PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synteza nanocząstek złota w roztworach wodnych, bez dodatku i w obecności PVA, Część 1

Identyfikatory
Warianty tytułu
EN
Synthesis of gold nanopowders in water solutions, without and with an addition of PVA, Part 1
Języki publikacji
PL
Abstrakty
PL
W artykule określono możliwości syntezy nanocząstek złota w roztworach wodnych oraz ich stabilności w czasie. Do syntezy zastosowano metodę redukcji. Prekursorem cząstek Au był kwas czterochlorozłotowy(III) (HAuCl4) a reduktorem borowodorek sodu (NaBH4). W części 1 artykułu, przedstawiono wyniki badań wpływu takich czynników, jak stężenie początkowe prekursora i reduktora na zmiany w rozmiarach otrzymywanych cząstek oraz na ich stabilność w czasie. Do analizy jakościowej obecności cząstek w układzie oraz ich stabilności stosowano metodę spektrofotometrii UV-Vis. Wykazano, że istnieje możliwość otrzymania takich nanocząstek w badanym układzie, jednakże otrzymany produkt nie jest trwały i wymaga dodatkowej stabilizacji.
EN
The aim of this work is Au nanoparticles synthesis in aqueous solution as well as determination of their stability in time. For the synthesis, the reduction method was applied. As a precursor of Au particles and a reductant of Au(III) ions, tetrachloroaurate(III) acid (HAuCl4) and sodium borohydride (NaBH4), were used, respectively. In the first part of this study, the influence of different factors, namely precursor and reductant initial concentrations on the size and the stability of nanoparticles in time were determined. For detection of Au particles in the system as well as their UV-Vis stability, spectrophotometry was applied. It was found, that it is possible to obtain such particles, but reaction product is not stable and must be stabilized by other means.
Słowa kluczowe
Rocznik
Strony
200--207
Opis fizyczny
Bibliogr. 50 poz., tab., wykr.
Twórcy
autor
autor
  • Akademia Górniczo-Hutnicza, Wydział Metali Nieżelaznych, Kraków
Bibliografia
  • 1. Klabunde K. J.: Nanoscale materials in chemistry. John Willey & Sons Inc. Nowy Jork 2001.
  • 2. Novo C., Funston A. M., Mulvaney P.: Nature Nanotechnology, 2008, t. 3, s. 598.
  • 3. Pike-Biegunski M. J.: Lek w Polsce, 2005, t. 15, s. 31.
  • 4. Masaharu T., Nobuhiro M., Masayuki H., Michiko N., Sachie H., Naoki I.: Shape and size controlled synthesis of gold nanocrystals using oxidative etching by AuCl4- and Cl– anions in microwave-polyol process” Colloids and Surfaces 2007, nr 302, s. 587-598.
  • 5. Brust M., Kiely C. J.: Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloid and Surfaces A: Physicochemical and Engineering Aspects 2002, nr 202, s. 175-186.
  • 6. Wilk N. R., Schreiber H. D.: Optical properties of gold in acetate glasses. Journal of Non-Crystal Solids 1998, nr 239, s. 192-196.
  • 7. Caruso F.: ,Colloids and Colloid Assemblies. Willey-VCH Verlag GmbH & Co. KGaA Wenheim 2004.
  • 8. Patel K., Kaapor S., Dare D. P.: Synthesis of Au, Au/Ag, Au/Pt and Au/Pd nanoparticles using microwave-polyol method. Res. Chem. Intermed. 2006, t. 32, nr 2, s. 103-113.
  • 9. Perez-Juste J., Pastoriza-Santos I., Liz-Marzan L., Mulvaney P.: Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews 2005, nr 249, s. 1870-1901.
  • 10. Corti C. W., Holliday R. J., Thomson D. T.: The unique properties of gold for nanoscale technologies and fabrication. World Gold Council, Londyn.
  • 11. Cortie M. B., van der Lingen E.: Catalytic gold nanoparticles. Materials Forum 2002, nr 26, s. 1-14.
  • 12. Rotello V.: Nanoparticles Building block for nanotechnology. Kluwer Academic/Plenum Publishers, Nowy Jork.
  • 13. Thomson D. T.: Using gold nanoparticles for catalysis. Nanotoday August 2007, t. 2, nr 4.
  • 14. Liz-Marzan L., Kamat P. V.: Nanoscale materials. Kluwer Academic Publisher, Boston.
  • 15. Zhong Ch. J., Maye M. M.: Core-Shell Assembled Nanoparticles as Catalyst. Advanced Materials 2001, t. 13, nr 19.
  • 16. Corti C. W., Holliday R. J., Thompson D. T.: Commercial aspects of gold catalysis. Applied Catalysis A: General 2005, nr 291, s. 253-261.
  • 17. Cameron D., Holliday R., Thompson D.: Gold’s future role in fuel cell systems. Journal of Power Sources 2003, nr 118, s. 298-303.
  • 18. Hvolbaek B., Janssens T. V. W., Clausen B. S., Falsig H., Christensen C. H., Norskov J. K.: Catalytic activity of Au nanoparticles. Nanotoday August 2007, t. 2, nr 4.
  • 19. Luo Y.: Size-controlled preparation of polyelectrolyteprotected gold nanoparticles by natural sunlight radiation. Materials Letters May 2007, t. 61, nr 11-12.
  • 20. Kuo Ch., Chen H., Lin J., Wan B.: Nano-gold supported on TiO2 coated glass-fiber for removing toxic CO gas from air. Catalysis Today 2007, nr 122, s. 270-276.
  • 21. Perspective on industrial and scientific aspects of gold catalysis. Applied Catalysis A: General 2003, nr 243, s. 201-205.
  • 22. Nieuwenhuys B. E., Gluhoi A. C, Rienks E. D. L., Weststrate C. J., Vinod C. P.: Chaos, oscillations and the golden future of catalysis. Catalysis Today 2005, nr 100, s. 49-54.
  • 23. Katti K. V., Kannan K., Katti K., Kattumori K., Pandrapraganda R., Rahing V., Cutler C., Boote E. J., Casteel S. W., Smith C. J., Robertson J. D.: Hybrid gold nanoparticles in molecular imaging and radiotherapy. Czechoslovak Journal of Physics, 2006, t. 56, Suppl. D.
  • 24. Interrante L. V., Hampden-Smith M. J.: Chemistry of advanced materials. Willey-VCH Nowy Jork 1998.
  • 25. Esparza R., Rosas G., Lopez Fuentes M., Sanchez Ramirez J. F., Pal U., Ascencio J. A., Perez R.: Synthesis of gold nanoparticles with different atomistic structural characteristics. Materials Characterization 2007, nr 58, s. 694-700.
  • 26. Guoa Z., Zhang Y., DuanMua Y., Xua L., Xie S., Gua N.: Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution. Colloids and Surfaces A: Physicochem. Eng. Aspects 2006, nr 278, s. 33-38.
  • 27. Sau T. K., Pal A., Jana N. R., Wang Z. L., Pal T.: Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. Journal of Nanoparticle Research 2001, nr 3, s. 257-261.
  • 28. Nalwa H. S.: Handbook of Nanostructured Materials and Nanotechnology. Synthesis and Processing, t. 1, Academic Press 2000.
  • 29. Lunga J. K., Huanga J. Ch., Tien D. C., Liao C. J., Tseng K. C., Tsung T. T., Kao W. S., Tsai T. H., Jwo C. S., Lin Ch. M., Stobinski L.: Preparation of gold nanoparticles by arc discharge in water. Journal of Alloys and Compounds 2007, nr 434-435, s. 655-658.
  • 30. Wang Z. L.: Handbook of Nanophase and Nanostructured Materials. Synthesis t. 1. Kulwer Academic/Plenum Publishers, Nowy Jork.
  • 31. Wagner J., Kirner T., Mayerb G., Albert J., Kohler J. M.: Generation of metal nanoparticles in a microchannel reactor. Chemical Engineering Journal 2004, nr 101, s. 251-260.
  • 32. Dong S., Zhou S.: Photochemical synthesis of colloidal gold nanoparticles. Materials Science and Engineering 2007, B 140, s. 153-159.
  • 33. Manna A., Imae T., Yogo T., Aoi K., Okazaki M.: Synthesis of Gold Nanoparticles in a Winsor II Type Microemulsion and Their Characterization. Journal of Colloid and Interface Science 2002, nr 256, s. 297-303.
  • 34. Sakai T., Alexandridis P.: Size and shape-controlled synthesis of colloidal gold through autoreduction of the auric cation by poly(ethylene oxide)-poly(propylene oxide) block copolymers in aqueous solutions at ambient conditions. Nanotechnology 2005, nr 16, s. 344-353.
  • 35. Pal A.: Photoinitiated gold sol generation in aqueous Triton X-100 and its analytical application for spectrophotometric determination of gold. Talanta 1998, nr 46, s. 583-587.
  • 36. Capek I.: Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Advances in Colloid and Interface Science 2004, nr 110, s. 49-74.
  • 37. Vaskelis A., Tarozaite R., Jagminiene A., Tamasiunait L., Juskenas R., Kurtinaitiene M.: Gold nanoparticles obtained by Au(III) reduction with Sn(II): Preparation and electrocatalytic properties in oxidation of reducing agents. Electrochimica Acta 2007, nr 53, s. 407-416.
  • 38. Schmid G.: Nanoparticles From Theory to Application. Willey-VCH Verlag GmbH & Co. KGaA Wenheim 2004.
  • 39. Herrera A. P., Resto O., Briano J. G., Rinaldi C.: Synthesis and agglomeration of gold nanoparticles in reverse micelles. Nanotechnology 2005, nr 16, s. 618-625.
  • 40. Liao J., Zhang Y., Yu W., Xu L., Ge C., Liu J., Gu N.: Linear aggregation of gold nanoparticles in ethanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003, nr 223, s. 177-183.
  • 41. Liu W., Yang X., Huang W.: Catalytic properties of carboxylic acid functionalized polymer microsphere-stabilized gold metallic colloids. Journal of Colloid and Interface Science 2006, nr 304, s. 160-165.
  • 42. Huanga H., Yanga X.: One-step, shape control synthesis of gold nanoparticles stabilized by 3-thiopheneacetic acid. Colloids and Surfaces A: Physicochem. Eng. Aspects 2005, nr 255, s. 11-17.
  • 43. He P., Zhu X.: Phospholipid-assisted synthesis of sizecontrolled gold nanoparticles. Materials Research Bulletin 2007, nr 42, s. 1310-1315.
  • 44. Preparation of Polymer - Stabilized Noble Metal Colloids. Journal of Colloid and Interface Science 1999, nr 210, s. 218-221.
  • 45. Dua Y. K., Xua J. Z., Shena M., Yanga P., Jiangb L.: Alkanethiol-stabilized decahedron of gold nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects 2995, nr 257-258, s. 535-537.
  • 46. Nowicki W.: Kinetic behavior of the system composed of nanosized gold particles and very high-molecular weight polyacrylamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, nr 194, s. 159-173.
  • 47. Zhivkov A. M., van der Zande B. M. I., Stoylov S. P.: Electro-optics of metal particles: electric birefringence of gold rods. Colloids and Surfaces A: Physicochem. Eng. Aspects 2002, nr 209, s. 299-303.
  • 48. Pacławski K., Fitzner K.: Kinetics of gold(III) chloride complex reduction using Sulfur(IV). Metallurgical and Materials Transactions B December 2004, t. 35B, s. 1071.
  • 49. Pacławski K., Gapiński J.: Static and Dynamic Light Scattering Method for Analysis of Gold Colloidal Growth in Aqueous Solution. Archives of Metallurgy, 2006, t. 51, nr 4.
  • 50. Encyclopedia Britannica Online http://www.britannica.com//eb/art-73016/Phospholipid-molecules-composed-of-fatty-acid-tails--and-a-phosphate.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHM-0007-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.