3]. Modele wykonano dla 3 różnych szerokości wyrobiska: A = 2; 4; 5 m.

Ze względu na studialny charakter pracy, do budowy modeli analitycznych wartości podstawowych parametrów geotechnicznych zaczerpnięto z załącznika polskiej normy BN-82/0434-07 [1]. Norma ta zastąpiona została w roku 1998 normą PN-G-05600:1998 [4]. W nowej wersji nie znalazł się jednak wspomniany załącznik, w którym przyporządkowano orientacyjne wartości parametrów geotechnicznych skał karbońskich znanej wartości wskaźnika zwięzłości wg Protodiakonowa. Do obliczeń statycznych przyjęto wartości obliczeniowe. Współczynnik k_1 w pracy został dobrany z aktualnej normy [2] zgodnie z założonym stanem skał zalegających (podzielność i rozmakalność) w wyrobisku modelowym.

W obliczeniach przyjęto schemat obciążenia wg modelu III (model Cymbariewicza) zgodnie z normą PN-G-05020:1997 [2]. W przypadku projektowania obudowy sklepionej jest to schemat najczęściej stosowany, uwzględniający położenie wyrobiska poniżej głębokości krytycznej H_{kr} . Zgodnie z tą normą przyjęto, że górotwór współpracuje z obudową. Współpracę tę uwzględniono w schemacie statycznym poprzez punktowe rozparcia sprężyste tzw. wahacze [por. 2, 5]. Przykładowe zestawienie danych do budowy modelu obliczeniowego wyrobiska o szerokości 4 m przedstawiono w tabeli 1.

Na podstawie tak przygotowanych modeli analitycznych przeprowadzono obliczenia statyczne za pomocą programu komputerowego Autodesk Robot Structural Analysis Professional metodą MES (elementów skończonych).

		·		·				•					
Zestaw	f	klasa betonu	g m	h' ₂ m	R ₀ m	E _w MPa	q _{Nz} kPa	q _{Nx1} kPa	q _{Nx2} kPa	п	S ₁ m	S _m m	
64			0,15	2,015	2,11	480,1	136,6	31,5	55,7	12	0,486	0,448	
65		C12/15	0,20	2,019	2,14	469,4	139,2	32,1	56,6	12	0,492	0,449	
66			0,25	2,024	2,16	459,1	141,7	32,7	57,5	12	0,498	0,450	
67			0,30	2,029	2,19	449,3	144,3	33,3	58,4	12	0,504	0,451	
68				0,35	2,034	2,21	439,9	146,8	33,9	59,3	12	0,509	0,452
69	1,5		0,40	2,039	2,24	430,8	149,3	34,5	60,2	12	0,515	0,453	
70			0,45	2,044	2,27	422,2	151,9	35,1	61,1	12	0,521	0,454	
71			0,15	2,015	2,11	480,1	136,6	31,5	55,7	12	0,486	0,448	
72		G1 (/20)	0,20	2,019	2,14	469,4	139,2	32,1	56,6	12	0,492	0,449	
73		C10/20	0,25	2,024	2,16	459,1	141,7	32,7	57,5	12	0,498	0,450	
74			0,30	2,029	2,19	449,3	144,3	33,3	58,4	12	0,504	0,451	

Zestawienie danych do budowy modelu obliczeniowego wyrobiska o szerokości 4 m

TABELA 1

TABELA 1 cd.

Zestaw	f	klasa betonu	g m	$\begin{array}{c} h_2' \\ \mathrm{m} \end{array}$	R ₀ m	E_w MPa	$q_{\scriptscriptstyle N\!z}\$ kPa	q _{Nx1} kPa	q _{Nx2} kPa	п	S ₁ m	S _m m
75			0,35	2,034	2,21	439,9	146,8	33,9	59,3	12	0,509	0,452
76		C16/20	0,40	2,039	2,24	430,8	149,3	34,5	60,2	12	0,515	0,453
77			0,45	2,044	2,27	422,2	151,9	35,1	61,1	12	0,521	0,454
78			0,15	2,015	2,11	480,1	136,6	31,5	55,7	12	0,486	0,448
79	1.5		0,20	2,019	2,14	469,4	139,2	32,1	56,6	12	0,492	0,449
80	1,5		0,25	2,024	2,16	459,1	141,7	32,7	57,5	12	0,498	0,450
81		C20/25	0,30	2,029	2,19	449,3	144,3	33,3	58,4	12	0,504	0,451
82			0,35	2,034	2,21	439,9	146,8	33,9	59,3	12	0,509	0,452
83			0,40	2,039	2,24	430,8	149,3	34,5	60,2	12	0,515	0,453
84			0,45	2,044	2,27	422,2	151,9	35,1	61,1	12	0,521	0,454
85			0,15	2,040	2,35	774,2	58,6	5,4	14,0	12	0,424	0,453
86			0,20	2,053	2,38	758,5	59,8	5,6	14,2	12	0,429	0,456
87			0,25	2,067	2,41	743,4	61,0	5,7	14,5	12	0,434	0,459
88		C12/15	0,30	2,080	2,44	729,0	62,2	5,8	14,7	12	0,439	0,462
89			0,35	2,093	2,46	715,0	63,5	5,9	14,9	12	0,444	0,465
90			0,40	2,107	2,49	701,6	64,7	6,0	15,2	12	0,449	0,468
91			0,45	2,120	2,52	688,7	65,8	6,1	15,4	12	0,454	0,471
92			0,15	2,040	2,35	774,2	58,6	5,4	14,0	12	0,424	0,453
93			0,20	2,053	2,38	758,5	59,8	5,6	14,2	12	0,429	0,456
94			0,25	2,067	2,41	743,4	61,0	5,7	14,5	12	0,434	0,459
95	3	C16/20	0,30	2,080	2,44	729,0	62,2	5,8	14,7	12	0,439	0,462
96			0,35	2,093	2,46	715,0	63,5	5,9	14,9	12	0,444	0,465
97			0,40	2,107	2,49	701,6	64,7	6,0	15,2	12	0,449	0,468
98			0,45	2,120	2,52	688,7	65,8	6,1	15,4	12	0,454	0,471
99			0,15	2,040	2,35	774,2	58,6	5,4	14,0	12	0,424	0,453
100			0,20	2,053	2,38	758,5	59,8	5,6	14,2	12	0,429	0,456
101			0,25	2,067	2,41	743,4	61,0	5,7	14,5	12	0,434	0,459
102		C20/25	0,30	2,080	2,44	729,0	62,2	5,8	14,7	12	0,439	0,462
103			0,35	2,093	2,46	715,0	63,5	5,9	14,9	12	0,444	0,465
104			0,40	2,107	2,49	701,6	64,7	6,0	15,2	12	0,449	0,468
105			0,45	2,120	2,52	688,7	65,8	6,1	15,4	12	0,454	0,471
106			0,15	2,048	2,46	1279,2	26,2	0,77	3,39	12	0,412	0,455
107			0,20	2,063	2,48	1254,3	26,8	0,78	3,44	12	0,417	0,459
108	5	C12/15	0,25	2,079	2,52	1230,4	27,4	0,80	3,50	12	0,422	0,462
109			0,30	2,095	2,54	1207,3	27,9	0,82	3,56	12	0,427	0,466
110			0,35	2,111	2,57	1185,1	28,5	0,84	3,61	12	0,432	0,469

TABELA 1 cd.

Zestaw	f	klasa betonu	g m	<i>h</i> ' ₂ m	R ₀ m	E _w MPa	q _{nz} kPa	q _{Nx1} kPa	q _{Nx2} kPa	n	S ₁ m	S _m m
111		C12/15	0,40	2,127	2,61	1163,7	29,1	0,85	3,67	12	0,437	0,473
112		C12/13	0,45	2,143	2,63	1143,0	29,66	0,87	3,73	12	0,442	0,476
113			0,15	2,048	2,46	1279,2	26,2	0,77	3,39	12	0,412	0,455
114			0,20	2,063	2,48	1254,3	26,8	0,78	3,44	12	0,417	0,459
115			0,25	2,079	2,52	1230,4	27,4	0,80	3,50	12	0,422	0,462
116		C16/20	0,30	2,095	2,54	1207,3	27,9	0,82	3,56	12	0,427	0,466
117			0,35	2,111	2,57	1185,1	28,5	0,84	3,61	12	0,432	0,469
118	5		0,40	2,127	2,61	1163,7	29,1	0,85	3,67	12	0,437	0,473
119	5		0,45	2,143	2,63	1143,0	29,66	0,87	3,73	12	0,442	0,476
120			0,15	2,048	2,46	1279,2	26,2	0,77	3,39	12	0,412	0,455
121			0,20	2,063	2,48	1254,3	26,8	0,78	3,44	12	0,417	0,459
122		C20/25	0,25	2,079	2,52	1230,4	27,4	0,80	3,50	12	0,422	0,462
123			0,30	2,095	2,54	1207,3	27,9	0,82	3,56	12	0,427	0,466
124			0,35	2,111	2,57	1185,1	28,5	0,84	3,61	12	0,432	0,469
125			0,40	2,127	2,61	1163,7	29,1	0,85	3,67	12	0,437	0,473
126			0,45	2,143	2,63	1143,0	29,66	0,87	3,73	12	0,442	0,476

g — grubość obudowy; h'_2 — wysokość murów prostych w osiach obudowy; R_0 — promień łuku sklepienia w osi; E_w — współczynnik sprężystości materiału wahacza; q_{NZ} — wartość stropowego ciśnienia statycznego górotworu; q_{Nx1} , q_{N2} — wartość ociosowego ciśnienia statycznego górotworu (przy stropie i przy spągu); n — liczba odcinków w sklepieniu; S_1 — długość łuku pomiędzy wahaczami w sklepieniu; S_m — odległość wahaczy na murze prostym

3. Wyniki obliczeń

Obliczenia przeprowadzono dla 189 modeli różniących się m.in. szerokością wyrobiska, jakością otaczającego górotworu, klasą betonu użytego w obudowie. Wyniki zestawiono w szereg wykresów obrazujących kształtowanie się wartości sił wewnętrznych ze względu na:

- zależność wartości momentu zginającego maksymalnego i minimalnego oraz sił podłużnych odpowiadających tym wartościom od grubości obudowy uwzględniając różne wartości wskaźnika Protodiakonowa *f*,
- zależność wartości momentu zginającego maksymalnego i minimalnego oraz sił podłużnych odpowiadających tym wartościom od grubości obudowy uwzględniając różne klasy betonu.

W trakcie analizy wyników stwierdzono fakt przemieszczania się wartości maksymalnej i minimalnej momentów zginających wzdłuż obudowy. W skrajnych przypadkach wartość maksymalna dla małych grubości występowała w ociosach, aby wraz ze zwiększaniem się grubości obudowy "przeskoczyć" w centralny punkt sklepienia. Zjawisko to zobrazowano na wykresach poprzez wprowadzenie osobnych krzywych zarówno dla ociosów jak i sklepienia. Brano pod uwagę tylko wartości maksymalne dla krzyżujących się krzywych wartości momentów zginających. Dla wszystkich punktów znaleziono równania krzywych regresji o postaci $y = ax^2 + bx + c$ (z użyciem pakietu statystycznego MS Excel), przy czym stwierdzono, że wpływ klasy betonu jest pomijalny. Wyznaczono więc równania krzywych dla klasy betonu C12/15, a przy-kładowe wyniki dla szerokości wyrobiska 4 m zestawiono w tabeli 2.

Zestaw	f	klasa betonu	g m	M _{max} kN∙m	F _{max} kN	M _{min} kN∙m	F _{min} kN	równanie krzywej	współczynnik determinacji R ²
64			0,15	22,80	456,19	-21,88	450,75		
65			0,20	24,03	460,21	-20,06	452,94		
66			0,25	24,70	465,91	-21,24	419,30		
67		C12/15	0,30	28,04	300,04	-27,61	425,68	Momentów zginających:	
68			0,35	35,58	298,00	-34,17	469,36	max [O]:	
69			0,40	43,13	296,95	-41,60	479,85	$-25,47x^2+27,30x+19,4$	0,982
70			0,45	51,18	296,53	-49,37	491,39	max [S]:	
71			0,15	22,84	455,69	-21,76	450,25	$87,71x^2 + 89,27x - 6,645$	0,999
72			0,20	24,04	459,60	-20,02	452,34	min.	
73			0,25	24,64	465,41	-21,46	418,85	$-378,9x^2 + 128,4x - 31,48$	0,988
74	1,5	C16/20	0,30	28,45	299,26	-27,88	425,13		
75			0,35	36,07	297,20	-34,88	469,08	Sił podłużnych:	
76			0,40	43,69	296,10	-42,4	479,62	max [O]:	
77			0,45	51,80	295,68	-50,18	491,20	$389,8x^2 - 54,55x + 455,5$	0,999
78			0,15	22,86	455,44	-21,70	450,01	max [S]	
79			0,20	24,05	459,31	-20,01	452,04	$102,1x^2 - 101,1x + 321,1$	0,997
80			0,25	24,61	465,17	-21,56	418,64		
81		C20/25	0,30	28,65	298,87	-28,01	424,86	$\begin{array}{c} \text{min:} \\ 1628x^2 - 815.8x + 537.5 \end{array}$	0.747
82			0,35	36,31	296,81	-35,21	468,93	, , ,	,
83			0,40	43,96	295,68	-42,79	479,49		
84			0,45	52,11	295,26	-50,57	491,10		
85			0,15	4,98	149,55	-6,61	193,43		
86			0,20	7,93	149,72	-10,32	198,85		
87			0,25	11,31	149,1	-14,55	203,91		
88	2	C12/15	0,30	15,34	148,25	-19,20	209,54	Momentów zainajawah	
89	5		0,35	19,65	147,06	-24,66	215,92	Momeniów zginających:	
90			0,40	24,20	146,04	-30,45	222,97	max:	
91			0,45	29,17	145,07	-36,47	230,62	$78,61x^2 + 33,86x - 1,938$	0,999
92		C16/20	0,15	5,05	149,42	-6,70	193,43		

TABELA 2 Zestawienie wyników dla szerokości wyrobiska 4 m

TABELA 2 cd.

Zestaw	f	klasa betonu	g m	M _{max} kN∙m	F _{max} kN	M _{min} kN∙m	F _{min} kN	równanie krzywej	współczynnik determinacji R ²
93			0,20	8,08	149,35	-10,71	198,94		
94			0,25	11,53	148,61	-14,97	203,93		
95		C16/20	0,30	15,64	147,59	-19,79	209,58		
96		C10/20	0,35	20,02	146,31	-25,31	215,97	$\begin{array}{c} \text{min:} \\ -99\ 85x^2 - 40\ 05x + 1\ 677 \end{array}$	0.999
97			0,40	24,65	145,17	-31,19	223,04	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,555
98			0,45	29,69	144,13	-37,29	230,72	Sił podłużnych:	
99	3		0,15	5,08	149,36	-6,74	193,43	max.	
100			0,20	8,16	149,17	-10,89	198,98	$-39,9x^2 + 7,628x + 149,5$	0,986
101			0,25	11,64	148,37	-15,17	203,93		
102		C20/25	0,30	15,64	147,59	-19,79	209,58	max: $107.6r^2 + 58.15r + 182.5$	0 999
103			0,35	20,20	145,94	-25,62	215,98	107,04 + 50,154 + 102,5	0,777
104			0,40	24,87	144,75	-31,55	223,07		
105			0,45	29,95	143,67	-37,68	230,76		
106			0,15	2,27	74,90	-2,65	94,31		
107			0,20	3,54	76,43	-4,59	94,02		
108			0,25	5,45	77,28	-6,40	99,49		
109		C12/15	0,30	7,46	77,87	-8,99	103,91		
110			0,35	9,81	78,11	-12,11	108,67	Momentów zoinajawah	
111			0,40	12,33	78,31	-15,42	113,77	Momeniow zginających.	
112			0,45	14,27	79,70	-20,71	118,85	max:	
113			0,15	2,29	74,86	-2,65	94,28	$33,71x^2 + 21,15x - 1,842$	0,997
114			0,20	3,59	76,33	-4,82	94,30	min	
115			0,25	5,53	77,10	-6,65	99,71	$-120,5x^2 + 14,06x - 2,291$	0,997
116	5	C16/20	0,30	7,58	77,61	-9,34	104,16		
117			0,35	9,97	77,79	-12,50	108,92	Sił podłużnych:	
118			0,40	12,53	77,93	-15,86	114,04	max:	
119			0,45	14,52	79,26	-21,17	119,14	$-22,14x^2 + 26,85x + 71,67$	0,941
120			0,15	2,30	74,84	-2,65	94,27	min.	
121			0,20	3,62	76,28	-4,93	94,43	$122.2x^2 + 13.98x + 88.29$	0,989
122			0,25	5,57	77,02	-6,78	99,80		,
123		C20/25	0,30	7,64	77,47	-9,50	104,27		
124			0,35	10,04	77,63	-12,68	109,03		
125			0,40	12,62	77,74	-16,07	114,16		
126			0,45	14,63	79,04	-21,39	119,26		

[O] – wartość w ociosach; [S] – wartość w sklepieniu

Zależność wartości sił wewnętrznych od grubości obudowy dla klas betonu (C12/15, C16/20 i C20/25) oraz dla wartości współczynnika f = 3 przedstawiono na rysunkach 1–4.

Rys. 1. Zależność maksymalnego momentu zginającego od grubości obudowy

Rys. 2. Zależność odpowiadającej siły podłużnej od grubości obudowy (w miejscu występowania momentu maksymalnego)

Rys. 3. Zależność minimalnego momentu zginającego od grubości obudowy

Rys. 4. Zależność odpowiadającej siły podłużnej od grubości obudowy (w miejscu występowania momentu minimalnego)

4. Podsumowanie

Jednym z etapów projektowania obudowy sklepionej wyrobisk podziemnych jest obliczenie wartości sił wewnętrznych. Siły te zależą od wartości obciążenia oraz od parametrów projektowanej obudowy, stąd potrzeba przewidywania, jak zmiana tych parametrów wpłynie na jej nośność. W niniejszej pracy zbadano wpływ dwóch parametrów (grubość obudowy, klasa betonu).

Analiza przyniosła zaskakujące wyniki. Najistotniejszym jest zauważenie faktu, że dla dużych obciążeń (odpowiadających wartości wskaźnika Protodiakonowa 1,5 lub 3) lokalizacja występowania wartości maksymalnego momentu zginającego przemieszcza się. Dla małych grubości obudowy wartość maksymalna występuje w ociosach wyrobiska i wraz z rosnącą grubością przemieszcza się w kierunku klucza sklepienia. Znajomość grubości obudowy, przy której dana zmiana zachodzi, pozwoli projektować zmienne przekroje poprzeczne obudów (zgrubienia tylko w miejscach występowania momentu maksymalnego). Na powyższy fakt ma znaczący wpływ także kształtowanie się wartości ściskających sił podłużnych. Jak wiadomo, gdy na belkę zginaną działamy siłą ściskającą, poprawiamy jej nośność (podobieństwo do belek sprężonych). Analizując wyniki stwierdzono, że siły ściskające rosną zdecydowanie szybciej i mają większe wartości w ociosach. Dobranie więc odpowiedniej grubości obudowy, przy której moment zginający wystąpi w ociosach, poprawi nośność danego przekroju.

Analiza ujawniła także, jak wpływa zwiększenie grubości obudowy na wartość maksymalnego momentu zginającego: zwiększenie grubości obudowy (pośrednio wyłomu) jedynie o 30 cm (z 15 do 45 cm) powoduje zwiększenie wartości momentu maksymalnego (w sklepieniu) około pięciokrotnie. Ostatnim wnioskiem płynącym z analizy momentów maksymalnych jest stwierdzenie, iż wartość ich rośnie znacznie szybciej w sklepieniu (dominuje zginanie) niż w ociosach (dominuje ściskanie).

Wszystkie powyższe wnioski odnoszą się do momentu zginającego dodatniego (tj. powodującego przemieszczenie obudowy do środka wyrobiska). Gdy rozpatrzymy moment występujący zawsze w pobliżu wezgłowia sklepienia (moment minimalny ujemny) wyginający obudowę na zewnątrz wyrobiska, zauważymy, że niezależnie od wartości obciążeń i szerokości wyrobiska zachowanie jego jest niezmienne. Największych (co do modułu) wartości momentu ujemnego spodziewać się należy dla f = 1,5 oraz nie występują znaczne zmiany lokalizacji ekstremum wraz ze wzrostem grubości obudowy. Siły ściskające także stosunkowo dobrze można opisać w tym przypadku wielomianem drugiego stopnia.

Wyniki badań także potwierdzają tezę, że dla obudów powłokowych (nieznaczna grubość) słusznie pomija się występowanie momentów zginających. Na rysunkach 1 i 3 widać tendencję zbliżania się wartości momentu maksymalnego i minimalnego do 0 wraz z malejącą grubością obudowy.

Drugim zbadanym parametrem była zmienna klasa betonu. Przebadano każdy model dla trzech klas, tj.: C12/15; C16/20 i C20/25. W każdym przypadku, różnica wynikająca z zastosowania różnych klas była praktycznie niezauważalna. Można więc pomijać wpływ różnych klas betonu na wartości sił wewnętrznych w obudowie (w badanym zakresie klas betonu).

LITERATURA

- BN-82/0434-07 Wyrobiska korytarzowe i komorowe Obudowa powłokowa Wytyczne projektowania i obliczeń statycznych
- [2] PN-G-05020:1997 Podziemne wyrobiska korytarzowe Obudowa sklepiona Zasady projektowania i obliczeń statycznych
- [3] PN-G-06010:1998 Wyrobiska korytarzowe poziome i pochyłe w zakładach górniczych Przekroje poprzeczne symetryczne
- [4] PN-G-05600:1998 Podziemne wyrobiska korytarzowe i komorowe Obudowa powłokowa — Zasady projektowania i obliczeń statystycznych
- [5] Wichur A.: Zagadnienia projektowania obudowy długotrwałych wyrobisk podziemnych. Górnictwo i Geoinżynieria, R. 33, z. 3/1, Wydawnictwa AGH, Kraków 2009
- [6] Wichur A., Frydrych K., Pilat Ł.: Badania nad wstępnym doborem grubości betonowej obudowy sklepionej. XXIX Zimowa Szkoła Mechaniki Górotworu, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2006
- [7] Wichur A., Gruszka R.: Nowe normy projektowania obudowy długotrwałych podziemnych wyrobisk korytarzowych. Konferencja Naukowo-Techniczna Budownictwo Podziemne 2000, Kraków 25–27 września 2000, Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków 2000