Identyfikatory
Warianty tytułu
Właściwości mechaniczne i charakterystyka mikrostruktur biodegradowalnych kompozytów cementowych dla układu kostnego
Języki publikacji
Abstrakty
A material that can be used as a scaffold in tissue engineering must satisfy a number of requirements. These include biocompatibility, biodegradation to non toxic products within the time frame required for the application, process ability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation, and appropriate mechanical properties, as well as maintaining mechanical strength during most part of the tissue regeneration. In the present work, the bone cement composites were prepared by mixing different ratios of calcium sulfate dehydrate (CaSO4.2H2O) filler (60, 65 and 70 wt%) with the polyester resin/NV, MMA, NV/MMA monomers mixture. The biodegradability of PSF crosslinked with NV, MMA and NV/MMA loaded with 60% gypsum was studied using Simulated Body Fluid SBF (pH 7.3) in vitro medium. The degradation rate of fumarate based polyesters as well as bone cement composites were measured as the percentage of weight loss over time of exposure to the SBF solutions. The mechanical properties showed different behavior according to the bone cement concentration. The compressive strength and the microstructure were also studied before and after immersing in SBF solution.
Materiał, który może zostać zastosowany jako kościec w inżynierii anatomicznej musi spełniać szereg wymogów. Są to biokompatybilność, biodegradacja do produktów nietoksycznych w czasie wymaganym do implementacji, zdolność adaptacji do skomplikowanych form o odpowiedniej porowatości, zdolność do wspomagania wzrostu komórek i proliferacji oraz odpowiednie właściwości mechaniczne, jak również utrzymywanie siły mechanicznej podczas większości procesu regeneracji tkanki. W pracy przygotowano cementowe kompozyty kości poprzez zmieszanie w różnych proporcjach (60, 65 oraz 70%) wypełniacza, którym był dwuwodzian siarczanu wapnia CaSO4.2H2O z mieszaniną monomerów żywicy poliestrowej NV, MMA oraz NV wraz z MMA. Biodegradowalność PSF w połączeniu z NV, MMA oraz NV/MMA wypełniona w 60% gipsem była badana za pomocą Simulated Body Fluid (pH 7,3) w ośrodku vitro. Stopień degradacji poliestrów oraz cementowych kompozytów kostnych był mierzony jako utrata wagi w czasie działania roztworów SBF. Właściwości mechaniczne okazały się różne w zależności od koncentracji cementu kostnego. Siła kompresji i mikrostruktura były również badane przed i po imersji w roztworze SBF.
Wydawca
Czasopismo
Rocznik
Tom
Strony
119--133
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- The Academy of special studies - Technology development department
autor
- Microwave Physics and Dielectrics Department, National Research Centre, Dokki, Cairo, Egypt
Bibliografia
- [1] Ashammakhi N., Rokkanen P.: Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 18, pp. 3-9, 1997
- [2] Behravesh E., Yasko A.W., Engle P.S., Mikos A.G.: Synthetic biodegradable polymers for orthopaedic applications. Clin Orthop 367S: pp. 118-185
- [3] Domb A.J., Manor N., Elmalak O.: Biodegradable bone cement compositions based on acrylate and epoxide terminated poly (propylene fumarate) oligomers and calcium salt compositions. Biomaterials, Volume 17, Issue 4, February 1996, pp. 411-417
- [4] Hayashi T.: Biodegradable polymers for biomedical applications. Prog Polymer Sci 19: pp. 663-702, 1994
- [5] He S., Timmer M.D., Yaszemski M.J., Yasko A. Engel W.P.S., Mikos A.G.: Synthesis of biodegradable poly (propylene fumarate) networks with poly (propylene fumarate) - diacrylate macromers as crosslinking agents and characterization of their degradation products. Polymer, Volume 42, Issue 3, February 2001, pp. 1251-1260
- [6] Holland S.J., Tighe B.J.: Biodegradable polymers. In: Advances in Pharmaceutical Science. Academic Press, London, Vol 6, pp. 101-164, 1992
- [7] http://www en.wikipedia.org/wiki/Hydroxyapatite
- [8] http://www.galleries.com/Minerals/Phosphat/APATITE/APATITE.htm
- [9] Il doo Chung, Dong Xie, Puckett A.D., Mays J.W.: Syntheses and evaluation of novel biodegradable amino acid based anhydride polymer resins and composites. European Polymer Journal, vol. 39, issue 3, pp. 497-503
- [10] Il doo Chunga, Dong Xie, Puckett A.D., Mays J.W.: Syntheses and evaluation of biodegradable multifunctional polymer networks. European Polymer Journal, Volume 39, Issue 9, September 2003, pp. 1817-1822
- [11] Ishihara K.: Biocompatible polymers. In: Biomedical applications of polymeric materials, CRC Press, Boca Raton, pp. 152, 1993
- [12] Kemal S., Feza K., Nesrin H.: Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements. Polymer Testing, Volume 23, Issue 2, April 2004, pp. 145-155
- [13] Kharas G.B., Kamenetsky M., Simantirakis J., Beinlich K.C., Rizzo A.T., Caywood G.A., Watson K.: Synthesis and characterization of fumarate-based polyester for use in bioresorbable bone cement composites. J Appl Polymer Sci 66: 1997, pp. 1123-1137
- [14] Kohn J., Langer R.: Bioresorbable and bioerodible materials. In: An Introduction to Materials in Medicine. Ratner B.D., Hoffman A.S., Schoen F.J., Lemon J.E., eds. Academic Press, San Diego, pp. 65-73, 1997
- [15] Leung Kwok-sui: Biodegradable Implants in Fracture Fixation. Published by Department of Orthopaedics and Traumatology The Chienese of Hong Kong and World Scientific, 1994
- [16] Lewandrowski K.U.L., Bondre S., Hile D.D., Thompson B.M.J., Wise D.L., Tomford W.W., Trantolo D.J.: Porous Poly(propylene Fumarate) Foam Coating of Orthotopic Cortical Bone Grafts for Improved Osteoconduction. Tissue Engineering, 2002, Vol. 8, No. 6, pp.1017-1027
- [17] Łukaszczyk Jan Ś.M., Monika J., Katarzyna K.: Characterization of new biodegradable bone cement compositions based on functional polysuccinates and methacrylic anhydride. J. of Biomaterials Science - Polymer Edition; Jul 2007, Vol. 18 Issue 7, pp. 825-842
- [18] Michael J., Richard G.P., Wilson C., Robert L., Mikos A.G.: In vitro degradation of a poly (propylene fumarate) - based composite material. Biomaterials Volume 17, Issue 22, November 1996, pp. 2127-2130
- [19] Middleton J.C., Tipton A.J.: Synthetic biodegradable polymers as orthopaedic devices. Biomaterials 21, pp. 2335-2346, 1999
- [20] Mikos A.G., Temenoff J.S.: Formation of highly porous biodegradable scaffolds for tissue engineering. EJB Electron J Biotechnol 3(2000), 114-119 (available on http://ww.ejb.org/content/vol3/issue2/full/5)
- [21] Puska M.A., Kokkari A.K., Narhi T.O., Vallittu P.K.: Mechanical properties of oligomer-modified acrylic bone cement”, Biomaterials Volume 24, Issue 3, February 2003, pp. 417-425
- [22] Shalaby S.W.: Bioabsorbable Polymers [In:] Encyclopedia of Pharmceutical Technology. Swarbrick J., Boylan J.C., eds. vol. 1, pp. 465-476, 1988
- [23] Tadashi T., Masahiko S., Chikara O., Atsushi S., Yoshikazu T., Jin M., Kouichi K.O., Hideshige M.: Mechanical and histological evaluation of a PMMA-based bone cement modified with gamma-methacryloxypropyl trimeth oxysilane and calcium acetate. Biomaterials Volume 27, Issue 21, July 2006, pp. 3897-3903
- [24] Tormala P., Juutilainen T., Partio E.K., Rokkanen P.: Bioabsorbable composite implants for treatment of bone fractures and osteotomies. Technology and Health Care, 2002, Vol. 10, pp. 245-279
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHM-0008-0017