PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uogólnienia metody elementów skończonych w inżynierskich symulacjach numerycznych ośrodka nieciągłego i dyskretnego

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Finite element method generalizations applied to numerical simulations of discontinuous and discrete solid models
Języki publikacji
PL
Abstrakty
PL
Klasyczna metoda elementów skończonych jest metodą wydajną i uniwersalną, z zastosowaniem wielu dostępnych pakietów również łatwą w użyciu. W zastosowaniu do symulacji wprost nieciągłości i nieciągłego masywu skalnego, ma jednak pewne istotne ograniczenia. W ciągu ostatnich kilkunastu lat pojawiły się uogólnienia tej metody stosujące generalnie rzecz ujmując nowe metody aproksymacji, z których wiele opartych jest na tzw. podziale jedności. W rezultacie, na bazie metody elementów skończonych i metody różnic skończonych powstały metody bezsiatkowe, metody wzbogaconej aproksymacji metody elementów skończonych i metoda rozmaitości numerycznych. Wszystkie te metody mają zdolność naturalnego odwzorowania nieciągłości bez kłopotliwych operacji przebudowy siatki. Każda z nich jest zdolna do symulacji ośrodka ciągłego, ośrodka nieciągłego oraz rozpadu ośrodka w jednym, spójnym schemacie numerycznym (każda z nich w innym). Po uzupełnieniu o algorytmy rozpoznawania kontaktów metody te nabierają cech metod elementów dyskretnych. Są to na razie rozwiązania laboratoryjne, nad którymi pracują matematycy, numerycy i programiści, które nie trafiły jeszcze w ręce inżynierów. W przyszłości mogą mieć szerokie zastosowanie w symulacjach budowlanych i geomechanicznych i ze względu na swoje cechy mogą stanowić alternatywę dla metody elementów skończonych, metody elementów odrębnych i innych popularnych inżynierskich metod symulacyjnych. W artykule omówiono wyżej wymienione metody i perspektywy ich zastosowania do symulacji ośrodka nieciągłego i dyskretnego w szczególności nieciągłego masywu skalnego.
EN
Traditional finite element method is efficient and universal numerical simulation method, and implemented with many available software packages, also easy to use. Applied to simulations of discontinuities and discontinuous rock mass, it has got serials limitations. For the last several years some generalizations of this method have been developed with the use of new approximation techniques, particularly partition of unity. As a result of these developments mesh-free methods (MFree), enriched approximation methods (GFEM, XFEM) and numerical manifold method has been developed, basing on finite element method and finite difference method approaches. All the three groups of methods listed above have ability to model discontinuities without challenging and expensive remeshing. All of them can simulate continuous medium, discontinuous medium and model disintegration within a single numerical schema (each of them within different one). Completed with contact detection algorithms, they meet criteria of discrete element method. The above mentioned methods are still in their very early stages of development and many theoretical and practical problems need to be solved before they will be used in Civil Engineering and Rock Mechanics for practical applications. In the future, due to their advantages, they can offer an alternative for finite element method, distinct element method and other popular engineering simulation methods. The article presents the above mentioned methods and their possible applications for discontinuous and discrete medium simulation, particularly for the simulation of discontinuous rock mass.
Wydawca
Rocznik
Strony
325--340
Opis fizyczny
Bibliogr. 67 poz., rys.
Twórcy
  • Katedra Geomechaniki, Budownictwa i Geotechniki, Wydział Górnictwa i Geoinżynierii, Akademia Górniczo-Hutnicza, Kraków
  • Katedra Geomechaniki, Budownictwa i Geotechniki, Wydział Górnictwa i Geoinżynierii, Akademia Górniczo-Hutnicza, Kraków
Bibliografia
  • [1] Abdelaziz Y., Hamouine A.: A Survey of the Extended Finite Element. Computers and Structures 86, 2008, p. 1141–1151
  • [2] Abdelaziz Y., Nabbou A., Hamouine A.: A State-of-the-art Review of the X-FEM for Computational Fracture Mechanics. Applied Mathematical Modelling, 33(12), 2009, p. 4269–4282
  • [3] Atluri S.N., Kim H.G., Cho J.Y.: A Critical Assessment of the Truly Local Petrov–Galerkin (MLPG) and Local Boundary Integral Equation (LBIE) Methods. Comput. Mech. 24, 1999, p. 348–72
  • [4] Babuska I., Melenk J.M.: The Partition of Unity Method. Int. J. Numer. Method Eng. 40, 1997, p. 727–58
  • [5] Belytschko T., Krongauz Y., Organ D., Flemiong M., Krysl P.: Meshless Methods. An Overview and Recent Developments. Comput. Methods Appl. Mech. Eng. 139, 1996, p. 3–47
  • [6] Belytschko T., Lu Y.Y., Gu L.: Element-free Galerkin Methods. Int. J. Numer. Method Eng. 37, 1994, p. 229–56
  • [7] Belytschko T., Moes N., Usui S., Parimi C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Method Eng. 50, 2001, s. 993–1013
  • [8] Belytschko T., Organ D., Gerlach C.: Element-free Galerki Methods for Dynamic Fracture in Concrete. Comput. Methods Appl. Mech. Eng. 187, 2000, p. 385–99
  • [9] Belytschko T., Parimi C., Moes N., Sukumar N., Usui S.: Structured Extended Finite Element Methods for Solids Defined by Implicit Surfaces. Int. J. Numer. Method Eng. 56, 2003, p. 609–35
  • [10] Buczkowski R., Kleiber M.: Elasto-plastic Interface Model for 3D Frictional Orthotropic Contact Problems. Int. J. Num. Methods Eng. 40, 1997, p. 599–619
  • [11] Chen G.Q., Ohnishi Y., Ito T.: Development of High-order Manifold Method. Int. J. Num. Method Eng. 43, 1998, p. 685–712
  • [12] Chiou Y.-J., Lee Y.-M., Tsay R.-J.: Mixed Mode Fracture Propagation by Manifold Method. Int. J. Fracture 114, 2002, p. 327–47
  • [13] De S., Bathe K.J.: The Method of Finite Spheres. Comput. Mech. 25, 2000, p. 329–45
  • [14] Duarte C.A.M., Oden J.T.: An h-p Adaptive Method Using Clouds. Comput. Method Appl. Mech. Eng 139, 1996, p. 237–62
  • [15] Fish J., Yuan Z.: Multiscale Enrichment Based on Partition of Unity. International Journal for Numerical Methods in Engineering 62, 2005, p. 1341–1359
  • [16] Ghaboussi J., Wilson E.L., Isenberg J.: Finite Element for Rock Joints and Interfaces. J. Soil Mech. Div. ASCE, 1973, p. 833–4899
  • [17] Giner E., Sukumar N., Tarancon J.E., Fuenmayor F.J: An Abaqus Implementation of the Extended Finite Element Method. Engineering Fracture Mechanics. Preprint submitted, 2008
  • [18] Goodman R.E., Taylor L., Brekke T.: A Model for the Mechanics of Jointed Rock. J. Soil Mech. and Found. Div. Proc., ASCE v.94, n. SM 3, 1968
  • [19] Gu Y.T., Liu G.R.: A Boundary Point Interpolation Method for Stress Analysis of Solids. Comput. Mech. 28 (1), 2002, p. 47–54
  • [20] Idelsohn S., Torrecilla M., Onate E.: Multi-fluid Flows with the Particle Finite Element Method. Comput. Methods Appl. Mech. Eng. 198, 2009, p. 2750–2767
  • [21] Jiang Q., Zhou C., Li D.: A three-dimensional Numerical Manifold Method Based on Tetrahedral Meshes. Computers and Structures 87 (13–14), 2009, p. 880–889
  • [22] Jing L.A.: Review of Techniques, Advances and Outstanding Issues in Numerical Modelling for Rock Mechanics and Rock Engineering. International Journal of Rock Mechanics & Mining Sciences 40, 2003, p. 283–353
  • [23] Kaczmarczyk Ł.: Numeryczna analiza wybranych problemów mechaniki ośrodków niejednorodnych. Praca doktorska, 2006
  • [24] Khoei A.R., Nikbakht M.: Contact Friction Modeling with the Extended Finite Element Method (X-FEM). J. Mater. Process. Technol. 177, 2006, p. 58–62
  • [25] Krok J., Orkisz J.: A Unified Approach to the FE Generalized Variational FD Method in Nonlinear Mechanics. Concept and Numerical Approach. Discretization methods in structural mechanics, IUTAM/IACM Symposium, Vienna, 1990, p. 353–362
  • [26] Li S., Cheng Y., Wu Y.-F.: Numerical Manifold Method Based on the Method of Weighted Residuals. Comput. Mech. 35, 2005, p. 470–80
  • [27] Li S., Qian D., Liu W.K., Belytschko T.: A Meshfree Contact Detection Algorithm. Comput. Methods Appl. Mech. Eng. 190, 2001, p. 3271–92
  • [28] Lin J.-S.: A Mesh-based Partition of Unity Method for Discontinuity Modeling. Comput. Method Appl. Mech.Eng. 192, 2003, p. 1515–32
  • [29] Liszka T., Orkisz J.: The Finite Difference Method at Arbitrary Irregular Meshes and its Applications in Applied Mechanics. Comp Struct. 11, 1980, p. 83–95
  • [30] Liszka T.J., Duarte C.A.M., Tworzydło W.W.: hp-Meshless Cloud Method. Comp. Meth. Appl. Mech. Eng. 139, 1996, p. 263–288
  • [31] Liu G.R.: Mesh Free Methods. Moving Beyond the Finite Element Method. CRC Press 2003
  • [32] Liu W.K., Jun S., Zhang Y.F.: Reproducing Kernel Particle Methods. Int. J. Numer. Method Fluid. 20, 1995, p. 1081–106
  • [33] Liu W.K., Li S., Belytschko T.: Moving Least-square Reproducing Kernel Methods, Part I: Methodology and Convergence. Comput. Methods Appl. Mech. Eng. 143, 1997
  • [34] Lucy L.B.: A Numerical Approach to the Testing of the Fission Hypothesis. Astron. J. 8, 1977, s. 1013–24
  • [35] Luo S.M., Zhang X.W., Lu W.G., Jiang D.R.: Theoretical Study of Three-dimensional Numerical Manifold Method. Appl. Math. Mech. English Edition 26, 2005, p.1126–31
  • [36] Menouillard T., Rethore J., Combescure A., Bung H.: Efficient Explicit Time Stepping for the Extended Finite Element Method (X-FEM). International Journal of Numerical Methods in Engineering 68, 2006, p. 911–939
  • [37] Mergheim J., Kuh E., Steinman P.: A Finite Element Method for the Computational Modeling of Cohesive Crack Growth. International Journal for Numerical Methods in Engineering 63, 2005, p. 276–289
  • [38] Moes N., Dolbow J., Belytschko T.: A Finite Element Method for Crack Growth without Remeshing. Int. J. Numer. Method Eng. 46, 1999. p. 131–50
  • [39] Mohammadi S.: Extended Finite Element Method for Fracture Analysis of Structures. Blackwell Publishing, Oxford 2008
  • [40] Mukherjee Y.X., Mukherjee S.: Boundary Node Method for Potential Problems. Int. J. Numer. Methods Eng. 46, 1999, p. 341–385
  • [41] Nagashima T., Suemasu H.: Application of Extended Finite Element Method to Fracture of Composite Materials. European Congees on Computational Methods in Applied Sciences and Engineering. Javaskyla, Finland 2004
  • [42] Nayroles B., Touzot G., Villon P.: Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements. Comput. Mech. 10, 1992, p. 307–18
  • [43] Oden J.T., Duarte C.A.M., Zienkiewicz O.C.: A new Cloud-based hp Finite Element Method. Comput. Method Appl. Mech. Eng. 153, 1998, p. 117–26
  • [44] Onate E., Idelsohn S.R., Zienkiewicz O.C. i in.: A Finite Point Method in Computational Mechanics: Applications to Convective Transport and Fluid Flow. Int. J. Numer. Method. Eng. 39, 1996, p. 3839–66
  • [45] Osher S., Sethian J.A.: Fronts Propaging with Curvature-dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computat. Physics 79, 1988, p. 12–49
  • [46] Ossowski R.: Metody bezsiatkowe, nowe perspektywy zastosowania w geoinżynierii. Część I. Podstawy teoretyczne. Inżynieria Morska i Geotechnika 26(6), 2005, p. 453–456
  • [47] Rabczuk T., Belytschko T.: Application of Particle Methods to Static Fracture of Reinforced Concrete Structures. International Journal of Fracture 137, 2006, p. 19–49
  • [48] Rabczuk T., Belytschko T.: A Three-dimensional Large Deformation Meshfree Method for Arbitrary Evolving Cracks. Comput. Methods Appl. Mech. Engng 196, 2007, p. 2777–2799
  • [49] Rethore J., Gravouil A., Combescure A.: A Combined Space-time Extended Finite Element Method. International Journal for numerical methods in Engineering 64(2), 2005 p. 260–284
  • [50] Shi G.H.: Manifold Method of Material Analysis. Transactions of the ninth army conference on applied mathematics and computing, p. 57–76. Minneapolis MN 1991
  • [51] Shi G.H.: Modeling Rock Joints and Blocks by Manifold Method. Proceedings of the 32nd US Rock Mechanics Symposium, Santa Fe, NM, 1992, p. 639–48
  • [52] Shi G.H.: Simplex Integration for Manifold Method, FEM, DDA and Analytical Analysis. Proceedings of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media, Berkeley, CA, 1996, p. 206–63
  • [53] Shi G.H.: Recent Applications of Discontinuous Deformation Analysis and Manifold Method. The 42nd U.S. Rock Mechanics Symposium (USRMS), American Rock Mechanics Association 2008, San Francisco, CA, 2008
  • [54] Shi G.H.: Manifold Method. Proceedings of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media, Berkeley, CA, 1996, p. 52–204
  • [55] Sikora Z., Ossowski R.: Metody bezsiatkowe - czy jest na nich miejsce w geoinżynierii? Rozwiązanie zagadnienia Flamanta metodą MLPG. Geoinżynieria: drogi, mosty, tunele, nr 3, 2007, p. 42–46
  • [56] Stolarska M., Chopp D.L., Moes N., Belytschko T.: Modeling Crack Growth by Level Sets in the Extended Finite Element Method. International Journal of Numerical Methods in Engineering 51, 2001, p. 943–960
  • [57] Strouboulis T., Copps K., Babuska I.: The Generalised Finite Element Method: an Example of its Implementation and Illustration of its Performance. Int J Numer Meth Eng. 47, 2000, p. 1401–17
  • [58] Strouboulis T., Copps K., Babuska I.: The Generalized Finite Element Method. Comput Meth Appl Mech Eng. 190, 2001, p. 4081–193
  • [59] Sukumar N., Moran B., Belytschko T.: The Natural Element Method in Solid Mechanics. Int. J. Numer. Methods Eng. 43, 1998, p. 839–87
  • [60] Taylor R.L., Zienkiewicz O.C., Onate E.: A Hierarchical Finite Element Method Based on the Partition of Unity. Comput. Method Appl. Mech. Eng 152, 1998, p. 73–84
  • [61] Wells G.N.: Discontinuous Modelling of Strain Localisation and Failure. PhD thesis, Delft University of Technology 2001
  • [62] Zhang X., Lu M., Wegner J.L.: A 2-D Meshless Model for Jointed Rock Structures. Int. J. Num. Methods Eng. 47, 2000, p. 1649–61
  • [63] Zi G., Belytschko T.: New Crack-tip Elements for XFEM and Application to Cohesive Cracks. Int. J. Numer. Meth. Engng 57, 2003, p. 2221–2240
  • [64] Zienkiewicz O.C.: Metoda elementów skończonych. Arkady, Warszawa 1972
  • [65] Zienkiewicz O.C., Taylor R. L.: The Finite Element Method for Solid and Structural Mechanics. Elsevier Butterworth-Heinemann, Amsterdam 2006.
  • [66] Zienkiewicz O.C., Taylor R. L., Zhu J. Z.: The Finite Element Method: its Basis and Fundamentals. Elsevier Butterworth-Heinemann, Amsterdam 2005
  • [67] Zienkiewicz O.C., Best B., Dullage C., Stagg K.: Analysis of Nonlinear Problems in Rock Mechanics with Particular Reference to Jointed Rock Systems. Proceedings of the Second International Congress on Rock Mechanics, Belgrade 1970
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHM-0013-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.